A user-centered approach for designing and developing spatiotemporal crime analysis tools

Robert E. Roth
eroth@psu.edu

Kevin Ross
kevin.ross@psu.edu

Benjamin G. Finch
bgf111@psu.edu

Wei Luo
wul132@psu.edu

Alan M. MacEachren
maceachren@psu.edu

GIScience 2010
Zurich, Switzerland: 15 September 2010
GeoVISTA CrimeViz

Roth & Ross (2009)

Extending the Google Maps API for Flash for Event Animation Mashups

ARSON
id: 134285
date: 8-30-2009
shift: EVN
district: 3
description: NO NARRATIVE IS AVAILABLE.
address: 2000 B/O 20TH ST NW

Click here for Street View

Data Layers:
- Police Districts
- Police Service Areas
- Neighborhoods
- Police Stations
- Fire Stations
- Hospitals
- Metro Stations

Crime Types:
- Arson
- Homicide
- Sexual Abuse

Temporal unit: week
Animation method: linear, composite

GlScience 2010
Zurich, Switzerland: 15 September 2010
USER-CENTERED DESIGN

interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.

UCD workflow for Geovisualization

Robinson et al. (2005)
Combining Usability Techniques to Design Geovisualization Tools for Epidemiology
USER-CENTERED DESIGN

interface design that includes numerous iterations of **end user evaluation** and subsequent interface revision to improve the usability and utility of the interface.
USER-CENTERED DESIGN

interface design that includes numerous iterations of **end user evaluation** and subsequent interface revision to improve the usability and utility of the interface.
USER-CENTERED DESIGN

interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.
USER-CENTERED DESIGN

Interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.

1. Work Domain Analysis
 2. Conceptual Development
 3. Prototyping
 4. Interaction & Usability Studies
 5. Implementation
 6. Debugging
1. Prototyping
 2. Interaction & Usability Studies
 3. Work Domain Analysis
 4. Conceptual Development
 5. Implementation
 6. Debugging
USER-CENTERED DESIGN

interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.
USER-CENTERED DESIGN

interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.
USER-CENTERED DESIGN

interface design that includes numerous iterations of end user evaluation and subsequent interface revision to improve the usability and utility of the interface.

Study #1:
Think Aloud Study

Study #2:
Needs Assessment Interviews

Study #3:
In-Depth Case Study
THINK ALOUD STUDY

users are asked to complete a set of benchmark tasks with an application and to describe verbally why they are doing what they are doing

Participants: n=5, varying level of experience with spatiotemporal visualization

Data Collection: one administrator, two note takers recording critical incidents

Think Aloud Protocol (60 minutes):

- Introduction (5 minutes)
- Opening (5 minutes)
- Tasks (35-40 minutes)
- Cognitive interview (10-15 minutes)
NEEDS ASSESSMENT INTERVIEWS

One-on-one interviews to assess the current crime analysis practice of law enforcement agencies, focusing on currently met and unmet needs

Participants: 9 analysts or decision-makers at 6 municipal and 1 federal agency

Data Collection: one interviewer, audio recorded for later transcription/codification

Think Aloud Protocol (60 minutes):

- Introduction & Background Survey (10 minutes)
- Data Information Characteristics (5 minutes planned)
- Mapping and Analysis Practices (20 minutes)
- Use (10 minutes)
- Follow-up survey about the CrimeViz prototype
QUALITATIVE DATA ANALYSIS

<table>
<thead>
<tr>
<th>Participant #</th>
<th>R1 have need</th>
<th>R2 have need</th>
<th>R3 have need</th>
<th>R4 have need</th>
<th>R5 have need</th>
<th>R6 have need</th>
<th>R7 have need</th>
<th>R8 have need</th>
<th>R9 have need</th>
<th>R10 have need</th>
<th>ALL have need</th>
<th>TOTAL have need</th>
<th>TOTAL need</th>
<th>TOTAL total</th>
<th>ALL have need</th>
<th>TOTAL need</th>
<th>TOTAL total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D6</td>
<td>0</td>
</tr>
<tr>
<td>ALL</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes
- **C1:** data
- **C2:** cartographic representation
- **C3:** cartographic interaction
- **C4:** spatial analysis
- **C5:** temporal analysis
- **C6:** map use

GIScience 2010
Zurich, Switzerland: 15 September 2010
INTERVIEW STUDY: RESULTS

C1: data
- most datasets are maintained internally
- datasets are voluminous and multivariate
- geocoding varies, often not a requirement
- data quality hinges on reporting officer, often using paper forms
- use few external datasets, would like to use VGI but currently do not

C2: representation
- “push-pin” maps are most common
- “hot spot maps” generated for ecological analysis; preference for direct aggregation to a grid rather than a smoothing kernel
- choropleth maps specifically avoided
- time represented by coloring pins; composite small multiples common

C3: interaction
- overall limited, employed only by analysts
- mostly GIS desktop software; positive view towards web mapping services, although little use
- focusing/filtering most common operator; others used rarely
- several agencies employ interactive maps for their CompStat meetings
INTERVIEW STUDY: RESULTS

C1: data
- most datasets are maintained internally
- datasets are voluminous and multivariate
- geocoding varies, often not a requirement
- data quality hinges on reporting officer, often using paper forms
- use few external datasets, would like to use VGI but currently do not

