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CHAPTER 1: INTRODUCTION AND SIGNIFICANCE 

Digital interactive maps are part of our everyday lives: we use them for navigation on 

our smartphones, they enhance stories for online news sources, and they populate our social 

media timelines. The public has a favorable opinion of interactive maps and prefers them for 

a range of problem applications (Krygier and Reeves 1997). Interactivity is also essential for 

exploratory geographic visualization, where the purpose of the map is less for visual 

communication and more for visual thinking about complex problems (MacEachren 1994). 

Therefore, interactive map design is an important area of research needing increased 

attention, particularly for maps that support sophisticated reasoning about geographic 

problems (Thomas and Cook 2005). Proper interface design is essential to ensure that the 

user interface does not hinder the user experience (Roth 2015). 

Yet, empirical evidence for effective interactive map design is limited in the 

literature, particularly in a context where the interactive maps support higher-level cognitive 

tasks, such as comprehension, reasoning, and decision making (e.g., Slocum et al. 2001, 

Andrienko et al. 2007, MacEachren 2015). With this research, I investigated aspects of a 

problem context believed to affect map-supported decision making: the complexity of the 

interface (Roth 2013) and the complexity of the decision (Crossland et al. 1995). Studying 

these topics contributes to the field of cartography and the related research thrusts of 

geovisualization, spatial decision support, and visual analytics, among others. Specifically, I 

sought answers to three research questions:  
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1. Does cartographic interface complexity influence the success of geographic decision 

making? If so, how? 

2. Does geographic decision complexity influence the success of cartographic interface 

effectiveness for decision making? If so, how? 

3. Is the influence of cartographic interface complexity and geographic decision 

complexity dependent upon the user’s expertise with the domain topic and/or with 

interactive maps?  

 

Does cartographic interface complexity influence the success of geographic decision 

making? If so, how? 

Cartographers need guidance for balancing the complexity of their interface designs 

between simple, general-use systems with limited functionality and complex, expert-use 

systems with seemingly unbounded functionality. Interface complexity comprises two key 

components, scope and freedom. Interface scope is the number of interactive elements within 

the map, while interface freedom is the precision to which each map element can be adjusted 

(Harrower and Sheesley 2005, Cooper et al. 2007). Preliminary evidence suggests that 

interface complexity influences how well a user works with an interactive map, although it 

remains unclear if and when more or less complexity facilitates reasoning and in which 

decision making contexts (Davies 1998, Keehner et al. 2008). To simplify my research study 

design, I employed interface scope as an indicator of interface complexity to study its impact 

on spatial decision making. I evaluated two increasingly common design strategies for 

interface scope: a simple web “slippy” map including panning, zooming, and detail retrieval 
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(see Tolochko 2016), and a more complex recommendation for information seeking adding 

filtering and overlay (from Shneiderman 1996). 

 

Does geographic decision complexity influence the success of interface effectiveness for 

decision making? If so, how? 

Map user tasks can range from simple, benchmark tasks, such as feature identification 

and comparison, to more complex spatial decisions requiring sophisticated reasoning to work 

through multiple criteria to arrive at a viable outcome. Cartographers need interface design 

strategies that better support the cognitive functions (i.e., learning, memory, reasoning) 

involved in the decision-making process for complex tasks (MacEachren 2015). As with 

interface complexity, decision complexity includes two components: the number of decision 

criteria and the number of potential decision outcomes (Crossland et al. 1995). While prior 

research has been conducted to understand the impact of the decision complexity on the 

decision-making process, there is limited research on the relevant effectiveness of interactive 

maps to facilitate this process for different decision complexities (Armstrong and Densham 

1995, Crossland et al. 1995, Speier 2006). MacEachren (2015:4) identifies that empirical 

research is a key next step to understanding the use of maps as “cognitive artifacts”, or 

decision-making aids. In this research, I varied the number of decision criteria to understand 

the influence of decision complexity on spatial decision making using a case study of 

environmental justice issues in the transnational trade of hazardous waste. In North America, 

hazardous waste is treated as both a regulated environmental risk as well as a valuable 

commodity to processing and disposal facilities (Moore et al. 2017). Managing hazardous 
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waste therefore presents a complex geographic decision that takes into account a number of 

criteria varying across individual sites.  

 

Is the influence of cartographic interface complexity and geographic decision complexity 

dependent upon the user’s expertise with the domain topic and/or with interactive maps?  

 Individual differences impact all map use, interactive or otherwise. User expertise is a 

combination of education (the amount of formal education the person has with the subject), 

experience (the amount of time the person has had with the subject), and familiarity (the self-

proclaimed knowledge of the subject) (Roth 2009). Further, different kinds of expertise are 

needed for successfully using a complex interactive map versus successfully arriving at a 

complex geographic decision (Crossland et al. 1995). I recruited participants with different 

levels of expertise to determine the relationship of expertise to interface complexity and 

decision complexity.  

I addressed these research questions using a mixed-methods approach. First, I 

conducted interviews with academic experts for insight into decision making regarding the 

North American hazardous waste trade. I then administered an online map survey, calibrated 

to results from the interviews and a preliminary pilot survey for ecological validity. The 

online map study followed a 2x2 factorial design with interface complexity and decision 

complexity as the independent variables while controlling for user expertise and other aspects 

of cartographic design (Montello and Sutton 2006). Due to the lack of empirical research on 

cartographic interface design―particularly in support of decision making―this study is both 
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needed and timely. The results of this research contribute to both the science and practice of 

cartographic interaction, ultimately leading to better spatial decisions. 

In Chapter 2, I review prior research about interface complexity, decision complexity, 

and user expertise. Then in Chapter 3, I describe my case study and research design for the 

online map survey. In Chapter 4, I present and discuss the results of the online map survey. 

Finally, in Chapter 5, I conclude with the design impacts and future directions from this 

research.  
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CHAPTER 2: LITERATURE REVIEW 

The topics of cartographic interface complexity and geographic decision complexity 

are treated in a range of research thrusts in GIScience, including geovisualization, spatial 

decision support, and visual analytics, among others (e.g., Jankowski and Nyerges 2001, 

Thomas and Cook, 2005, Andrienko et al. 2007). In cartography, the topics of interface and 

decision complexity can be discussed within the context of the Cartography
3
 framework 

outlining the complete solution space of the design and use of maps (MacEachren 1994) 

(Figure 1). The Cartography
3
 framework centers on a continuum of map use from visual 

thinking (e.g., exploration of the problem space) to visual communication (e.g., final 

presentation of decision outcomes), exposing three dimensions or axes that express all map 

use contexts (DiBiase et al. 1992). These axes directly relate to my three research questions:  

● Research Question #1: The amount of human-map interaction, ranging from 

simple to complex. 

● Research Question #2: The map task, encapsulating higher-level decisions and 

their complexity. 

● Research Question #3: The map user, primarily addressing the difference in user 

expertise.  

Thus, the research project reported here directly addresses questions fundamental to 

exploratory geovisualization, and the intersections therein. Relevant themes and key gaps 

regarding each of the three axes are reviewed below to establish design considerations for 

interactive maps that support geographic decision making by a range of users. 
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Figure 1. Cartography
3
 framework showing the three axes of map use (MacEachren 1994, 

updated in Roth 2013). 

 

  

 

2.1: Cartographic Interaction and Cartographic Interface Complexity 

 Cartographic interaction describes the dialog between a human and a map mediated 

by a computing device (Roth 2012). MacEachren’s (1994) first axis in the Cartography
3
 

framework defines such map interactivity as a continuum from low to high based on the 

functional scope and freedom enabling the human and map to interact. Thus, not all 

interactive maps are alike, and instead vary on their level of cartographic interface 

complexity (as introduced in Chapter 1) (Harrower and Sheesley 2005, Cooper et al. 2007).  
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A number of scholars in cartography and related fields decomposed interactive 

functionality into basic operator primitives, or generic forms of interactive functionality, to 

characterize the scope of an interactive map (e.g., Becker and Cleveland 1987, Shepherd 

1995, Buja et al. 1996, Chuah and Roth 1996, Shneiderman 1996, Dykes 1997, Dix and Ellis 

1998, MacEachren et al. 1999, Masters and Edsall 2000, Keim 2002, Ward and Yang 2003, 

Edsall et al. 2008). An operator is considered as doing work when employed for the 

completion of an actual map task or decision, while an operator is considered enabling when 

employed in preparation for the task or decision (e.g., importing, exporting) (Davies 1998). 

Roth (2013) synthesizes these recommendations to provide a composite taxonomy of twelve 

work operator primitives for cartography: reexpress, arrange, sequence, resymbolize, overlay, 

pan, zoom, reproject, search, filter, retrieve, and calculate. 

There are two emerging conventions for managing interface complexity in 

cartography. On the low end of interface complexity, it is now common in web cartography 

to implement “slippy” map operators: pan, zoom, and retrieve (Roth et al. 2014, Tolochko 

2016). On the high end of interface complexity, the exploratory visualization literature has 

coalesced around Shneiderman’s (1996) visual information seeking mantra as a unifying 

recommendation for interactivity, which adds filtering, overlays, and other custom operators 

to the “slippy” pan, zoom, and retrieve to efficiently move from an overview representation 

of large datasets to specific details on demand. I therefore used these five work operator 

primitives from the Roth (2013) composite taxonomy (Table 1) to establish differences in 

interface complexity in the research reported here. In the following, I review existing 

empirical research for these five operator primitives. 
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Table 1. Evaluation of previous cartographic interaction studies examining operators used in 

this study, coded to Roth’s (2013) work operator primitives. Positive indicates the respective 

operator was helpful for the specified task, negative means the operator was not helpful for 

the specified task, mixed means in some cases the operator was helpful for the task, and no 

discussion means that the authors did not discuss the effectiveness of the operator for the 

tasks. (* Indicates Decision Making Study)  

Operator Function Interaction Study Task Operator Result 

Zoom 

Change the map scale Crossland et al. (1995)* Rank No Discussion 

Davies (1998) Classification Positive 

Jankowski et al. (2001)* Rank No Discussion 

Rinner and Malczewski (2002)* Site Selection No Discussion 

Edsall (2003) Recognition, Comparison, and Identification No Discussion 

Robinson (2008) Identify No Discussion 

Roth and Harrower (2008) Map Usability No Discussion 

Zografos and Androutsopoulos (2008)* Route Selection No Discussion 

Jelokhani-Niaraki and Malczewski (2015)* Site Selection No Discussion 

Poplin (2015) Draw and Identify Negative 

Roth and MacEachren (2016) Identify, Compare, Rank, Associate, and 

Delineate 

Mixed 

Pan 

Move the map to view other 

locations 

Davies (1998) Classification No Discussion 

MacEachren et al. (1998) Identify and Compare No Discussion 

Rinner and Malczewski (2002)* Site Selection No Discussion 

Edsall (2003) Recognition, Comparison, and Identification No Discussion 

Keehner et al. (2008) Reasoning Positive 

Roth and Harrower (2008) Map Usability No Discussion 

Zografos and Androutsopoulos (2008)* Route Selection No Discussion 

Jelokhani-Niaraki and Malczewski (2015)* Site Selection No Discussion 

Poplin (2015) Draw and Identify Mixed 

Roth and MacEachren (2016) Identify, Compare, Rank, Associate, and 

Delineate 

Negative 

Retrieve 

Obtain additional details 

about map features 

Davies (1998) Classification Positive 

Andrienko et al. (2002) Select and Identify Positive 

Edsall (2003) Recognition, Comparison, and Identification No Discussion 

Roth and Harrower (2008) Map Usability No Discussion 

Roth and MacEachren (2016) Identify, Compare, Rank, Associate, and 

Delineate 

Mixed 

Filter 

Set the criteria by which map 

features are added or 

removed from the map 

MacEachren et al. (1998) Identify and Compare Positive 

Frank et al. (2000)* Route Selection No Discussion 

Jankowski et al. (2001)* Rank No Discussion 

Andrienko et al. (2002) Select and Identify Positive 

Rinner and Malczewski (2002)* Site Selection No Discussion 

Roth and MacEachren (2016) Identify, Compare, Rank, Associate, and 

Delineate 

Mixed 

Overlay 

Change the layers depicted 

on the map  

Crossland et al. (1995)* Rank No Discussion 

Frank et al. (2000)* Route Selection No Discussion 

Jankowski et al. (2001)* Rank No Discussion 

Edsall (2003) Recognition, Comparison, and Identification No Discussion 

Roth and Harrower (2008) Map Usability No Discussion 

Zografos and Androutsopoulos (2008)* Route Selection No Discussion 

Jelokhani-Niaraki and Malczewski (2015)* Site Selection No Discussion 

Roth and MacEachren (2016) Identify, Compare, Rank, Associate, Delineate Mixed 
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Zoom 

The zoom operator allows the user to change the scale of the map. Multiscale zooming is now 

included in most web maps and most interaction studies enable zooming between multiple 

levels of detail (Table 1). As introduced above, zooming is also an important transition 

component of Shneiderman’s (1996) information seeking mantra. The zoom operator has 

been considered both an enabling and work operator, with zooming positively used to 

prepare for classification (Davies 1998). Zooming also is useful for identification, 

comparison, ranking, association, and delineation, making it applicable to a broad range of 

tasks. However, zooming is not always well-received by users. For example, providing free 

zooming across numerous scales can cause the user to become lost in the interface and lose 

context within the map (Roth and MacEachren 2016). 

