Seth Spawn-Lee

Position title: Ph.D.

Email: spawn@wisc.edu

Address:
Advisor: Holly Gibbs

EDUCATION

M.S. Geography, University of Wisconsin-Madison

B.A. Biology, St. Olaf College

Interests

Land Use, Agricultural Policy and Management, Carbon, Biogeochemistry

CURRENT RESEARCH

Commodity-driven land use change and it’s effect on United States carbon emissions:

Land use decisions and their environmental impact are sensitive to economic and political changes. High commodity prices in the mid- to late 2000s, for example, spurred elevated rates of cropland expansion throughout the United States. To determine the amount of carbon emitted to the atmosphere as a result of these changes, I developed a data-driven model that combines high-resolution national maps of cropland expansion, remotely sensed carbon stocks, and statistical relationships describing their sensitivity to change. In colaboration with others, this model is now being used to (i) assess the environmental impacts of US biofuel policy and (ii) to improve life cycle assessment of US commodity crop supply chains.

Mapping the global geographies of biomass and soil organic carbon stocks:

This project leverages new satellite measurements to re-examine the geography of terrestrial carbon stocks. Plants and soils store vast amounts of carbon and thereby help to regulate global climate. In many areas of the world, this carbon is threatened either directly or indirectly by human activity. Knowing the nature and location of carbon around the world improves our ability to predict how these stocks will respond to emerging pressures.

Characterizing the space for land management in climate change mitigation:

I am also a member of two multi-institution teams of academic and NGO researchers seeking to better understand how and when intentioned land management can be used to mitigated global climate change. The first projects aim to assess the potential of various land management activities to reduce carbon emissions and increase carbon sequestration. The second project is identifying ecosystems that are effectively irreplaceable in terms of the carbon they store and their ability to re-absorb that carbon if disturbed. Both projects intend to shape conservation and environmental policy using the principles of ecosystem science.

RECENT PUBLICATIONS

Michalaska-Smith, M., Z. Song, S.A. Spawn-Lee, Z.A. Hansen, M. Johnson, G. May, E.T. Borer, E.W. Seabloom, L.L. Kinkel. Network structure of resource use and niche overlap within the endophytic microbiome. ISME J (2021) doi: 10.1038/s41396-021-01080-z

Khanna, M., L. Chen, B. Basso, X. Cai, J.L. Field, K. Guan, C. Jiang, T.J. Lark, T.L. Richard, S.A. Spawn-Lee, P. Yang, K.Y. Zipp. Redefining marginal land for bioenergy crop production. GCB Bioenergy (2021) doi: 10.1111/gcbb.12877

Drever, C.R., S.C. Cook-Patton, F. Akhter, … S.A. Spawn et al. Natural climate solutions for Canada. Science Advances (2021) doi: 10.1126/sciadv.abd6034

Graham, E.B., C. Averill, B. Bond-Lamberty, …S.A. Spawn et al. Toward a generalizable framework of disturbance ecology through crowd sourced science. Frontiers in Ecology and Evolution (2021) doi: 10.3389/fevo.2021.588940

Lark, T.J., S.A. Spawn, M. Bougie, H.K. Gibbs. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications (2020) doi: 10.1038/s41467-020-18045-z

Yin, H., A. Brandao Jr., J. Buchner, D. Helmers, B. Iuliano, N.E. Kimambo, K.E. Lewinska, E. Razenkova, A. Rizayeva, N. Rogova, S.A. Spawn, Y. Xie, V.C. Radeloff. Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment (2020) doi: 10.1016/j.rse.2020.111873

Spawn, S.A., C.C. Sullivan, T.J. Lark, H.K. Gibbs. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data (2020) doi: 10.1038/s41597-020-0444-4

Goldstein, A. W.R. Turner, S.A. Spawn, K.J. Anderson-Teixeira, S. Cook-Patton, J. Fargion, H.K. Gibbs, B. Griscom, J.H. Hewson, J.F. Howard, J.C. Ledezma, S. Page, L. Pin Koh, J. Rockstrom, J. Sanderman, D.G. Hole. Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change (2020) doi: 10.1038/s41558-020-0738-8