C2: representation
- “push-pin” maps are most common
- “hot spot maps” generated for ecological analysis; preference for direct aggregation to a grid rather than a smoothing kernel
- choropleth maps specifically avoided
- time represented by coloring pins; composite small multiples common

C3: interaction
- overall limited, employed only by analysts
- mostly GIS desktop software; positive view towards web mapping services, although little use
- focusing/filtering most common operator; others used rarely
- several agencies employ interactive maps for their CompStat meetings
INTERVIEW STUDY: RESULTS

C1: data
- most datasets are maintained internally
- datasets are voluminous and multivariate
- geocoding varies, often not a requirement
- data quality hinges on reporting officer, often using paper forms
- use few external datasets, would like to use VGI but currently do not

C2: representation
- “push-pin” maps are most common
- “hot spot maps” generated for ecological analysis; preference for direct aggregation to a grid rather than a smoothing kernel
- choropleth maps specifically avoided
- time represented by coloring pins; composite small multiples common

C3: interaction
- overall limited, employed only by analysts
- mostly GIS desktop software; positive view towards web mapping services, although little use
- focusing/filtering most common operator; others used rarely
- several agencies employ interactive maps for their CompStat meetings
C4: spatial analysis
- overall very limited
- reportedly due to lack of expertise across IT and lack of personnel in analysis units
- buffering most common analysis applied
- several instances of journey-to-crime analysis
- one reported use of spatial scan statistics (SaTScan & GeoDa)

C5: temp. analysis
- extreme variation across agencies
- most departments only generate time series info graphics for weekly reports
- two agencies regularly apply advanced analysis
- include aoristic analysis, predictive trend analysis, and spatiotemporal scan statistics with alerting

C6: map use
- most analysis is tactical, gaining a situational awareness of current patterns
- commonly look at past 7-30 days only
- only a subset of agencies have the personnel to conduct strategic analysis
- thus, tools must integrate into workflows and improve efficiency
INTERVIEW STUDY: RESULTS

C4: spatial analysis
- overall very limited
- reportedly due to lack of expertise across IT and lack of personnel in analysis units
- buffering most common analysis applied
- several instances of journey-to-crime analysis
- one reported use of spatial scan statistics (SaTScan & GeoDA)

C5: temp. analysis
- extreme variation across agencies
- most departments only generate time series info graphics for weekly reports
- two agencies regularly apply advanced analysis
- include aoristic analysis, predictive trend analysis, and spatiotemporal scan statistics with alerting

C6: map use
- most analysis is tactical, gaining a situational awareness of current patterns
- commonly look at past 7-30 days only
- only a subset of agencies have the personnel to conduct strategic analysis
- thus, tools must integrate into workflows and improve efficiency

*GiScience 2010
Zurich, Switzerland: 15 September 2010*
C4: spatial analysis
- overall very limited
- reportedly due to lack of expertise across IT and lack of personnel in analysis units
- buffering most common analysis applied
- several instances of journey-to-crime analysis
- one reported use of spatial scan statistics (SaTScan & GeoDA)

C5: temp. analysis
- extreme variation across agencies
- most departments only generate time series info graphics for weekly reports
- two agencies regularly apply advanced analysis
- include aoristic analysis, predictive trend analysis, and spatiotemporal scan statistics with alerting

C6: map use
- most analysis is tactical, gaining a situational awareness of current patterns
- commonly look at past 7-30 days only
- only a subset of agencies have the personnel to conduct strategic analysis
- thus, tools must integrate into workflows and improve efficiency
IN-DEPTH CASE STUDY

research and development collaboration with the Harrisburg (PA, USA) Police Department for the technology transition and evaluation of CrimeViz

Harrisburg PD Participants:

- 3 captains
- 2 supervising officers (corporal level)
- 3 information technology personnel
- 2 network personnel

Data Collection:

- twice a month remote meetings that includes structured input on paper mockups and early prototypes
- participant observation (planned)
- interaction studies (planned)
REVISED CONCEPTUAL DESIGN
HARRISBURG CRIMEVIZ: FUTURE DIRECTIONS

Export to RMS & Automated Report Generation

Integration of Statistical/Computational & Visual Methods

dcDude: omg just heard a gunshot

Levering External Data Sources (e.g., VGI) for Strategic Analysis

GIScience 2010
Zurich, Switzerland: 15 September 2010
HARRISBURG CRIMEVIZ: FUTURE DIRECTIONS

Export to RMS & Automated Report Generation

Integration of Statistical/Computational & Visual Methods

Levering External Data Sources (e.g., VGI) for Strategic Analysis

dcDude: omg just heard a gunshot
HARRISBURG CRIMEVIZ: FUTURE DIRECTIONS

Export to RMS & Automated Report Generation

Integration of Statistical/Computational & Visual Methods

Levering External Data Sources (e.g., VGI) for Strategic Analysis

dcDude: omg just heard a gunshot
Learn more about the project & try out the application at:
http://www.geovista.psu.edu/CrimeViz/

Robert E. Roth
reroth@psu.edu

Kevin Ross
kevin.ross@psu.edu

Benjamin G. Finch
bgf111@psu.edu

Wei Luo
wul132@psu.edu

Alan M. MacEachren
maceachren@psu.edu

GIScience2010
Zurich, Switzerland: 15 September 2010