Pan 

The pan operator gives the user the opportunity to move the center of the map to explore off-

screen locations, and typically is required to browse the map after zooming into a subset of 

the total map extent. Like zooming, panning also has been investigated in multiple 

interaction studies (e.g., Davies 1998, Rinner and Malczewski 2002, Zografos and 

Androutsopoulos 2008, Poplin 2015; Table 1). Panning can be helpful for completing simple 

recognition, identification, and comparison tasks (e.g., Edsall 2003, Poplin 2015) and can 

effectively offload the user’s cognition to the interactive map during more complex spatial 

reasoning (Keehner et al. 2008). However, panning can be misapplied during interaction, 

negatively effecting map use. For example, while multiscale maps require the pairing of 

panning with zooming, maps created solely to provide an overview do not need panning 
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capabilities (Tolochko 2016). Further, users may not be aware of every way to pan when 

flexibility is provided (direct manipulation of the map, panning widgets, click-and-recenter 

on map features, etc.; Roth and Harrower 2008), and repeated panning through direct 

manipulation of the map itself can be a sign that the user is lost (Roth and MacEachren 

2016). Poplin (2015) reported that users had mixed reactions to panning, with some finding it 

straightforward and helpful, with others finding it cumbersome, particularly when employed 

with other map-based interactions such as annotation.  

Retrieve 

The retrieve operator lets users obtain added details, usually in an information popup or a 

docked panel. This operator is treated less frequently in the literature on interactive maps 

than zooming and panning, but is still relatively common among interaction studies (e.g., 

Davies 1998, Andrienko et al. 2002, Edsall 2003; Table 1). Users increasingly expect detail 

retrieval on simple web maps, and retrieval can be useful for completing simple identification 

tasks (Davies 1998, Roth et al. 2014). This operator is also essential to finding insights in 

large datasets, as it is detail retrieval that concludes information seeking after viewing an 

overview first and then zooming and filtering into a potential subset of interest (Shneiderman 

1996). Research suggests that users generally are successful in employing retrieve 

(Andrienko et al. 2002) and will apply the retrieve functionality to confirm a classification 

(Davies 1998) or comparison (Roth and MacEachren 2016) task. However, repeated use of 

retrieve can suggest a breakdown in Shneiderman’s information seeking mantra, with users 

blindly applying retrieve to seek desired information in a large dataset rather than using 
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alternative operators (such as filter, see below) to first reduce the visualized complexity 

(Roth and MacEachren 2016).  

Filter 

The filter operator enables the user to constrain a set of features depicted on the map by 

choosing which features to include or exclude based on predefined criteria. As introduced 

above, filtering is an essential component to Shneiderman’s (1996) information seeking 

mantra in large datasets and has been treated in a number of interaction studies (e.g., 

MacEachren et al. 1998, Frank et al. 2000, Jankowski et al. 2001, Rinner and Malczewski 

2002; Table 1). Accordingly, many exploratory visualization tools increase interface 

complexity to accommodate multiple ways of filtering during open exploration (Roth and 

MacEachren 2016). Several studies report that filtering at first can be perceived by users as a 

difficult operator to learn and use, with these same studies also suggesting that users improve 

in their efficiency and effectiveness in applying filtering as they learn and use the interface 

(MacEachren et al. 1998, Andrienko et al. 2002). However, Roth and MacEachren (2016) 

found that users at times employ filtering excessively, particularly for tasks such as 

identification, comparison, and ranking, showing a default to Shneiderman’s information 

seeking mantra when the task or dataset do not require such a sophisticated sequence of 

interactions.  

Overlay 

The overlay operator allows the user to add additional and remove excess layers on the map. 

Overlay is common in GIS-based studies (e.g., Frank et al. 2000, Jankowski et al. 2001, 

Zografos and Androutsopoulos 2008; Table 1), as applications built with GIS software 
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follow a metaphor of overlapping transparent sheets that pre-date digital technology 

(Goodchild 2010). Overlay has been studied infrequently in the online interactive mapping 

literature, despite the increasingly common ability to switch basemaps (an “under”-lay) and 

add new vector datasets atop the basemap, a combined set of functions known as 

“hamburger” cartography (Roth et al. 2014). Roth and MacEachren (2016) found that users 

applied overlay in both successful and unsuccessful interaction strategies, with no notable 

patterns across different sets of tasks.  

 

 

2.2: Geographic Decision Complexity 

MacEachren’s (1994) second axis relates to the map task, which can vary from basic 

map reading and interpretation to complex reasoning and decision making. As introduced 

above, benchmark tasks are simple tasks that have a correct answer. After summarizing tasks 

used in prior cartographic studies (e.g., Wehrend and Lewis 1990, Wehrend 1993, Zhou and 

Feiner 1998, Blok et al. 1999, MacEachren et al. 1999, Crampton 2002, Andrienko et al. 

2003), Roth (2012, 2013) presents five benchmark task types calibrated to professional 

practice: identify (studying one object on the map), compare (finding similarities and 

differences in many objects on the map), rank (order objects based on a given attribute), 

associate (determine the relationship between two or more objects on the map), and delineate 

(identify clusters or patterns in the mapped features).  

Alternatively, decision making is a higher-level cognitive process through which a 

person evaluates all available factors to make a choice about a given problem (Payne et al. 

1993). While simple decisions have a correct decision outcome, many decisions rely on 
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optimality, or ranking prospective solutions by how they minimize or maximize different 

contextual criteria (Einhorn and Hogarth 1981). Thus, decisions differ from benchmark tasks 

in that there may be multiple acceptable outcomes, each having a different degree of 

correctness. Decision science is moving away from assuming a single, correct answer and 

towards understanding the process that decision makers take to arrive at an optimal decision 

using a wide range of information. 

Understanding the process for determining a decision solution has been examined 

through many decades of research on judgment and choice (e.g., Payne 1976, Einhorn and 

Hogarth 1981, Payne et al. 1993). A broad, three-part decision-making strategy was 

introduced to explain how decisions are made (Figure 2) (Simon 1960, seen in Dillon 1998, 

updated with Pirolli and Card 2005). During information seeking―used consistently with 

Shneiderman’s (1996) mantra―the potential problem is examined to determine if a decision 

solution is needed. For geographic decision making, this may include foraging through an 

interactive map and other information sources for interesting insights about anomalies, 

outliers, clusters, etc. If a problem is identified, the decision maker begins the sensemaking 

stage to capture the problem context and all available alternatives. Here, previously collected 

insights are used as evidence to evaluate competing scenarios. Action is the final stage of this 

model where the actual decision is made after evaluation of all prior information gained. The 

decision, however, will not be successful unless the right kind and amount of information is 

collected throughout the decision-making process (Bhattacharjya et al. 2010).  
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Information Seeking 

(Identifying the Need) 
Sensemaking 

(Determining Problem Context  

and Alternatives) 

Action 

(Identify Best Route, Given 

Obtained Information) 

Figure 2. Simon’s (1960) Decision-Making Stages (adapted from Dillon 1998, modified 

with Pirolli and Card 2005). 

 

 

The decision-making process is not without limits, however. Due to human cognitive 

limits, there is a “channel capacity” of information that humans can handle before becoming 

confused (Miller 1956: 2). Noted above, a further limit on decision making is that not every 

decision has an objectively correct answer. The goal of the decision maker is to identify the 

best option using all available information. For geographic decision making, interactive maps 

enable spatial decision support to develop, evaluate, and select a solution to a spatial 

problem (Jankowski and Nyerges 2001, Andrienko et al. 2007). Here, the decision maker 

offloads a part of the decision-making process onto the interactive map both to improve 

memory during reasoning―a strategy described as distributed cognition―and to automate 

evaluation of criteria using interaction operators (Jankowski et al. 2001, MacEachren et al. 

2004). Spatial decision support systems (SDSS) are designed for this purpose of offloading 

the work from the user to the computer system, with a central interactive map as the primary 

visual supporting distributed cognition (e.g., Crossland et al. 1995, Coutinho-Rodrigues et al. 

1997, Jankowski et al. 2001). 

Just as all interactive maps are not alike, all decisions also are not alike. All decisions 

have a different information load or level of geographic decision complexity, defined 

previously as the number of criteria and the number of outcomes involved in a decision 

(Crossland et al. 1995, Jelokhani-Niaraki and Malczewski 2015). All types of spatial 

information contribute to the overall cognitive load, including physical locations (sites), 
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decision criteria, and attributes (Jelokhani-Niaraki and Malczewski 2015). Decision tasks 

require decision makers to process that information load, which affects information 

processing (Einhorn and Hogarth 1981). The user can work with an interactive mapping 

application such as desktop GIS or a web map to prioritize decision criteria (one component 

of decision complexity) and evaluate alternative outcomes (the second component) to arrive 

at an informationally-informed decision (Armstrong and Densham 1995, Jankowski et al. 

2001). Table 2 below shows the correlation of provided interaction operators with the type of 

spatial decision the user was asked to perform and amount of decision complexity, with 

results marked if the combined interface and decision complexity had a positive or negative 

outcome on the task. 

 

Table 2. Relationship of interaction operators to decision level and complexity. Positive: no 

decision inconsistency means that the task results were the same across complexity levels, 

negative: decision inconsistency means that the task results were different across complexity 

levels, and no discussion means the authors did not discuss the impact of complexity levels 

on task results. 

Study Operator Task Type Complexity Result 

Crossland et al.  

(1995) 

Zoom 

Overlay 

Rank 5 vs. 10 Sites 

3 vs. 7 Criteria 

Positive:  

No Decision 

Inconsistency 

Jankowski and Nyerges 

(2001) 

Retrieve Site Selection 8 vs. 20 Sites 

3 vs. 11 Criteria 

Positive: 

No Decision 

Inconsistency 

Jankowski et al. (2001) Zoom 

Filter 

Overlay 

Distribution of 

Funds 

2 Intervals 

10 Criteria 

No Discussion   

Rinner and Malczewski 

(2002)  

Pan 

Zoom 

Filter 

Site Selection 3 Criteria No Discussion 

Zografos and 

Androutsopoulos  

(2008) 

Pan 

Zoom 

Overlay 

Finding 

Alternative Routes 

12 Customers 

5 Criteria 

 

No Discussion 

Jelokhani-Niaraki and 

Malczewski  

(2015) 

Pan 

Zoom 

Overlay 

Site Selection 5 Alternatives, 2 Attributes 

10 Alternatives, 4 Attributes 

15 Alternatives, 6 Attributes 

20 Alternatives, 8 Attributes 

Negative: 

Decision 

Inconsistency 
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There is a contradiction among previous empirical studies regarding the effect of 

increased geographic decision complexity on decision-making outcomes. While Jelokhani-

Niaraki and Malczewski (2015) found that the more complex task, in terms of decision 

complexity, resulted in decision inconsistency for site selection decisions, Crossland et al. 

(1995) and Jankowski and Nyerges (2001) did not, with most studies not varying decision 

complexity (decision complexity did not change throughout the study) or only discussing it 

as a potential issue (e.g., Jankowski et al. 2001, Rinner and Malczewski 2002, Zografos and 

Androutsopoulos 2008). Accordingly, additional research is needed to fully understand the 

influence of decision complexity on geographic outcomes.  

Further, there is an incomplete body of work informing the design of interactive maps 

for generating knowledge about a decision problem. The operator-based synthesis in Section 

2.1 was derived from a range of cartographic interaction studies using benchmark tasks rather 

than geographic decisions in the study procedure. When cartographic interaction studies do 

include a robust geographic decision, a fully-functional system is used without controlling 

for interface complexity or specific operator primitives, making it difficult to relate 

differences in decision outcomes to specific aspects of interactive map design.  

Interactive functionality found in previous decision-making studies, and subsequent 

interface complexity variations, includes panning to explore the map (e.g., Rinner and 

Malczewski 2002, Zografos and Androutsopoulos 2008, Jelokhani-Niaraki and Malczewski 

2015), zooming to change the map scale (e.g., Crossland et al. 1995, Jankowski et al. 2001, 

Rinner and Malczewski 2002, Zografos and Androutsopoulos 2008, Jelokhani-Niaraki and 

Malczewski 2015), filtering to remove unwanted criteria (e.g., Frank et al. 2000, Jankowski 
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et al. 2001, Rinner and Malczewski 2002), and overlay to see multiple decision factors at 

once (e.g., Crossland et al. 1995, Frank et al. 2000, Jankowski et al. 2001, Zografos and 

Androutsopoulos 2008, Jelokhani-Niaraki and Malczewski 2015). Interestingly, the retrieve 

operator is commonly investigated in cartographic interaction studies (Table 1), but was not 

reported in any of the reviewed studies on geographic decision making. These studies 

focused on the decision result based on the whole interactive system, rather than the decision 

result based on operator usage. While many decision-making studies implemented the 

operators discussed in Table 1, two studies discussed the impact of interaction on the 

decision-making process: Crossland et al. (1995) identify that the interactive environment 

helped participants with spatial decision making for a site selection problem, while 

Mennecke et al. (2000) found that interactivity actually decreased decision success for expert 

users, also for a site selection problem, suggesting that the type of decision and user may 

matter when considering interface complexity. 

