GEOG 377 Introduction to Geographic Information Systems

(Course syllabus, Spring 2016)

Instructor Guiming Zhang

Office Rm416 Science Hall

E-mail gzhang45@wisc.edu

Office Hours Tuesday and Thursday: 2pm – 4pm

Lecture hours & location:

Tue & Thu 4:00 - 5:15pm, Rm180 Science Hall

Lab hours & Location:

- Section 301: Mon 12:45pm – 2:45pm, Rm380 Science Hall
- Section 302: Mon 3 - 5pm, Rm380 Science Hall
- Section 303: Tue 1:45pm – 3:45pm, Rm380 Science Hall
- Section 304: Mon 6 –8pm, Rm380 Science Hall

Recommended Text:

Course website: https://sites.google.com/a/wisc.edu/intro-to-gis/

Description:

The field of Geographic Information Systems, GIS, is concerned with the description, analysis, and management of geographic information. This course offers an introduction to methods of managing and processing geographic information. Emphasis will be placed on the nature of geographic information, data models and structures for geographic information, geographic data input, data manipulation and data storage, spatial analytic and modeling techniques, and error analysis.

The course is made of two components: lectures and labs. In the lectures, the conceptual elements of the above topics will be discussed. The labs are designed in such a way that students will gain first-hand experience in data input, data management, data analyses, and result presentation in a geographical information system.

Students must be clear that this is not a class specifically on any particular GIS software. It is a course on the underlying theory and concepts in GIS. The understanding of these concepts and theories will help you to perform spatial analysis in any GIS system properly and efficiently.
Goals:

In general, this is an ice-breaking course into GIS and serves as the foundation course for other advanced courses in GIS. The basic objectives of this course for students are:

1. To understand the basic structures, concepts, and theories of GIS
2. To gain a hand-on experience with a variety of GIS operations

Pre-requisites:

Introductory courses in environmental or mapping sciences or instructor consent.

Computing Environment and Software:

ArcGIS 10.3 will be used for class assignments to illustrate the practical use of certain geographic information processing concepts and techniques.

Evaluation:

To meet the new requirements of graduate school toward graduate program, this class evaluates graduate students and undergraduate students separately. For undergraduate students, the evaluation includes four components listed below, adding up to 100% in total. For graduate students, the evaluation includes five components, of which four are listed below. An additional component (10%) as class presentation is listed separately solely for the graduate students. Points for graduate student (in total 110%) will multiple a factor of 0.909 to be normalized to 100%.

Components:

Lab exercises 35%
Exam I .. 30%
Exam II ... 30%
Quizzes (in class) 5%

Class presentation (graduate student only):

Graduate students need to review a journal article (or multiple articles) and give a presentation in the class. The article or articles can relate to GIS concepts, theories, or applications. An article in your discipline is preferred for you to review, for the reason that it would help you to think how to apply GIS in your work in the future.

The presentation is tentatively set on April 26th and/or April 28th, contingent upon the number of graduate students enrolled in our class. To present your reviewed article, you need to prepare five to eight slides in the format of PowerPoint, which would take approximately five to six minutes to present. In your slides, one of them would be how GIS is helpful in the article. You will have one or two minutes to answer the questions raised by the audience. All students will evaluate the clarity of your presentation. And Instructor and TAs will evaluate the academic merits of your presentation.

Please keep two important dates in mind. Please send me the article (or articles) that you are going to review to me by April 12th, and please send me your PowerPoint slides by April 25th. If you have any questions about selecting articles that you would like to review and present, please feel free to email me or come to my office hour.
Grading Policy:

Grades of exercises and exams are based on:

1) Academic merit of your answers to the questions;
2) Conciseness of answers;
3) Organization of your answers.