Brandao Jr., A., L. Rausch, A.P. Duran, C. Costa Jr., S.A. Spawn, H.K. Gibbs. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability (2020) doi: 10.3390/su12031277

Soto-Navarro, C., C. Ravilious, A. Arnell, X. de Lamo, …, S.A. Spawn, et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philosophical Transactions of the Royal Society B (2020) doi: 10.1098/rstb.2019.0128

Spawn, S.A. and H.K. Gibbs. Global maps of above and belowground biomass carbon density in the year 2010. ORNL DAAC (2020) doi: 10.3334/ORNLDAAC/1763

Kropp, H., M.M. Loranty, S.M. Natali, A. Kholodov, H.D. Alexander, N. Zimov, M.C. Mack, S.A. Spawn. Tree density influences ecohydrological drivers of plant-water relations in a larch boreal forest in Siberia. Ecohydrology (2019) doi: 10.1002/eco.2132

Spawn, S.A., T.J. Lark, H.K. Gibbs. Carbon emissions from cropland expansion in the United States. Environmental Research Letters (2019) doi: 10.1088/1748-9326/ab0399

Fargione, J.E., S. Bassett, T. Boucher, S.D. Bridham, R.T. Conant ,…, S.A. Spawn, et al.. Natural climate solutions for the United States. Science Advances (2018) doi: 10.1126/sciadv.aat1869

Kropp, H., M.M. Loranty, H.D. Alexander, L.T. Berner, S.M. Natali, S.A. Spawn. Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest. Journal of Geophysical Research – Biogeosciences (2017) doi: 10.1002/2016jg003709

Crawford, J.T., L.C. Loken, W.E. West, B. Crary, S.A. Spawn, N. Gubbins, S.E. Jones, R.G. Striegl, E.H. Stanley. Spatial heterogeneity of within-stream methane concentrations. Journal of Geophysical Research – Biogeosciences (2017) doi: 10.1002/2016JG003698

Schade, J.D. E.C. Seybold, T. Drake, S.A. Spawn, W.V. Sobczak, K.E. Frey, R.M. Holmes, N.Zimov. Variation in summer nitrogen and phosphorus uptake among Siberian headwater streams. Polar Research (2016) doi: 10.3402/polarv35.24571

Natali, S.M., B.M. Rogers, S.A. Spawn. Permafrost: The Frozen Amplifier. Pages 11-14 in Thresholds and Closing Windows: Risks of Irreversible Cryosphere Climate Change. International Cryosphere Climate Initiative (2015) www.iccinet.org/thresholds

Spawn, S.A., S.T. Dunn, G.J. Fiske, S.M. Natali, J.D. Schade, N. Zimov. Summer methane ebullition from a headwater catchment in Northeastern Siberia Inland Waters. (2015) doi:10.5268/iw-5.3.845

Kannenberg, S.A., S.T. Dunn, S.M. Ludwig, S.A. Spawn. J.D. Schade. Effects of drying and rewetting on potential methanogenesis in seasonally saturated wetland soils Wetlands. (2015). doi: 10.1007/s13157-015-0653-3

Crawford. J.T., E.H. Stanley, S.A. Spawn, J.C. Finlay, L.C. Loken, R.G. Striegl. Ebullitive methane emissions from oxygenated wetland streams Global Change Biology. (2014) doi: 10.1111/gcb.12614

AWARDS AND HONORS

Environmental Research Letters, Outstanding Reviewer (2019, 2020)

Institute of Physics, Trusted Reviewer (2020 -)

National Science Foundation – Graduate Research Fellowship

UW-Madison Geography – Olmstead Award for Outstanding Publication

UW-Madison – University Fellow

National Geographic Society – Young Explorer

The Explorer’s Club – Exploration Fund Grant

AFFILIATIONS

Center for Sustainability and The Global Environment (SAGE)

Great Lakes Bioenergy Research Center