 

2.3: User Expertise 

The user is the focus of MacEachren’s (1994) third axis, with an emphasis on 

individual user differences. MacEachren originally described this axis as a distinction 

between public and private map use, but later rephrased to focus on user expertise, or 

differences between a general and specialist map user. Expertise is a multi-faceted concept 

that includes education, experience, and overall familiarity (Roth 2009). Further, expertise 

for interactive mapping and decision making can be with either the tool (the interactive map), 

the domain (the decision topic), or computers (the device the user is working with) (Nielsen 
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1993: 43-44, seen in Slocum et al. 2001). Table 3 below examines the relationship between 

various types of user expertise, task type, and the results of previous studies.  

 

Table 3. Relationship between expertise and task level for interactive tasks  

(* Indicates Decision-Making Study) 

Study Task Type Expertise Level Result 

Crossland et al. (1995)* Rank Non-Experts Positive: An SDSS reduced decision time 

and increased decision accuracy 

Mennecke et al. (2000)* Rank Professionals and 

Students 

Mixed: With an SDSS, professionals were 

more accurate, but not as efficient as 

students, professionals using paper maps 

and SDSS had no difference in results 

Jankowski and Nyerges 

(2001)* 

Site Selection Stakeholder 

Volunteers 

Positive: Interface expertise did not matter 

in decision outcome 

Jelokhani-Niaraki and 

Malczewski (2015)* 

Site Selection Domain Topic 

Students 

Neutral: Information load is important to 

consider for a web-based system, but not 

the most important factor 

Roth and MacEachren 

(2016) 

Identify, 

Compare, Rank, 

Associate, 

Delineate 

Domain Experts Neutral: Used interface more as the 

objective became more complicated 

 

As with cartographic interface complexity and geographic decision complexity, there 

are also contradicting results from empirical research on user expertise and interactive 

systems. The literature suggests that domain experts think through a decision differently than 

non-experts (Ericsson and Lehmann 1996), an effect that also should be observed when using 

an interactive map to make a decision. Domain experts are more familiar with the decision 

problem through experience and know which criteria are important to consider when making 

the domain-specific decision. Results are mixed, however, when examining user expertise for 

decision making supported by interactive maps. While studies on non-experts show relative 

success in using interactive maps to make geographic decisions (Crossland et al. 1995, 

Mennecke et al. 2000), studies with domain experts have shown mixed results (Mennecke et 

al. 2000, Jankowski and Nyerges 2001, Roth and MacEachren 2016) (Table 3). Further, it is 
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unclear what effect geographic decision complexity has, coupled with expertise level, on 

decision makers when working in an interactive map (Crossland et al. 1995). Domain experts 

without training in interactive mapping technology may not correctly integrate these maps 

into the decision-making process because of lack of technical or map use experience (Ooms 

et al. 2015).  

Interface and decision complexity are two factors of map design that affect the user 

experience with the map, and it remains unclear the effect each of these has on different user 

groups (Crossland et al. 1995, Davies 1998, Keehner et al. 2008). Notably, only one of the 

studies in Table 3 examined both domain experts and non-experts. In this thesis, I tested 

individuals with a range of expertise with the hazardous waste trade to draw conclusions 

about their use of an interactive system for a geographic decision. This research investigated 

these factors on those familiar with the hazardous waste trade and the general public, 

covering both ends of the continuum of MacEachren’s third axis. 
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CHAPTER 3: METHODS 

3.1: Case Study: The North American Hazardous Waste Trade 

 I used a case study about the North American hazardous waste trade to study the 

interplay of interface and decision complexity in an ecologically-valid problem context. 

Hazardous waste is defined as waste that could cause harm to humans or the environment 

and is also ignitable, corrosive, reactive, and/or toxic (California Department of Toxic 

Substances Control 2016). Hazardous waste is known as both a managed risk and a valued 

commodity because of the economic benefits of trading waste. This dual commodity/risk 

nature has led to management and policy discussions at multiple levels of government. For 

instance, the United States Congress signed the Resource Conservation and Recovery Act 

(RCRA) of 1976, with hazardous waste amendments in 1984, to manage hazardous waste 

(United States Congress 2002). Through this Act, the United States Environmental Protection 

Agency (EPA) was tasked with monitoring hazardous waste from generation to disposal. 

Companies are required to report waste that is imported and exported to the EPA on a yearly 

basis.  

Further, the transnational trade in hazardous waste has led to considerable discussion 

over regulation as well. The United Nations (UN) Basel Convention in 1989 ensured proper 

waste trade and prevented the movement of hazardous waste from developed countries to 

developing countries (Alter 2000, WHO, UNEP 2000). In contrast, NAFTA (North 

American Free Trade Agreement) and other trade agreements have enabled freer flow of 

hazardous waste across North American countries (Jacott et al. 2004). The case study 
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reported here therefore focuses on flows of hazardous waste to the United States from 

neighboring Canada and Mexico.  

 The hazardous waste trade is an appropriate case study because many management 

and regulation decisions are made that have multiple, often competing spatial criteria and 

multiple, often detrimental outcomes. Common decisions include opening and closing 

hazardous waste processing and storage sites, determining acceptable transportation routes 

between sites, and mitigating contamination of local communities. Multiple decision criteria 

go into making these decisions, which include environmental cost, risk, and justice 

(Coutinho-Rodrigues et al. 1997). To calibrate the case study to a practical task, I reviewed 

the hazardous waste literature to determine common decisions made using this case study, 

while consulting academic hazardous waste experts in a pilot study exercise. These findings 

informed how the map survey was designed (see Section 3.2 on preparatory research).  

Data on the transnational hazardous waste trade used for this study was obtained 

through two Freedom of Information Act (FOIA) requests to the EPA (Nost et al. 2017, 

Moore et al. 2017). Scanned shipping manifests and consent forms were hand-digitized into a 

spreadsheet and geocoded by origin and destination address. Information recorded included: 

year of shipment, EPA company identification code, importing company, exporting 

company, receiving facility, waste type, waste amounts, waste containers, number of 

shipments, EPA and UN waste codes, packing group numbers, and any comments or 

discrepancies either mentioned on the documents or that were discovered missing from the 

documents (Figure 3). Digitization of manifests resulted in over 33,000 shipments from 

2009-2012 with 59 United States sites importing waste and 411 United States sites exporting 
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waste. Data on environmental risks and toxins typically are storied and visualized in a GIS 

environment, with GIS analysis dominating decision-making literature on hazardous waste, 

environmental exposure, and related environmental justice issues (e.g., Lowry et al. 1995, 

Lovett et al. 1997, Sheppard et al. 1999, Verter and Kara 2001, Maantay 2002, Mennis 2002, 

Kara and Verter 2004, Mohai and Saha 2007). Environmental justice research, with regards 

to the hazardous waste trade, studies the impact of hazardous waste processing facilities on 

the environment and people near these processing sites, and thus considers a wide range of 

environmental and social dimensions when arriving at an optimal outcome. This study aimed 

to examine the hazardous waste trade in an interactive web environment, enabling 

hypothetical decision makers focused on environmental justice to produce new maps 

interactively as they offload their reasoning and arrive at a decision.  

 

 

 

 

  

Figure 3. Hazardous waste 

manifest used to assemble 

dataset (Nost et al. 2017, Moore 

et al. 2017). 
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3.2: Preparatory Research 

Before administering the experiment, I conducted three stages of preparatory research 

to calibrate the experimental design to the hazardous waste context and professional 

interactive map design practice. First, I participated in a one day mapping workshop at the 

University of Wisconsin-Madison―described as the Design Challenge―making use of the 

geocoded dataset of transnational hazardous waste transactions described above (Moore et al. 

2017). Seventeen students participated either individually or in pairs, with participation split 

across undergraduate, post-graduate certificate, and graduate students. A total of 10 map 

products were created from the group, which helped build working knowledge about the 

regulation and management of the hazardous waste trade.  

Second, I completed a set of informal interviews with domain experts to ascertain 

background about the transnational hazardous waste trade. The purpose of the preliminary 

interviews was to identify geographic decisions common to the management and regulation 

of hazardous waste as well as to articulate the spatial dimensions important to these decisions 

(i.e., decision criteria). Three (n=3) domain experts, each of whom was familiar broadly with 

the transnational hazardous waste trade and specifically with the hazardous waste 

transactions dataset used in the experiment, participated in the semi-structured interviews. 

The interview protocol is provided in Appendix A. 

  The domain experts interviewed agreed that common geographic decisions to the 

transnational hazardous waste trade include selecting sites to open a processing facility, close 

a processing facility, identifying shipping locations for hazardous waste, determining waste 

transportation routes, and mitigating contamination and risk for a community. The interviews 
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further revealed regulatory compliance, facility infrastructure, level of contamination risk, 

toxicity of materials, and proximity to local communities as important spatial criteria to 

making these decisions. Finally, from the map design perspective, experts agreed that the 

scale of analysis should be either state or local because patterns and trends are difficult to 

interpret and can be misleading at the national level.  

After calibrating the experimental design to expert feedback, I then conducted a pilot 

study with a preliminary version of the online survey to understand any confusions or 

problems in the experimental design. Eight (n=8) students at the University of Wisconsin-

Madison Cartography Lab were recruited to identify issues and improve the map survey. 

Students had extensive experience in interactive map design, but limited experience with the 

hazardous waste trade. Revisions to the experimental design following these preparatory 

steps are noted in the following description of the survey materials and procedure.  

 

3.3: Map Survey Participants 

A total of 122 (n=122) participants completed the online map survey. To promote a 

diverse age group, educational level, and experience, n=110 participants for the map survey 

were recruited through Amazon Mechanical Turk and completed the survey on their own 

desktop or laptop computer. To complement the Mechanical Turk participants, I also 

recruited n=9 participants from the Design Challenge as well as n=3 experts in the hazardous 

waste industry, balancing the level of expertise with the transnational hazardous waste trade 

(Research Question #3). Despite the different exposure to the domain in Design Challenge 

participants and industry experts, this pair of expert groups performed consistently on the 
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decisions. To characterize the sample, I collected biographic information and self-reported 

measures of expertise with the case study domain and use of interactive maps. Individuals 

were eligible to participate if they spoke English as a first language, resided in the United 

States (but not Ohio or Texas-the mapped locations), and were 18 years of age or older. 

Participants were required to complete the online survey using a non-mobile device.  

All participant data was vetted to ensure it was acceptable for analysis (Figure 4). 

Two participants indicated that they started over, so their data was discarded because of 

learning effects. Data from two other participants was excluded because they provided false 

survey answers. These were identified by looking at the form fill in boxes on the exit survey, 

and when there were answers that were just random letters, the data was discarded because it 

was unusable. Data from five participants was discarded because they live in Ohio and one 

who lives in Texas because they did not meet the proper eligibility requirements. Removing 

the data from these participants left a total of 122 (n=122) valid datasets to analyze. Finally, 

participants ranked 50 decisions backwards (i.e., best-to-worst when instructed to rank worst-

to-best), as identified through the ranking outcome. Responses with noticeable inversions 

around the endpoints were transposed to the intended direction before analysis.  

 

Figure 4. Data cleaning process. Participant data files were vetted to remove any 

unacceptable data. Reasons for removal included participants starting the survey over, false 

data was provided, and they currently live in Ohio or Texas. 
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3.4: Map Survey Materials 

The materials for the online map survey were designed following a 2x2 factorial 

design (Montello and Sutton 2006): interface complexity (simple, complex) and decision 

complexity (simple, complex). The 2x2 design was replicated in two map contexts to produce 

a total of eight different interactive maps for the online map survey. These maps were created 

using the MapStudy open source library developed at the University of Wisconsin-Madison 

Cartography Lab (http://github.com/uwcart/mapstudy/, Sack and Roth 2016).   

The interface complexity design factor included simple and complex variations (Table 

4). The simple variation was constrained to those interaction operators common to slippy web 

maps after Roth et al. (2014) and Tolochko (2016): pan, zoom, and retrieve. The complex 

variation then expanded interface scope to follow Shneiderman’s (1996) visual information 

seeking mantra and supported overlay of data (overview first), pan/zoom and filter (zoom 

and filter), and retrieve (details-on-demand). Thus, the interface complexity factors enabled 

evaluation of interface scope broadly, while also examining the impact of Shneiderman’s 

mantra for decision making specifically. Both conditions used the same, subdued grayscale 

basemap tileset with limited context features and no labels to promote interaction. 

The decision complexity design factor also included simple and complex variations 

with the simple condition having 3 criteria and the complex condition having 5 criteria 

(Crossland et al. 1995) (Table 4). To determine the “correct” rankings, company names were 

randomized from alphabetical to generate a list of best to worst for the seven companies (the 

most in any one state in the United States) in question. Then, values from 1-3 were assigned 

to all criteria for each company to generate a total score. The total score of the first company 
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was the lowest and the total score of the last company was the highest, with every score in 

between evenly different than the one above and below it. The values 1-3 were converted to 

low-high, respectively (low=good, high=bad) and were displayed to participants on the maps 

(Figure 5). Companies were presented to participants in alphabetical order to remove any 

initial bias. Therefore, an optimal decision required consideration of all available information 

(i.e., decision criteria), a decision scenario illustrative of an environmental justice focus. 

Qualitative feedback was acquired after each decision to determine if participants followed 

alternative decision-making strategies that reduced the complexity of the information or 

focused on one attribute over others. 