Course Overview:

![Course Overview Diagram]

Course Schedule:
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 19th</td>
<td>Lec 1 Course Overview GIS Overview</td>
</tr>
<tr>
<td>Jan 21st</td>
<td>Lec 2 The Nature of Geographic Information</td>
</tr>
<tr>
<td>Jan 26th</td>
<td>Lec 3 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Measuring Systems: Location – Coordinate Systems</td>
</tr>
<tr>
<td>Jan 28th</td>
<td>Lec 3 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Measuring Systems: Location – Coordinate Systems (Continue)</td>
</tr>
<tr>
<td>Feb 2nd</td>
<td>Lec 4 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Measuring Systems: Location – Coordinate Transformation</td>
</tr>
<tr>
<td>Feb 4th</td>
<td>Lec 5 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Measuring Systems: Topology</td>
</tr>
<tr>
<td></td>
<td>Measuring Systems: Attributes</td>
</tr>
<tr>
<td>Feb 9th</td>
<td>Lec 6 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: Introduction to spatial data models</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: Raster data models</td>
</tr>
<tr>
<td>Feb 11th</td>
<td>Lec 7 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: Relational Data Models</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: Vector Data Models (I)</td>
</tr>
<tr>
<td>Feb 16th</td>
<td>Lec 8 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: Vector Data Models (II)</td>
</tr>
<tr>
<td>Feb 18th</td>
<td>Lec 9 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Spatial Data Models: TIN</td>
</tr>
<tr>
<td></td>
<td>Summary of Spatial Data Models: Raster, Vector, TIN</td>
</tr>
<tr>
<td>Feb 23rd</td>
<td>Lec 10 Data Representation:</td>
</tr>
<tr>
<td></td>
<td>Linking attribute data with spatial data</td>
</tr>
<tr>
<td></td>
<td>Recent Development of Data models</td>
</tr>
<tr>
<td>Feb 25th</td>
<td>Lec 11 GIS Database Creation and Maintenance (I)</td>
</tr>
<tr>
<td></td>
<td>Data Input & Editing</td>
</tr>
<tr>
<td>Mar 1st</td>
<td>Lec 12 GIS Database Creation and Maintenance (II)</td>
</tr>
<tr>
<td></td>
<td>DBMS and its use in GIS</td>
</tr>
<tr>
<td>Mar 3rd</td>
<td>Review for Exam 1</td>
</tr>
<tr>
<td>Mar 8th</td>
<td>Exam 1: 75 min (Tuesday, 4 – 5:15pm, Rm 180 Science Hall)</td>
</tr>
</tbody>
</table>
Mar 10th Lec 13 GIS Database Creation and Maintenance (III)
 Metadata / Database creation Guidelines / NSDI

Mar 15th Lec 14 Data Analysis:
 Measurement & Connectivity

Mar 17th Lec 15 Data Analysis:
 Interpolation

Mar 22nd Spring Recess

Mar 24th Spring Recess

Mar 29th Lec 16 Data Analysis:
 Digital Terrain Analysis

Mar 31st Lec 17 Data Analysis:
 Statistical Operations & Point Pattern Analysis

Apr 5th Lec 18 Data Analysis:
 Classification

Apr 7th Lec 19 Data Analysis:
 GIS-based Modeling and Spatial Overlay (I)

Apr 12th Lec 20 Data Analysis:
 GIS-based Modeling and Spatial Overlay (II)

Apr 14th Lec 21 Data Analysis: Summary
 Uncertainty

Apr 19th Lec 22 Geo-representation, Geo-presentation, and GeoVisualization

Apr 21st GIS Applications: Guest lecture

Apr 26th Graduate student presentation

Apr 28th Graduate student presentation

May 3rd Lec 24 Establishing a GIS site

May 5th Review for Exam II

May 9th **Exam II**: 120 min (2:45 - 4:45PM, Rm: TBD)
Other important issues

The first exam will be held on **Mar 8th** during regular class time. The second exam will be held during 2:45 - 4:45PM on **May 9th** (Rm TBD). We offer a complimentary time for each exam, in case of conflicting schedule. If you cannot take either exam in the regular time, please directly notify me via email in *one week* advance. We are not able to accommodate if you give me a short notice. All regrading issues should be resolved in the week after handing the exams back to you.

In addition, we will have in-class quizzes at unannounced time point once in two weeks, starting from the second week. Each quiz will be three to five questions only, either in true/false format or multiple choices. By the end of the semester, we will count the highest five scores toward your final grade. However, if you miss any quiz without notice in advance (i.e., four hours before the lecture starts), we will directly deduct 1% from your final grade until all 5% quiz points have been deducted, however well you managed for the other quiz.

Examinations:

Exam 1: Mar 8th, Tuesday, 4 – 5:15pm, Rm 180 Science Hall

Exam 2: May 9th, Monday, 2:45 - 4:45pm, Rm TBD