 

Table 4. 2x2 factorial design for interface and decision complexities. 
 Simple Complex 

Interface Complexity Basic Slippy Map Functionality 

 Pan 

 Zoom 

 Retrieve 

Shneiderman’s Mantra 

 Pan 

 Zoom 

 Retrieve 

 Filter 

 Overlay 

 

 Simple Complex 

Decision Complexity 7 Outcomes (Sites) 

3 Criteria: 

 Kilograms Imported 

 Percent Non-White Population 

 Air Quality Watches per Capita 

7 Outcomes (Sites) 

5 Criteria: 

 Kilograms Imported 

 Percent Non-White Population 

 Air Quality Watches per Capita 

 Percent in Poverty 

 Soil Permeability 

 

The materials were replicated for two different geographic locations: Ohio and Texas. 

Replication of materials mitigated individual bias for a region, combatted learning of map 

patterns, and ultimately enabled users to complete two unique geographic decisions during 

the map survey, doubling decision responses for analysis. Simple and complex versions were 
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created at both locations for the interface complexity and decision complexity factors, 

resulting in eight unique interactive maps. 

 
Figure 5. Coding scheme for determining the “correct” ranking. Criteria were assigned a 

value of 1-3 with 1 being “low” and 3 being “high”, where “low”=good and “high”=bad. A. 

Ohio map with simple decision criteria. B. Texas with simple decision criteria. C. Ohio with 

complex decision criteria. D. Texas with complex decision criteria. 

 

 

 The criteria shown in Figure 5 were chosen because of their importance in 

environment justice, introduced in Section 3.1. These criteria (Table 5) included kilograms of 

waste imported, percent non-white population, percent in poverty, air quality watches per 

A 

B 

C 

D 
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capita, and soil permeability. While not every criterion was analyzed for every decision given 

the differences in decision complexity, a balance was maintained between environmental and 

social criteria in both decision conditions (Table 5).  

 

Table 5. Explanation of criteria used to make decisions. *Indicates criteria provided in only 

the complex decision condition.  
Criteria Description Type 

Kilograms of Waste Imported An increased volume of hazardous waste at a 

processing site generally increases the potential 

risk to the local community and environment, all 

other things considered. 

Environment 

and Social 

Percent Non-White Population Environmental justice research shows that non-

white communities may be more burdened by 

hazardous waste facilities than white 

communities. 

Social 

Air Quality Watches per Capita Processing hazardous waste releases emissions 

that can negatively impact air quality. An air 

quality watch is issued whenever air quality 

reaches unsafe levels. 

Environment 

Percent in Poverty*  Environmental justice research shows that poor 

communities may be more burdened by hazardous 

waste facilities than wealthy communities. 

Social 

Soil Permeability* Processing hazardous waste releases toxins that 

can permeate the soil. The rate at which toxins 

penetrate into the landscape vary by soil type. 

Environment 

 

Two different scenarios were designed for the geographic decisions (Figure 6). One 

asked participants to assume the role of a manager of a hazardous waste firm looking to send 

hazardous waste to the United States for disposal. Participants were presented with the 

criteria in Table 5 and were asked to rank their preference for doing business with particular 

facilities (i.e., sites). The other scenario asked participants to assume the role of a regulator at 

the EPA in charge of ensuring sound waste processing practices. Participants were asked to 

rank the urgency of site visits to ensure companies are following government regulations. 

While the persona and decision scenario were different for the pair of decisions, they were 
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determined to be comparable from the pilot study. Importantly, environmental justice was the 

focal point in both decision scenarios, with the scenario requiring participants consider all 

criteria. While it is not expected that companies make decisions in this way, the goal of this 

research was to learn how to design tools that enable people to take into account all of the 

available information before making decisions.  

 

 

   
Figure 6. Decision scenarios participants assumed to make the geographic decisions about 

the hazardous waste trade. A. Company manager scenario. B. EPA regulator scenario.  

 

 

 

A 

B 
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3.5: Map Survey Procedure 

The quantitative map survey was proctored online using Amazon Mechanical Turk 

for non-experts and online through email recruitment for experts. The online map survey 

began with an opening page providing background information on project goals. After 

obtaining consent, participants were provided an introduction to the hazardous waste dataset 

with an example interactive map. The example map was accompanied with an explanation of 

the interactive functionality available and an example task to let participants practice 

interacting with the map. The participants were allotted as much time as they desired to 

explore the interactive map before beginning the experimental blocks (Figure 7). 

 

 
Figure 7. Map survey procedure. Participants started by completing a consent page and 

reviewing eligibility, then proceeded to an example map to learn functionality. They then 

completed one decision (balanced order), followed by decision confidence and perceived 

difficulty questions, and wrote a description of their decision making process. Participants 

completed a series of map reading tasks before proceeding to a second decision. They then 

completed the same confidence, difficulty, and decision making questions. The survey 

concluded with an exit survey.   
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Participants were randomly assigned between subjects into one of two groups based 

on interface complexity (Research Question #1): either the simple interface including only 

pan, zoom, and retrieve or the complex adding filter and overlay. In contrast, decision 

complexity (Research Question #2) was assigned within groups so that participants only 

learned a single set of functionality in the opening example, and thus did not try to evoke 

functionality that was removed in subsequent trials. Participants then completed two 

decisions of variable complexity using different geography: one decision with the Ohio map 

and one decision with the Texas map. The combination of decision complexity and 

geography, and the order of the two tasks within the online map survey, was randomized 

within the groups (Figure 8). 

 

Interface Complexity: 

   A = Simple (Pan, Zoom, Retrieve) 

   B = Complex (Pan, Overlay, Zoom, Filter, Retrieve) 

  

Decision Complexity: 

1 = Simple (Limited Criteria (3), 7 outcomes) 

2 = Complex (Expanded Criteria (5), 7 outcomes) 

 

Assignments for Group I and Group II:* 

I. A1
Ohio

 + A2
Texas 

(41 participants)** 

 A1
Texas

 + A2
Ohio 

(27 participants)   

 

II. B1
Ohio

 + B2
Texas 

(25 participants) 

    B1
Texas

 + B2
Ohio

 (29 participants)
 

  

 

*Interface complexity varied between groups, while decision complexity varied within groups. The map the 

user saw first was randomized within the group.   

 

**Note that this first assignment had many more participants than the others. This was an artifact from the 

randomization system used in MapStudy. 

Figure 8. Participant assignments for interface and decision complexity. Participants were 

randomly assigned to maps with simple or complex interface complexity and simple or 

complex decision complexity, with interface complexity varied between groups and decision 

complexity varied within groups. 
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Both decision trials began with participants reviewing a persona and decision 

scenario described above (Figure 6, Figure 9). The participants then were instructed to rank 

the set of sites (i.e., the decision outcomes) based on the decision scenario, rather than select 

only a single site in order to engage a higher-level reasoning process. Between maps, the 

participants were required to complete a series of simple map reading tasks using additional 

maps of the hazardous waste trade to measure the participant’s map reading ability and to 

combat learning effects. The online map survey completed with an exit survey capturing 

participant characteristics and experiences (Research Question #3), as well as insight into 

their decision-making process. The full map survey can be seen in Appendix B. 
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Figure 9. Two maps and scenarios tested in this research. A. Map of Ohio with simple 

interface complexity, simple decision complexity, and company manager scenario (popup 

activated [retrieve]). B. Map of Texas with complex interface complexity, complex decision 

complexity, and EPA regulator scenario (popup [retrieve] and overlay [soil permeability] 

activated). 

 

 

3.6: Map Survey Analysis 

 

The independent variables for this research study are interface complexity and 

decision complexity, while the dependent variables include correctness of the decision 

outcome, reported confidence, reported difficulty, and the interaction logs. In addition, 

interaction effects were assessed regarding user expertise (education, profession, and 

experience with the hazardous waste trade), geographic location, and order. 

Quantitative analysis was used to assess decision outcomes and exit survey results. 

The ranking decision was assessed for correctness using the Kendall Rank Correlation 

Coefficient (Crossland et al. 1995, Mennecke et al. 2000, Kiker et al. 2005). Kendall analysis 

provides both a measure of correctness (  b) on a scale of -1 to 1 as well as the percentage of 

B 
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observations statistically correct at p=0.05. Further analysis was conducted with a z-test for 

differences between simple and complex interface complexity variations, and a paired two 

sample t-test for differences between simple and complex decision complexity variations as 

well as user expertise, location (Ohio vs. Texas), and order (1
st
 vs. 2

nd
). Spearman’s 

correlation analysis was used to determine correlations between pairings of correctness, 

difficulty, and confidence for all variations. Additionally, interaction logs were coded by 

operator (Table 1) for each decision to understand extensiveness, frequency, and type of 

functionality used by participants to come to their decisions (MacEachren et al. 1998, Roth 

and MacEachren 2016). The way I used these analyses to answer my research questions is 

shown in Table 6. 
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Table 6. Analysis techniques used to answer research questions.  
Research Question-IDVs Measures-DVs Statistics Used 

Overall: 

Location and Order 

Location (Texas vs. Ohio) and  

order (1
st
 vs. 2

nd
) correctness 

Kendall’s Rank Correlation Coefficient 

 

Location (Texas vs. Ohio) and  

order (1
st
 vs. 2

nd
) significance 

Paired two sample mean t-test 

 

Significance between Texas and Ohio (order 

and location) for confidence and difficulty 

Paired two sample mean t-test 

Correlation between pairings of correctness, 

confidence, and difficulty 

Spearman’s correlation coefficient 

Interaction operator extensiveness Chi-square test 

Interaction operator frequency  Chi-square test 

Question #1: 

Interface Complexity 

Decision correctness for interface complexity 

levels 

Kendall’s Rank Correlation Coefficient 

Significance between decision correctness and 

interface complexity levels 

z-test 

Significance between complexity levels for 

confidence and difficulty  

z-test 

Correlation between pairings of correctness, 

confidence, and difficulty  

Spearman’s correlation coefficient 

Significance in interaction operator 

extensiveness between complexity levels 

Two sample t-test 

Significance in interaction operator frequency 

between complexity levels 

Two sample t-test 

Question #2: 

Decision Complexity 

Decision correctness for decision complexity 

levels  

Kendall’s Rank Correlation Coefficient 

Significance between decision correctness and 

decision complexity levels 

Paired two sample mean t-test 

Significance between complexity levels for 

confidence and difficulty 

Paired two sample mean t-test 

Correlation between pairings of correctness, 

confidence, and difficulty 

Spearman’s correlation coefficient 

Significance in interaction operator 

extensiveness between complexity levels 

Two sample t-test 

Significance in interaction operator frequency 

between complexity levels 

Two sample t-test 

Question #3: 

User Expertise 

Decision correctness for expertise levels Kendall’s Rank Correlation Coefficient 

Significance between decision correctness and 

user expertise 

Two sample mean t-test 

Significance between expertise levels for 

confidence and difficulty 

Two sample mean t-test 

Correlation between pairings of correctness, 

confidence, and difficulty 

Spearman’s correlation coefficient 

Significance in interaction operator 

extensiveness between expertise levels 

Two sample t-test 

Significance in interaction operator frequency 

between expertise levels 

Two sample t-test 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Overall Results 

A total of 122 (n=122) participants completed this study (68 male, 54 female). 

Twelve experts in the management and trade of hazardous waste participated, with the 

remaining 110 participants holding limited background knowledge. Regarding education 

level, 40 participants held a high school diploma as the highest degree earned, 15 earned an 

Associate’s degree, 49 earned a Bachelor’s degree, 4 earned a post-bachelor certificate, 12 

earned a Master’s degree, and 2 earned a PhD. The average age for all participants was 35.5 

(min=23, max=66).  

Correctness for the ranking tasks was determined using the Kendall rank correlation 

coefficient (Mennecke et al. 2000). The overall correctness of the ranking decisions was 

  b=0.629 (SD=0.449), where τb-max=1, indicating a positive correlation between observed 

participant rankings and the expected correct rankings. 56.6% of the decision outcomes were 

statistically correct at p=0.05. These findings suggest that the two decisions were difficult, 

but not impossible, mirroring real-world problem contexts on the management and regulation 

of hazardous waste (Table 7). 

Participants rated their perceived difficulty of the decisions and the confidence in 

their decision outcomes. The average difficulty for all ranking decisions was 2.3/5 (SD=1.1), 

where 5 is very difficult. Average participant confidence was 4.1/5 (SD=0.9), where 5 is very 

confident. A Spearman correlation test revealed that there was minimal association between 

overall correctness and overall difficulty (ρ=-0.050, p=0.439) as well as overall correctness 

and overall confidence (ρ=0.082, p=0.204), together indicating that self-assessed difficulty 
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and confidence were not factors in the decision results in the aggregate. It is important to 

note in the following that difficulty, but not confidence, was rated on an inverse scale to 

improve the semantics of the question for participants, meaning that a negative Spearman 

association indicates that participants found the task easier as they became closer to correct in 

their decision outcomes. 

The average correctness for Ohio decisions was   b=0.661 (SD=0.404, 57.4% 

statistically correct decisions), while the average correctness for Texas decisions was 

  b=0.597 (SD=0.489, 55.7% statistically correct decisions). A paired two sample t-test found 

no significant difference between the overall correctness of the Ohio and Texas decisions 

(paired t(121)=-1.119, p=0.265). The average difficulty was 2.3/5 (SD=1.2) for decisions 

supported by the Ohio map and 2.3/5 (SD=1.1) for decisions supported by the Texas map. A 

paired two sample t-test also found no difference in difficulty for the Texas and Ohio maps 

(t=-0.300, p=0.764). Spearman tests showed that there was a significant negative correlation 

between difficulty and correctness for the Texas (ρ=-0.237, p=0.009) maps, but no 

correlation for the Ohio (ρ=0.009, p=0.925) maps. Therefore, when the participants found the 

Texas decision easier, they were more accurate in their outcome, but this association did not 

hold true for the Ohio decisions. This could be because people have an overall better sense of 

Texas geography than Ohio geography. Further, confidence was assessed at 4.1/5 (SD=0.88) 

for the decisions made with the Ohio map and 4.0/5 (SD=0.99) for decisions completed with 

the Texas map. A paired two sample t-test found no difference in confidence for decisions 

made with the Ohio map and the Texas map (t=-0.657, p=0.513). Spearman tests found a 

significant positive correlation between confidence and correctness for the Texas maps 
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(ρ=0.375, p=2.08x10
-5

), but not the Ohio maps (ρ=0.161, p=0.077), again indicating that 

when the participants were more confident in their Texas decision, they too, had better 

correctness results to show for it. Together, the significant correlations for Texas and not 

Ohio are curious findings, and perhaps suggest a greater geographic awareness of Texas 

compared to Ohio, influencing participant perception, with further testing needed to confirm 

this explanation. This difference in locations did not significantly influence the decision 

outcomes themselves and ultimately did not register in the exit survey. 

Regarding order effects, the average correctness was   b=0.606 (SD=0.464, 54.1% 

statistically correct) for the first decision and   b=0.653 (SD=0.433, 59.0% statistically 

correct) for the second decision. Also using a paired two sample t-test, no significant 

difference was found in average correctness between the first and second decisions (paired 

t(121)=-0.817, p=0.415) despite the small increase in correctness from the first to second 

decision. The average difficulty was 2.3/5 (SD=1.1) for the first decision completed and 

2.3/5 (SD=1.2) for the second decision completed. A paired two sample t-test again did not 

find significance between difficulty for the first and second decisions (t=-0.264, p=0.793). 

Spearman tests showed that there was a significant negative correlation between correctness 

and difficulty for the first decision (ρ=-0.222, p=0.014), but not the second decision (ρ=-

0.019, p=0.835), indicating that when participants felt the first decision was easy, they tended 

to have better results. The average confidence was 4.1/5 (SD=0.95) for the first decision and 

4.1/5 (SD=0.92) for the second decision. A paired two sample t-test found that there was no 

significance in confidence between the first and second decisions completed (t=0.064, 

p=0.949). Spearman tests showed a positive correlation between correctness and confidence 
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for the first decision (ρ=0.399, p=5.31x10
-6

), but not the second decision (ρ=0.154, p=0.091), 

indicating that when participants showed confidence in the first decision, they had better 

correctness results. These findings suggest that, while participants who were more 

comfortable with interactive maps did better on the first decision, this difference did not 

result in a significant order effect on decision outcomes. Table 7 provides the aforementioned 

results. 

 

Table 7. Correctness results for location and order compared to overall, and difficulty and 

confidence results for overall decisions. 

Condition 
Sample 

Size 
Correctness Difficulty Confidence 

Descriptive 
Average 

(  b) 

Standard 

Deviation 

% 

Correct  

Average 

[1=very 

easy] 

Standard 

Deviation 

Spearman 

(ρ) 

Average 

[5=very 

confident] 

Standard 

Deviation 

Spearman 

(ρ) 

Texas 122 0.597 0.489 55.7% 2.3 1.1 -0.237 4.0 0.99 0.375 

Ohio 122 0.661 0.404 57.4% 2.3 1.2 0.009 4.1 0.88 0.161 

First 122 0.606 0.464 54.1% 2.3 1.1 -0.222 4.1 0.95 0.399 

Second 122 0.653 0.433 59.0% 2.3 1.2 -0.019 4.1 0.92 0.154 

Overall 244 0.629 0.449 56.6% 2.3 1.1 -0.050 4.1 0.9 0.082 

Inferential t statistic p-value t statistic p-value  t-statistic p-value 

Location 244 -1.119 0.265 -0.300  0.764 -0.657 0.513 

Order 244 -0.817 0.415 -0.264  0.793 0.064 0.949 

 

  

Interaction logs were recorded to learn how participants used the maps when making 

their decisions (Table 8). Starting with extensiveness, participants interacted with the map for 

all but one decision (243/244, 99.6%). This was markedly higher than expected, and 

indicated that the training block properly introduced participants to the available interactivity. 

However, there was wide variation in interaction by extensiveness (whether or not an 

operator was used at least once) across the implemented operators. Participants retrieved 

details at least once during 91.4% of the decisions, changed the overlays (when implemented 
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in the complex interface condition) at least once during 73.0%, and panned at least once 

during 77.5%. In contrast, participants only filtered (when implemented) during 28.7% of the 

decisions and only zoomed during 32.0% of the decisions. A chi-square test found that the 

percent of interaction extensiveness was statistically unequal across operators (χ2 (9, 

N=244)=362.25, p < 2.2x10
-16

), meaning that the application of operators was non-random 

and thus intentional interaction strategies were used when making decisions. The extensive 

use of retrieve was expected given the simplified basemap and lack of labels. Interestingly, 

the uneven extensiveness of operators did not appear to follow Shneiderman’s information 

seeking mantra—at least in the overall aggregate—in which zoom and filter are essential 

transitional interactions from overview to details. This finding is perhaps caused in part 

because of the difficult but concrete decision containing a finite set of fixed outcomes, 

resulting in a reduced amount of time in open exploratory mode as participants focused their 

attention to the specific problem at hand. Further, participants may have started in the 

sensemaking stage, rather than the information seeking stage because the problem was given 

to them; they did not have to “seek” it out (Pirolli and Card 2005). Additionally, the use of 

pan and not zoom may be due to reduced screen real estate for the map on smaller screens, 

given the 50/50 split between map and decision scenario in the MapStudy framework. 

 The frequency of the interactions was substantial, with 5,900 total interaction logged 

across the study and an average of 24.18 interactions per decision. Because the number of 

participants assigned to each condition of interface complexity was uneven, the average 

operator frequencies per decision are more meaningful than the total frequencies. By 

frequency, detail retrieval was by far the most commonly applied operator, used an average 
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of 12.93 times per decision. Again, the large frequency of retrieve was expected given the 

simplified basemap and lack of labels. Panning was applied 5.79 times per decision and 

overlay (when implemented) 5.44 times. As with extensiveness, zooming (1.37 times per 

decision) and filtering (2.74 times per decision, when implemented) were used far less 

frequently. A chi-square test found that the average frequency of interactions across 

operators also was statistically unequal (χ
2
 (9, N=244)=24.834, p=0.003), further implying a 

non-random use of operators that did not follow Shneiderman’s mantra in the aggregate. 

In the following sections, the decision outcomes and interaction logs are analyzed by 

interface complexity, decision complexity, and user expertise to understand the effect of each 

on the decision outcomes and to answer my three research questions.  

 

Table 8. Extensiveness and frequency of operators used. *Indicates operators provided in 

only the complex interface condition; see Section 4.2 for further details. Statistical 

significance highlighted in red. 

Operator Sample 

Size 

Extensiveness Frequency 

Descriptive Total Percentage Total Avg per 

Decision 

Standard 

Deviation 

Retrieve 244 223 / 244 91.4% 3,156 12.93 129.38 

Pan 244 189 / 244 77.5% 1,412 5.79 89.38 

Overlay* 122 89 / 122 73.0% 664 5.44 55.25 

Zoom 244 78 / 244 32.0% 334 1.37 23.14 

Filter* 122 35 / 122 28.7% 334 2.74 39.09 

Total 244 243/244 99.6% 5,900 24.18 155.45 

Inferential chi-square p-value chi-square p-value 

Across 

Operators 

244 362.25 < 2.2x10
-16

 24.834 0.003 
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4.2: Interface Complexity (Research Question #1) 

 The decision results for the simple and complex maps were compared to understand 

the effect of interface complexity on the decision outcomes (Research Question #1; Table 9). 

The average correctness for decisions supported by the simple interface was   b=0.732 

(SD=0.418, 68.4% statistically correct). In contrast, the average correctness for decisions 

supported by the complex interface was only   b=0.500 (SD=0.454, only 41.7% statistically 

correct). A two sample z-test found this difference significant (z=4.102, p=4.102x10
-5

), 

demonstrating that participants performed better when given a simpler interface that did not 

include overlay or filter. 

 

Table 9. Correctness, difficulty, and confidence results for the simple and complex interface 

conditions compared to overall. Statistical significance highlighted in red. 

Condition 
Sample 

Size 
Correctness Difficulty Confidence 

Descriptive 
Average 

(  b) 

Standard 

Deviation 

% 

Correct  

Average 

[1=very 

easy] 

Standard 

Deviation 

Spearman 

(ρ) 

Average 

[5=very 

confident] 

Standard 

Deviation 

Spearman 

(ρ) 

Simple 

Interface 

Complexity 

136 0.732 0.418 68.4% 2.1 1.0 -0.109 4.2 0.8 0.178 

Complex 

Interface 

Complexity 

108 0.500 0.454 41.7% 2.5 1.2 0.014 3.9 1.0 0.306 

Overall 244 0.629  0.449 56.6% 2.3 1.1 -0.050 4.1 0.9 0.082 

Inferential z statistic p-value z statistic p-value  z statistic p-value 

Simple vs. 

Complex 
244 4.102 4.102x10

-5
 -3.198 0.001 2.941 0.003 

 

A similar difference between the simple and complex conditions was observed in both 

difficulty and confidence. The average difficulty was 2.1/5 (SD=1.0) for decisions supported 

by the simple interface and 2.5/5 (SD=1.2) for decisions supported by the complex interface. 

A two sample z-test found this difference significant (z=-3.198, p=0.001). No significant 
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correlation was found between correctness and difficulty in either the simple (ρ=-0.109, 

p=0.207) or complex conditions (ρ=0.014, p=0.884). Thus, the inclusion of additional 

interaction operators in the complex condition made the decision appear to be more difficult 

to participants when the decision itself was unchanged. The added interaction scope and 

flexibility combined with its increased perceived difficulty perhaps explains the decreased 

performance by correctness in the complex condition reported above.  

Further, the average confidence for the simple interface condition was 4.2/5 

(SD=0.8), while the average confidence for the complex interface condition dropped to 3.9/5 

(SD=1.0). A two sample z-test found this difference significant (z=2.941, p=0.003). Thus, 

not only did the increased interface complexity decrease correctness while increasing 

perceived difficulty, it also shook participant confidence, potentially making participants less 

likely to act if given the interface in a real-world setting. Spearman tests found a significant 

positive correlation between correctness and confidence for both the simple interface 

condition (ρ=0.178, p=0.038) and the complex interface condition (ρ=0.306, p=0.001). This 

indicates that though participants using the simple interface overall were more confident in 

their decisions, participants using both the simple and complex interface exhibited an increase 

in decision correctness when they reported greater confidence in their answers, suggesting 

the potentially important role of experience. 

The observed differences in correctness, difficulty, and confidence between the 

simple and complex are clarified by the interaction logs (Table 10). There was no difference 

in overall interaction extensiveness given the overwhelming number of participants that 

interacted at least once (t=0.619, p=0.580), although notably the one decision that was not 
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supported by any interactions with the map was given the complex map condition. However, 

the extensiveness of interactions did vary by operator between simple and complex interfaces. 

Participants primarily relied on detail retrieval to make their decision when using the simple 

interface. Regarding extensiveness in the simple condition, all (100.0%) participants 

retrieved at least once, 69.9% of participants panned at least once, and only 26.5% zoomed at 

least once. In contrast, participants made more extensive use of operators other than retrieve 

to support decision making in the complex condition: only 80.6% retrieved details at least 

once, while 87.0% of participants panned at least once and 82.4% overlaid at least one layer, 

38.9% zoomed at least once, and 32.4% filtered at least once.  

The high extensiveness of overlay in the complex map is particularly notable, as 

toggling different visual overlays provided the same information for a single variable that 

could be found in the detail retrieval pop-up, but in different slices across the information. 

The overlay strategy more common to the complex condition enabled participants to see one 

attribute (i.e., one decision criterion) for all sites (i.e., all decision outcomes), while the 

retrieval strategy more common to the simple condition enabled participants to see all 

attributes (i.e., all decision criteria) for one site (i.e., one decision outcome). Further, the 

former strategy emphasized map reading of shaded units, while the latter emphasized 

interpretation of non-visual text. Given how these interaction strategies resulted in 

differences in correctness, difficulty, and confidence, the latter was clearly the more effective 

strategy for the tested decisions considering interface complexity alone. 

Two sample t-tests also were used to determine if there were significance differences 

between complexity levels in interaction extensiveness for the pan, zoom, and retrieve 
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operators. Pan (t=0.097, p=0.929) and zoom (t=-0.645, p=0.543) resulted in no significant 

difference between complexity conditions. Although the retrieve operator was used by every 

participant who interacted with the simple map, there was no significant difference in retrieve 

extensiveness between complexity levels (t=3.03, p=0.057), suggesting that retrieve was 

useful in some way for both the simple and complex map conditions. 

 

Table 10. Extensiveness and frequency of operators used, separated by interface complexity 

levels. *Indicates operators provided in only the complex interface condition. Statistical 

significance between interface complexity levels highlighted in red. 

Operator Sample 

Size 

Extensiveness Frequency 

Descriptive Total Percentage Total Avg per 

Decision 

Standard 

Deviation 

Simple Interface Complexity 

Retrieve 136 136 / 136 100 1,984 14.59 104.81 

Pan 136 95 / 136 69.9 494 3.63 55.62 

Zoom 136 36 / 136 26.5 127 0.93 11.03 

Overall 136 136 / 136 100 2,605 19.15 218.72 

Complex Interface Complexity 

Retrieve 108 87 / 108 80.6 1,172 10.85 24.54 

Pan 108 94 / 108 87.0 918 8.50 89.76 

Overlay* 108 89 / 108 82.4 664 6.15 55.25 

Zoom 108 42 / 108 38.9 207 1.92 29.34 

Filter* 108 35 / 108 32.4 334 3.09 39.09 

Overall 108 107 / 108 99.1 3,295 30.51 103.20 

Total 244 243/244 99.6% 5,900 24.18 155.45 

Inferential t statistic p-value t statistic p-value 

Simple vs. 

Complex 

244 0.619 0.580 0.352 0.759 

Retrieve 244 3.03 0.057 3.77 0.033 

Pan 244 0.097 0.929 -2.01 0.101 

Zoom 244 -0.645 0.543 -1.28 0.271 
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Differences in the interaction logs for the simple versus complex interface conditions 

were exacerbated when examined by frequency rather than extensiveness. By average, 

participants interacted more with the complex map (30.51, SD=103.20) than the simple map 

(19.15, SD=218.72). This is perhaps expected given the wider interface scope of the complex 

condition, but also suggests the importance of interface constraint, as the added time spent 

interacting did not clarify the decision, but instead complicated it, as indicated by the 

significant differences in correctness, difficulty, and confidence. However, a two sample t-

test showed that even though participants using the complex map interacted more, there was 

no significant difference in the frequency of overall interactions due to the large amount of 

variation in the frequency of interactions (t=0.352, p=0.759). This finding points to the 

difficulty in analyzing interaction logs in an experimental setting, as the frequency of 

interactions during an open-ended decision does not have an upper limit, often resulting in 

great variability across participants.  

Looking at specific operators, retrieve was the most frequently employed operator for 

the simple condition with 14.59 retrieves per decision, followed by panning 3.63 times per 

decision and zooming 0.93 times per decision. Retrieve was also the most frequently used 

operator for the complex condition with 10.85 detail retrievals per decision, with participants 

then panning 8.50 times per decision, overlaying attributes 6.15 times per decision, filtering 

3.09 times per decision, and zooming 1.92 times per decision. Two sample t-tests resulted in 

no difference in the frequency of panning (t=-2.01, p=0.101) or zooming (t=-1.28, p=0.271) 

between the simple and complex maps. However, there was a difference in the retrieve 

operator frequency between the simple and complex interface conditions (t=3.77, p=0.033). 
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Those with complex interface condition retrieved less, with these interactions displaced to 

other operators (Figure 10). 

While a direct comparison of the overlay strategy cannot be assessed given the 

variation in interface complexity, the significant difference in retrieve frequency does suggest 

that separate interaction strategies were used between the simple and complex interfaces: the 

former relying on retrieve and the latter integrating use of overlay (Figure 10). This 

difference in interaction strategy likely explained the differences in correctness, difficulty, 

and confidence between interface complexity conditions, and emphasizes the importance of 

considering the optimal interaction strategy for the targeted task when designing an 

interactive map supporting sophisticated geographic decision making. In the case study, 

participants had more success with the constrained, retrieve-focused strategy versus the more 

flexible, overlay-focused strategy. Further, participants improved performance viewing 

multiple decision criteria for one decision outcome versus viewing multiple decision 

outcomes for one decision criterion. From a geographic perspective, this might suggest that 

decision making is improved when the interactive map is designed to focus on specific sites 

over broad regional variation, an interesting hypothesis requiring follow-up testing. 

Finally, the lack of significance in pan and zoom between the simple and complex 

interfaces suggests that these were used as enabling operators to support other work or did 

not directly influence decision making. The limited utility of pan and zoom for the decisions 

was supported by qualitative feedback on the decision-making process.   
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Figure 10. Average frequency of operator usage by interface complexity level. 

 

4.3: Decision Complexity (Research Question #2) 

 Next, differences in correctness, difficulty, confidence, and interactions between 

simple and complex decisions—as defined by variation in the number of decision criteria—

were evaluated to determine the effect of decision complexity on decision outcomes 

(Research Question #2; Table 11). The average correctness for simple decisions was   b=0.597 

(SD=0.463, 54.1% statistically correct), while the average correctness for complex decisions 

was   b=0.661 (SD=0.433, 59.0% statistically correct). This result runs counter to 

expectations, as the simple condition had fewer criteria and therefore was expected to be an 

easier decision resulting in more statistically correct responses and higher confidence. One 

possible explanation is that the complex condition provided more signals to participants on 
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how to complete the decision, and therefore modulated individual bias towards focusing on a 

single decision criterion versus considering all criteria. This interpretation is supported by 

qualitative feedback on the decision-making process, as participants focused more heavily on 

specific criteria when making the simple decision, at times even choosing a single criterion 

on which to base their entire decision.  

A paired two sample t-test revealed that, although there was better performance on 

complex decision complexity decisions, this difference was not significant (paired t(121)=-

1.352, p=0.179). Thus, the complex decision was not complex enough to warrant a decrease 

in correctness from the simple decision, enabling individual difference instead to account for 

randomness in decision responses across participants. Therefore, interface complexity, not 

decision complexity, more greatly influenced the correctness of decision outcomes for the 

study.  

 

Table 11. Correctness, difficulty, and confidence results for the simple and complex decision 

conditions compared to overall. Statistical significance highlighted in red. 

Condition 
Sample 

Size 
Correctness Difficulty Confidence 

Descriptive 
Average 

(  b) 

Standard 

Deviation 

% 

Correct  

Average 

[1=very 

easy] 

Standard 

Deviation 

Spearman 

(ρ) 

Average 

[5=very 

confident] 

Standard 

Deviation 

Spearman 

(ρ) 

Simple 

Decision 

Complexity 

122 0.597 0.463 54.1% 2.3 1.1 -0.297 4.0 0.9 0.302 

Complex 

Decision 

Complexity 

122 0.661 0.433 59.0% 2.2 1.1 0.064 4.1 0.9 0.253 

Overall 244 0.629  0.449 56.6% 2.3 1.1 -0.050 4.1 0.9 0.082 

Inferential t statistic p-value t statistic p-value  t-statistic p-value 

Simple vs. 

Complex 
244 -1.352 0.179 0.810 0.419 -0.797 0.427 
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The reported difficulty was near similar between decision complexity conditions, 

with an average rating of 2.3/5 (SD=1.1) for simple decisions and 2.2/5 (SD=1.1) for 

complex decisions. Accordingly, a paired two sample t-test identified no difference in 

difficulty between the simple and complex decisions (paired t(121)=0.810, p=0.419), again 

suggesting that the complex condition was not complex enough to garner significant 

differences in decision responses. Interestingly, however, participants reported both the 

simple and complex as closer to easy than difficult (5 is very difficult), despite participants 

overall getting only 56.6% of the decision statistically correct across conditions (as reported 

in Section 4.1). Spearman tests found a significant negative correlation between difficulty 

and correctness for the simple condition (ρ=-0.297, p=0.0009), but not for the complex 

condition (ρ=0.064, p=0.480), where the correlation was positive although not significant. 

Given the inverse scale used for difficulty, participants found the decision easier when they 

were closer to the correct response in the simple decision condition, an expected result, but 

not for the complex decision condition. In other words, participants performed the same on 

complex decisions when they believed the task to be relatively easier. This suggests that a 

subset of participants did not treat the complex decision in its full complexity, missing or 

ignoring dimensions of the complexity while cognitively reducing the decision. For these 

participants, such a complexity-reduction decision-making strategy impeded finding the 

optimal decision outcome for complex decisions. As reported above, participants still 

performed better overall on complex decisions versus simple decisions, so this complexity-

reduction strategy did not inhibit participants from making more correct decisions compared 

to the simple decisions where this behavior was not observed. Ultimately, this suggests 
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individual bias on simple decisions had a more deleterious impact on decision outcomes than 

complexity reduction as a decision-making strategy on complex decisions.  

The average confidence was 4.0/5 (SD=0.9) for the simple decision condition and a 

similar 4.1/5 (SD=0.9) for the complex decision condition. A paired two sample t-test 

identified no significant difference in confidence between the simple and complex conditions 

(paired t(121)=-0.797, p=0.427), an unexpected result as the simple condition should have 

inspired more confidence given the anticipated ease in making the correct decision. This 

finding again is likely attributed to the complex decision condition not being difficult enough 

to create significant differences in correctness. Spearman tests demonstrated significant 

positive correlations between average correctness and average confidence in both the simple 

(ρ=0.302, p=0.0007) and complex (ρ=0.253, p=0.005) decision conditions. The correlation 

between correctness and confidence is expected, as participants who performed well on the 

decision should have more confidence in their response. 

 As with the interface complexity factor, there was no statistical difference in overall 

extensiveness between decision complexity conditions, as nearly all participants interacted at 

least once (t=-0.127, p=0.902; Table 12). Examining individual operators, there was minimal 

difference in complexity levels for the most extensively applied operators: 91.8% versus 

91.0% retrieved details at least once for the simple versus complex decisions, 79.6% versus 

85.2% overlaid additional layers at least once, and 76.2% versus 78.7% panned at least once. 

There also was minimal difference in the extensiveness of zooming between simple (30.3%) 

and complex (33.6%) conditions. There was a noticeable increase in the use of filtering as the 

decision increased in complexity, rising from 25.9% in the simple condition to 38.9% in the 
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complex condition. This finding does align with Shneiderman’s (1996) information seeking 

mantra, and it would be interesting to see if use of filtering continues to increase when 

increasing the decision complexity further. Ultimately, two sample t-tests found no 

difference between simple and complex decisions in the extensive use of retrieve (t=0.039, 

p=0.970), overlay (t=-0.600, p=0.609), pan (t=-0.293, p=0.780), zoom (t=-0.422, p=0.695), 

or filter (t=-1.230, p=0.417). Thus, the decision complexity did not significantly impact the 

interaction strategy used by participants to make the decisions.  
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Table 12. Extensiveness and frequency of operators used, separated by decision complexity 

levels. *Indicates operators provided in only the complex interface condition; see Section 4.2 

for further details. 

Operator Sample 

Size 

Extensiveness Frequency 

Descriptive Total Percentage Total Avg per 

Decision 

Standard 

Deviation 

Simple Decision Complexity 

Retrieve 122 112 / 122 91.8 1,613 13.22 144.82 

Pan 122 93 / 122 76.2 605 4.96 72.05 

Overlay* 54 43 / 54 79.6 254 4.70 33.94 

Zoom 122  37 / 122 30.3 134 1.10 13.63 

Filter* 54 14 / 54 25.9 152 2.81 45.25 

Overall 122 122 / 122 100 2,758 22.61 162.70 

Complex Decision Complexity 

Retrieve 122 111 / 122 91.0 1,543 12.65 133.73 

Pan 122 96 / 122 78.7 807 6.61 108.40 

Overlay* 54 46 / 54 85.2 410 7.59 43.84 

Zoom 122 41 / 122 33.6 200 1.64 29.70 

Filter* 54 21 / 54 38.9 182 3.37 48.08 

Overall 122 121 / 122 99.2 3,142 25.75 152.19 

Total 244 243/244 99.6% 5,900 24.18 155.45 

Inferential t statistic p-value t statistic p-value 

Simple vs. 

Complex 

244 -0.127 0.902 -0.203 0.844 

Retrieve 244 0.039 0.970 0.178 0.865 

Pan 244 -0.293 0.780 -0.776 0.473 

Overlay* 244 -0.600 0.609 -1.990 0.185 

Zoom 244 -0.422 0.695 -1.01 0.370 

Filter* 244 -1.230 0.417 -0.321 0.778 

 

Interaction also was similar between decision complexity conditions when looking at 

frequency instead of extensiveness. By average, participants interacted with map slightly 

more during complex (25.75, SD=152.19) versus simple decisions (22.61, SD=162.70), as 
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expected. However, the difference in overall frequency between complexity levels was not 

significant (t=-0.203, p=0.844). Retrieve (13.22 for simple versus 12.65 for complex), filter 

(2.81 versus 3.37), and zoom (1.10 versus 1.64) showed minimal variation in frequency 

between decision complexities (Figure 11). Overlay exhibited a notable increase in frequency 

from the simple (4.70) to the complex (7.59) decisions, perhaps indicating a tendency for 

some to try the overlay-focused interaction strategy in addition to the retrieve-focused 

strategy when completing the more complex decision. Pan also exhibited a slight increase 

from simple (4.96) to the complex (6.61) decisions, a potentially interesting result as panning 

can indicate that users are lost in an interactive map when completing concrete tasks (see 

Section 2.1). As with interaction extensiveness, two sample t-tests found no significant 

difference in frequency between decision conditions for retrieve (t=0.178, p=0.865), filter 

(t=-0.321, p=0.778), zoom (t=-1.01, p=0.370), overlay (t=-1.990, p=0.185), and pan (t=-

0.776, p=0.473). Thus, it was the interface complexity, not decision complexity, that 

determined how participants developed interaction strategies to support their decisions. This 

finding is important from a cartographic perspective, as the interactive map design can have 

more influence over decision outcomes than the problem context itself. 
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Figure 11. Average frequency of operator usage by decision complexity level. 

 

4.4: The Role of User Expertise (Research Question #3) 

Finally, differences in performance between experts and non-experts in hazardous 

waste were analyzed to understand the role of prior domain knowledge on decision making 

supported by interactive maps (Research Question #3; Table 13). A total of 12 (n=12) experts 

and 110 (n=110) non-experts completed this study, making comparison unbalanced. The 

average correctness was   b=0.655 (SD=0.454, 58.3% statistically correct) for experts and 

  b=0.626 (SD=0.449, 56.4% statistically correct) for non-experts. While experts did 

outperform non-experts on the decisions overall, a two sample t-test found no significant 

difference between experts and non-experts (t(242)=0.294, p=0.769). This is a plausible 

result given that only 10% of the sample was expert, a study limitation given the generally 
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small and relatively inaccessible expert population. A larger expert sample size may lead to 

statistical significance, and deeper engagement with experts in an ecologically valid setting is 

targeted for follow-up research.  

 The average difficulty was 2.4/5 (SD=1.2) for experts and 2.3/5 (SD=1.1) for non-

experts. Accordingly, a two sample t-test did not return significance on this small difference 

between the expert and non-expert difficulty ratings, indicating that both groups found the 

task equally difficult (t(242)=0.467, p=0.641). Spearman tests found no significant 

relationship between correctness and difficulty for either the experts (ρ=-0.099, p=0.644) or 

non-experts (ρ=-0.121, p=0.072).  

Interestingly, the non-expert group rated their average confidence highly at 4.1/5 

(SD=0.9), while the expert group was less confident, rating at only 3.6/5 (SD=1.1) on 

average. A two sample t-test found this difference significant (t(242)=-2.723, p=0.007). 

Thus, non-experts were actually more confident in their results than experts. While 

seemingly counterintuitive, this finding is consistent with prior work on geographic decision-

making supported by interactive mapping (e.g. Roth 2009) and actually may be evidence that 

the expert group demonstrated their prior knowledge by properly assessing the gravity of the 

decision. In other words, experts understand the consequences of their decisions and more 

fully weight the costs of their decision (some of which may be uncertain) into their reported 

confidence. In contrast, non-experts had “nothing to lose” when making their decision given 

the lack of exposure to real consequences, leading to increased confidence. In terms of Pirolli 

and Card (2005), for experts, previous experience with “act” stages (when previously making 

a decision) can lead them to be more cautious in future sensemaking stages. Spearman tests 
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found a positive correlation between correctness and confidence for non-experts (ρ=0.279, 

p=2.63x10
-5

), but not for experts (ρ=0.396, p=0.056). Thus, confidence was tied to 

performance for non-experts, but other factors, such as experience and knowledge, for 

experts. 

 

Table 13. Correctness, difficulty, and confidence for expertise level, compared to overall. 

Statistical significance highlighted in red. 

Condition 
Sample 

Size 
Correctness Difficulty Confidence 

Descriptive 
Average 

(  b) 

Standard 

Deviation 

% 

Correct  

Average 

[1=very 

easy] 

Standard 

Deviation 

Spearman 

(ρ) 

Average 

[5=very 

confident] 

Standard 

Deviation 

Spearman 

(ρ) 

Hazardous 

Waste 

Experts 

24 0.655 0.454 58.3% 2.4 1.2 -0.099 3.6 1.1 0.396 

Hazardous 

Waste  

Non-Experts 

220 0.626 0.449 56.4% 2.3 1.1 -0.121 4.1 0.9 0.279 

Overall 244 0.629  0.449 56.6% 2.3 1.1 -0.050 4.1 0.9 0.082 

Inferential t statistic p-value t statistic p-value  t-statistic p-value 

Experts vs. 

Non-Experts 
244 0.294 0.769 0.467 0.641 -2.723 0.007 

 

Experts and non-experts differed substantially in their interaction strategies (Table 

14). There was significant difference in overall extensiveness per page as not every expert 

used every operator for each decision (t=-2.942, p=0.042), and there was a significant 

difference in the individual application of each operator: pan (t=-18.165, p=5.488x10
-9

), 

zoom (t=-8.209, p=1.801x10
-5

), retrieve (t=-8.518, p=6.094x10
-5

), overlay (t=-19.030, 

p=1.361x10
-6

), and filter (t=-4.110, p=0.015). Thus, experts and non-experts used very 

different interaction strategies to make their decisions.  

Differences between expert and non-expert interactions clarify the relative utility of 

the overlay-focused and retrieve-focused interaction strategies discussed in Section 4.2. As 



60 

 

reported above, participants using the constrained, retrieve-focused strategy performed better 

than participants using the flexible, overlay-focused strategy. However, experts more 

extensively made use of overlay than non-experts (100.0% versus 80.2%), but less extensive 

use of retrieve (83.3% versus 92.3%). Because there was no significant difference in 

correctness between conditions of expertise—with experts returning slightly more correct 

decisions—this suggests that the overlay strategy was not universally suboptimal, but rather 

required a degree of domain expertise to use effectively. One hypothesis is that experts more 

easily interpreted the overlay symbols, enabling them to review one criterion (attribute) 

across outcomes (sites), whereas non-experts relied on non-map text contained in the 

retrieval pop-ups, presenting information for one outcome (site) across all criteria 

(attributes). Experts also more extensively zoomed (37.5% versus 31.4%) and filtered (41.7% 

versus 31.3%) compared to non-experts, suggesting greater application of Shneiderman’s 

(1996) information seeking mantra on which the complex interface design was based. 

Interestingly, experts more extensively panned compared to non-experts (83.3% versus 

76.8%), an indication there may have been more moments of confusion on average for 

experts given the overlay-focused strategy. 
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Table 14. Extensiveness and frequency of operators used, separated by expertise level. 

*Indicates operators provided in only the complex interface condition; see Section 4.2 for 

further details. Statistical significance between expertise levels highlighted in red. 

Operator Sample 

Size 

Extensiveness Frequency 

Descriptive Total Percentage Total Avg per 

Decision 

Standard 

Deviation 

Hazardous Waste Experts 

Retrieve 24 20 / 24 83.3 346 14.42 23.51 

Pan 24 20 / 24 83.3 174 7.25 15.27 

Overlay* 12 12 / 12 100 114 9.50 13.10 

Zoom 24  9 / 24 37.5 34 1.42 4.06 

Filter* 12 5 / 12 41.7 41 3.42 8.96 

Overall 24 24 / 24 100 709 29.54 20.65 

Hazardous Waste Non-Experts 

Retrieve 220 203 / 220 92.3 2,810 12.77 106.26 

Pan 220 169 / 220 76.8 1,238 5.63 75.77 

Overlay* 96 77 / 96 80.2 550 5.73 47.19 

Zoom 220 69 / 220 31.4 300 1.36 19.52 

Filter* 96 30 / 96 31.3 293 3.05 31.12 

Overall 220 219 / 220 99.5 5,191 23.60 136.35 

Total 244 243/244 99.6% 5,900 24.18 155.45 

Inferential t statistic p-value t statistic p-value 

Experts vs. 

Non-Experts 

244 -2.942 0.042 -1.873 0.134 

Retrieve 244 -8.518 6.094x10
-5

 8.005 4.347x10
-5

 

Pan 244 -18.165 5.488x10
-9

 -4.867 0.0002 

Overlay* 108 -19.030 1.361x10
-6

 -4.451 0.021 

Zoom 244 -8.209 1.801x10
-5

 -4.718 0.0003 

Filter* 108 -4.110 0.015 -3.891 0.030 

 

Analysis of interaction frequency further enriched differences in interaction strategies 

(Figure 12). Overall frequency between experts and non-experts was not significantly 

different (t=-1.873, p=0.134), but individual application of each operator differed 
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significantly between experts and non-experts: pan (t=-4.867, p=0.0002), zoom (t=-4.718, 

p=0.0003), retrieve (t=-8.005, p=4.347x10
-5

), overlay (t=-4.451 p=0.021), and filter (t=-

3.891, p=0.030). As with extensiveness, experts more frequently used overlay than non-

experts (9.50 times on average versus 5.73 times), further suggesting that overlay required 

greater domain expertise for effective use. Interestingly, experts more frequently used both 

retrieve (14.42 versus 12.77 times) and pan (7.25 versus 5.63). Retrieve and pan are the two 

operators that either imply careful attention to or utter confusion with an interactive map (see 

Section 2.1), depending on the interaction context. Because experts applied retrieve and pan 

more frequently than non-experts without impeding decision correctness, this signal indicates 

a deeper, more attentive engagement with the decision by experts compared to their non-

expert counterparts. It also suggests that the more extensive use of panning by experts 

reported above has more to do with being careful rather than confused. The margins between 

expert and non-expert were smaller for zoom (1.42 versus 1.36) and filter (3.42 versus 3.05), 

although still significant due to the wide variation in operator use by non-experts. This 

perhaps indicates purposeful application of zoom and filter to support Shneiderman’s 

information seeking mantra by experts, but random misuse of zoom and filter by non-experts. 
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Figure 12. Average frequency of operator usage between hazardous waste experts and non-

experts. 
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CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS 

5.1 Conclusions 

 The goal of this research was to determine the effect of cartographic interface 

complexity, geographic decision complexity, and user expertise on map-based decision 

making to better design cartographic decision making products. This was achieved through 

surveying n=122 participants using a map-based survey emphasizing environmental justice 

issues in the North American hazardous waste trade as a case study. Overall, there was no 

difference in correctness between the Ohio map and the Texas map, as well as between the 

first decision completed and the second decision completed. There was, however, 

significance between difficulty and correctness and confidence and correctness for both the 

Texas map and the first decision completed. These results still indicate that location and 

order had minimal impact on the decisions. Also, 243/244 (99.6%) participants interacted 

with the maps, indicating that the example training map at the beginning of the survey was 

successful at encouraging participants to interact with the map. Participants also did not use 

each operator evenly, and the distribution of operators did not align with Shneiderman’s 

information seeking mantra in which zoom and filter are necessary to transition from the 

initial view to the detailed view (Shneiderman 1996). Further, participants did not filter 

excessively, which is a sign they did not default to Shneiderman’s mantra and does not align 

with the findings of Roth and MacEachren (2016). In particular, participants commented that 

pan and zoom were not helpful for the decisions, confirming the finding of uneven operator 

usage. Participants may have skipped the information seeking stage of decision making and 

went right to the sensemaking stage because they were given the problem; they did not have 
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to find it (Pirolli and Card 2005). This explains why there was limited evidence of 

Shneiderman’s (1996) information seeking mantra (i.e. unevenness) in the interaction logs.  

The cartographic interface complexity results showed significance in geographic 

decision correctness between the simple and complex conditions. The simple condition 

resulted in higher correctness scores, which could be attributed to the fact that participants 

were able to view multiple decision criteria for one decision outcome with the simple map 

versus viewing multiple decision outcomes for one decision criterion for the complex map. 

This also suggests that geographic decision making may be more successful at the local level, 

rather than a broad overview level. Further, the participants who completed the simple 

interface condition identified that the decision was easier and had more confidence in their 

decisions than those who had the complex interface condition. Accordingly, users of 

interactive maps with the scope of the complex condition may result in an inability to act, not 

because the decision is untenable, but because the complexity of the interface makes the 

decision seem untenable. Participants who were confident in their answers tended to be more 

correct with both the simple and complex map. This indicates that the complex map appeared 

more difficult, although the decision was no different.  

Regarding how users interacted, retrieve was used by all participants using the simple 

map, an expectation given the simple basemap without labels. The frequent use of retrieve, 

however, also indicates a deeper engagement with the range of information provided on 

environmental justice issues: it is clear that participants did not base their decisions solely on 

the  circle size to come to their decision. This aligns with previous findings that retrieve can 

be applied successfully (Andrienko et al. 2002) and can be used to confirm findings (Davies 
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1998, Roth and MacEachren 2016). Retrieve was used significantly less for those with the 

complex interface complexity indicating that they used filter and overlay when provided. 

Because the simple complexity condition had greater correctness scores than the complex 

condition, filter and overlay were not helpful in decisions. The limited use of pan and zoom 

was explained by participant feedback. Tolochko (2016) identifies that panning and zooming 

are paired for multiscale maps. Since zoom was not applied often, panning was not a helpful 

indicator of performance, and instead may suggest the need to view offscreen features on 

smaller screen devices. Further, two different interaction strategies were discovered. 

Participants using the simple map used a retrieve-based strategy, while participants using the 

complex map used an overlay-based strategy which resulted in lower correctness. Therefore, 

for a general audience, toggling overlays may be ineffective. Without the necessary domain 

expertise (see below), participants tended to make use of text materials (as pop-ups) rather 

than overlays. The retrieve interaction strategy was the more successful interaction strategy 

in this study, so excessive retrieve did not seem like a breakdown of information seeking, as 

suggested by Roth and MacEachren (2016). Also, this strategy relied heavily on interpreting 

non-visual text, which does not align with Keehner et al. (2008) who found that relying on 

finding the right visual (i.e., map view) is essential for spatial tasks. 

The geographic decision complexity results revealed that there was no difference in 

correctness between the simple and complex decision complexities, which agrees with the 

findings from Crossland et al. (1995) and Jankowski and Nyerges (2001), but disagrees with 

Jelokhani-Niaraki and Malczewski (2015), although the complex condition had a higher 

percent of correct decisions. This could be due to the complex criteria signaling the 
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participants to use those criteria to answer the decision, leading to the correct decision where 

the simple condition led participants to choose a single criterion. The bias towards a single 

criterion in the simple condition was supported by the qualitative feedback. This finding goes 

against distributed cognition literature where the SDSS tool (i.e., the map) takes on part of 

the decision-making load so participants can consider all criteria (Crossland et al. 1995, 

Coutinho-Rodrigues et al. 1997, Jankowski et al. 2001, MacEachren et al. 2004). There was, 

however, significance between correctness and difficulty for the simple decision complexity. 

Those who rated the task as easier tended to be closer to the correct ranking. The same trend 

was true for correctness and confidence for both the simple and complex decision conditions. 

The more confident the participant was, the more correct they tended to be. 

There was no significance in operator extensiveness and frequency between the 

simple and complex decision complexities overall or between individual operators, meaning 

decision complexity was not a factor in geographic decision correctness; the interface to the 

map was the influencing factor.  

There were n=12 hazardous waste experts who took part in this study (10% of total 

sample). Surprisingly, the non-experts were more confident in their answers, which can be 

attributed to the fact that non-experts never had to act before, where experts have in the past, 

giving them a better sense of consequences (Pirolli and Card 2005). As non-expert 

confidence increased, so too did their correctness.  

Expert extensiveness for pan, zoom, overlay, and filter was significantly more than 

non-experts. However, there was repeated use of operators by both experts and non-experts. 

Repeated panning is an indication of a lost user for non-experts and indication of a thorough 
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user for experts, which agrees with Roth and MacEachren (2016). Also, experts filtered more 

than non-experts, which aligns with the previous finding that filtering is a difficult operation 

to perform as non-experts relatively avoided filtering (MacEachren et al. 1998, Andrienko et 

al. 2002). Filtering is also an indication of distributed cognition. Experts filtered with 

purpose, indicating that they trusted the system to offload some of the work on to the map to 

make their decision-making process simpler (Jankowski et al. 2001, MacEachren et al. 2004). 

The number of non-experts who retrieved was greater than the number of experts who 

retrieved. The finding that non-experts jumped to retrieve to find insight worked well for this 

dataset, a brute force interaction strategy that paid off in the evaluated decisions given the 

relatively small number of decision outcomes. Both overlay and filter are likely to become 

more important as the number of decision criteria and outcomes grow, following 

Shneiderman’s (1996).  

Experts utilized all operators with greater frequency than non-experts, indicating that 

experts interacted more in general. Because there was no difference in correctness between 

experts and non-experts, interactivity did not hinder expert performance. This finding does 

not align with Mennecke et al. (2000) who found that interactivity decreased expert success. 

The increased interactivity by experts is also evidence that visual information seeking 

(Shneiderman 1996) was more successfully applied by experts than non-experts. All experts 

who had the overlay functionality chose to use overlay, further indicating that overlay was a 

popular decision strategy among participants, although it was not a helpful one. Again, 

overall, those with the complex map chose to overlay more, which resulted in a worse overall 

correctness. Experts with overlay chose to overlay, which resulted in no difference in 
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correctness between experts and non-experts. The finding that overlay showed mixed 

use/success results refines the finding from Roth and MacEachren (2016): expertise matters 

in how participants use overlay. In this study, non-experts used overlay minimally, and 

experts used overlay excessively. Finally, Ericsson and Lehmann (1996) found that experts 

think through a decision differently than non-experts, and the evidence found here in this 

study shows that experts also interact differently for the same decision problem. 

Overall, these results indicate that cartographic interface complexity was the main 

factor in decision correctness and overall geographic decision success. The interaction logs 

confirm that not all participants interacted in the same way, further indicating that 

cartographers need to design for the target user persona and decision scenario. Below, I 

provide design recommendations for future decision-making tools, which were derived from 

this research.  

 

5.2 Design Recommendations 

Multiple design recommendations were derived from this research study, which are 

summarized here for cartographers developing the decision-making tools and hazardous 

waste decision makers requesting/using the tools: 

 

Cartographers 

Overall 

The complexity of the decision did not matter in this study, so map design is key for 

developing successful decision-making tools:  



70 

 

 Create an interface that is easy to use. Participant confidence decreased and perceived 

decision difficulty increased with increased interactive scope and flexibility, so a 

clean interface without complicated controls is best for relatively concrete decision 

making. 

 Include retrieve no matter the complexity level. Participants retrieved heavily and it 

was found to be the most successful interaction strategy. Given the reliance on 

retrieve, including some map labels for vector features on web maps also may be 

advisable, particularly for features interacted with repeatedly. 

 Include pan and zoom if the decision takes place at multiple scales or if there is 

initial, enabling work that needs to be completed by the user. Implement pan even if 

zooming may not be required due to variability in screen sizes.  

 Provide data on multiple criteria for each outcome (site). Participant success was 

greater when viewing multiple attributes for one hazardous waste facility at a time. 

 

The geographic decisions in this research were developed using a case study of 

environmental justice issues in the North American hazardous waste trade. The maps showed 

hazardous waste facilities as proportional symbols, sized based on amount of waste imported 

from Canada and/or Mexico. Participants were asked to make regulation and management 

decisions by analyzing social and environmental criteria at the specific sites. It was found 

here that hazardous waste experts and non-experts interacted differently for the geographic 

decisions, so cartographers need to cater to user differences: 
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Non-Experts 

 Provide non-experts with the ability to retrieve details through an information 

window or pop-up. This gives them the information needed to come to a decision 

without overwhelming them with problem details on a topic they are not domain 

experts on. Non-experts tend to visualize all criteria for one outcome at a time, which 

is possible through retrieving details from a pop-up or informational panel.   

 Instead of providing non-experts shaded units to view (as was done in the overlays in 

this study), supply them with text for important attributes in the pop-ups (as was done 

in this study). 

 Use a minimalist approach when designing for non-experts. Only supply the 

functionality needed so that they can make a decision quickly and accurately. A 

simple “slippy” map may be all that is needed for non-expert decision makers. 

Experts 

 Provide experts with the ability to filter datasets. Experts understand the importance 

of narrowing the data displayed for the given decision, and they know how to sift out 

unnecessary information. Experts will filter purposefully.  

 Provide experts with the ability to overlay additional datasets. Experts find value in 

visualizing one criterion for multiple outcomes when assessing the scope of the 

decision and will apply overlays frequently.  

 Use an increased interactivity approach, overall, for experts. They have the domain 

knowledge needed to evaluate all available factors, while using the tool to the full 

extent as a cognitive offload.  
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Decision Makers 

Every geographic decision is different, with different levels of consequence if the wrong 

decision is made. Negative consequences for the hazardous waste trade case study include 

harm to the environment or people near the hazardous waste facilities. Consider the 

following when requesting decision-making tools from cartographers:  

 Know the scale of analysis for the decision. Panning and zooming are not effective if 

the data is only at one scale. 

 With regards to Shneiderman’s information seeking mantra, “information” seeking 

does not equal “decision” seeking, so zoom and filter may not be necessary for every 

geographic decision, though they may be valuable for other applications. Consider the 

size of the dataset when requesting a decision-making tool. Retrieve may be 

ineffective for larger datasets, where filter will be helpful for narrowing the dataset. 

For example, filtering is typically more important for datasets larger and decisions 

more complex than the those used in this study. 

 Decision making for environmental justice concerns were better supported by an 

interactive map when viewed at the site level. Consider the scope of analysis when 

requesting decision-making tools, as aggregated overviews may be inappropriate and 

even misleading.   

 Finally, let the tool do the work it was designed to do. The tool is designed to offload 

the work from the decision maker to the system, so utilize the full extent of the tool 

when making decisions. 

 



73 

 

5.3 Limitations and Future Directions 

There were several limitations to this research, discussed here, all with potential for 

future research. One limitation was that cartographic interface scope was only considered in 

this research, as it is known to have a greater impact on interface complexity than interface 

freedom. A future direction of this research would be to examine interface freedom to see if 

this is indeed the case for this decision-making example, as well as others. Further, 

geographic decision criteria were only considered in this research, not the number of 

outcomes (i.e., hazardous waste facility sites). A future direction of this research would be to 

vary the decision outcomes for this hazardous waste trade example, and other decision-

making tasks. Specific future research questions involving interface and decision complexity 

include: 

 Does cartographic interface freedom influence the success of geographic decision 

making? If so, how? 

 Do geographic decision outcomes influence the success of cartographic interface 

effectiveness for decision making? If so, how? 

 What is the effect of more complex decisions? When do users reach the “channel 

capacity” Miller (1956:2) and become confused? Do interactive maps increase the 

time it takes to reach that channel capacity? 

 What strategies do we use for promoting learnability of general interfaces that we can 

apply to expert (more complex) interfaces? 
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Another limitation to this research was the MapStudy framework used to test the 

interactive maps. This study apparatus is still in development with new features currently 

being added. A future direction includes creating a MapStudy interface with small multiples 

so participants would be able to see multiple overlays at once, interaction logging that details 

if a participant zoomed in or out and which overlays are toggled on/off, and integrating D3 

(Data Driven Documents) into the MapStudy framework to allow projection changes and 

dynamic labeling. Further, it is important to consider other map representations besides 

choropleth maps. It would be beneficial to design shaded proportional symbols, for example, 

to understand the effect of representation on cartographic interaction. Potential future map 

design and interface layout questions include:  

 Does the inclusion of small multiples versus toggling overlays impact geographic 

decision making? If so, how? 

 Does toggling overlays versus adding multiple overlays at once impact geographic 

decision making? If so, how? 

 Does a D3.js map support decision making differently than a Leaflet.js map? If so, 

how? 

 How does cartographic representation impact cartographic interaction for geographic 

decision making?  

 What is the decision-making process for decisions made with interactive maps? What 

is the impact of the sequence of interactions performed?  
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Finally, future research is needed to learn more about the specific decision context—

environmental justice concerns regarding the transnational trade of hazard waste. Future 

studies should be conducted in a realistic setting to provide deeper insight into the decision-

making process, sequence of interactions performed, and influences of screen real estate and 

other technological constraint. However, as with this study, deeper investigation is limited by 

the number of experts, especially those who currently work in the hazardous waste industry. 

Accordingly, future research using qualitative methods is encouraged, such as participant 

observation or talk-aloud studies. Such research may help expose important regional, 

geographic variation in the management and regulation of hazardous waste. Future decision-

making research questions, applicable to the hazardous waste trade include:  

 Do map users have a better geographic awareness of Texas? If so, why? What about 

other states? 

 Is decision making improved when the map is designed to focus on specific sites 

instead of a broad region? How so? 

 What is the impact of a detailed look versus an overview look on geographic decision 

making? What about transitioning between scales? Is this dependent on the user’s 

expertise with the domain topic? With interactive maps?  

 

MacEachren (2015) identified that additional empirical research is a key next step to 

understanding the use of interactive maps as decision-making aids. Further, this lack of 

research on cartographic interface design, particularly in the decision-making context, 

supports the need for this research study conducted and reported here. Interface complexity 
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and decision complexity are two factors that may hinder any geographic decision supported 

by a map, but they may also contribute to decision success. It is only through research, like 

this study, that we can understand the impact of interface and decision complexity on 

potential users and design interfaces that positively support decision making.  

This study found that interface complexity had a greater impact on participants’ 

success than decision complexity. It also found that experts interact differently than non-

experts further demonstrating the need for cartographers to design maps for their audience 

and anticipated use cases. Geographic decision making is a difficult, yet necessary process 

with potentially negative consequences if the wrong decision is made. It is my hope that 

these findings stimulate continued research within the domain of decision making, so that 

maps can aid in the decision-making process. I further believe that the findings of this study 

prove to be a viable contribution to decision science and the study of cartographic 

interaction.  
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APPENDIX A 

1.  How much contact have you had with professionals in the hazardous waste industry? 

2. In general, in your experience talking with those people, what aspects of the hazardous 

waste trade seemed important to them? What do they focus on for their job? Trends? 

3. Our project is very spatial. Are hazardous waste experts concerned with the geography of 

waste? At what scale? What time periods? 

4. What decisions do you suspect hazardous waste experts have to make? What decision 

tasks could be made using our data? 

5. What factors go into those decisions? How many factors? How many sites? 

6. Which factors are most important? Please rank the importance. 

7. Do you think the following decisions are valid: 

● Site Selection-where to open a new hazardous waste site in Ohio 

● Site Selection-where to close a hazardous waste site in Ohio 

● Transportation routes-determine acceptable transportation route 

● Mitigate contamination-plan for a community 

8. Anything else? 
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APPENDIX B 

One full map survey example is shown here first, followed by the other maps tested in this 

study. The maps are shown at various zoom levels with various features activated.  
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