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What is Geovisual analytics

* Visual analytics

— "the science of analytical reasoning facilitated by interactive
visual interfaces." (Thomas 2005).

— Proposed by National Visual Analytic Center (NVAC), National
Institute of Health (NIH), and NSF

— Draws upon methods from multiple disciplines: visualization,
statistics, data mining, cognition science...

— Offers new perspectives, approaches for addressing complex
questions.

* Geovisual analytics

— focus on solving problems in geographic context



This research

*This research combines visual, statistical, and
computational methods to indentify spatial disease
clusters at multiple scales.

e Study on U.S. cervical cancer mortality 2000-2004.



U.S. Cervical Cancer Mortality Ratio _
All races, 2000-2004 l. Background

Standardized Mortality Ratio (SMR)

* Measure relative risk: SMR = observed deaths/expected deaths
* In theory, a ratio value of 1.0 means normal risk.

* High risk
— ratio >1.2
— orange

* Normal risk

—ratio = 0.8-1.2
— white

3
4

g *
X
\J 1)
)

4
‘e

‘. ro, )
£

* Low risk
—ratio<0.8 , . ,
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— blue | 1.20 -1.59 (n=398) -
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- 0.79 (n=576)
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Scan Statistics

* Introduced by Naus(1965). GAM by Openshaw et.al
(1988). Rushton and Lolonis (1996).

* Detect a local excess or deficiency of events (e.g.
death rate due to a disease).

* Employ a moving °
o, .- 17, ¢ ° o ©
window”, collect cases Y
least consistent with null .
hypothesis (e.g. constant QP ©
risk of a disease). The cases s | ©°

are most likely clusters.



Scale in spatial cluster identification

lll. Scale effects
» Geographic scale - size or spatial extent of study area [McMaster, Goodchild 2004].

» Cluster scale - the size limitation of spatial clusters.
* Finding appropriate scales is not easy. Where to ‘cut’?

SMR
1.60 - 37.37 (n=682)
1.20 - 1.59 (n=398)

" 0.80-1.19 (n=598)
0.40 - 0.79 (n=576)
0.00 - 0.39 (n=851)




Scale sensitivity

e Spatial cluster detection is sensitive to scale choices
— at large scales, heterogeneous clusters are often reported.
— at small scales, clusters are unstable in size and location.

* Scale critically affects spatial cluster identification.

* This research focuses on addressing the scale sensitivity
problem.



Scale parameter in scan statistic method

Explicitly, set the cluster scale as the maximum
circle size (i.e., diameter) of a cluster.

Implicitly, set the cluster scale as the
percentage of population at risk.

E.g., ascale of 50% of population means a cluster
can contain at most 50% of total population at risk.

This way Is often seen in studies of public health,
and adopted In this research.




Heterogeneous clusters reported at larg

lll. Scale effects

 Heterogeneous clusters
— A high-risk cluster containing considerable number of low risk locations.

e Clusters reported by SaTScan

578

- two clusters are reported at scale of 50%
- they are heterogeneous, less informative
- homogeneous regions in the black circles
are more interesting.

-37.37 (n=682)
-1.59 (n=398)
-1.19 (n=598)
-0.79 (n=576)
-0.39 (n=851)

Reduce the scale to 40% of population

1.60 - 37.37 (n=682)
- three clusters are reported | 120-1.50 (n=3sg)

|| 0.80-1.19 (n=598)

- one is much more homogeneous 040 -0.79 (n=576)

0.00 - 0.39 (n=851)




Unstable clusters at small scales ..

o With smaller scales, some clusters are unstable In
size and location.
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Multi-scale analysis to confound scale sensitivity

* |nstead of searching for a single “optimized”
scale, we proposed to run multiple scans at
systematically-selected scales.

* Try to find agreement (i.e., high risk locations)
among the results produced at different scales.

* High risk locations reported by more results are
more reliable.



Reliability Visualization

* Reliability (as high risk )

R=C/S
| &
A 20 o G e == S B N e = WS et .
R - reliability score for a G - T R et e
C - count that a unit is T e NGRS
identified as high risk * N 7/d : N
: LU M A
- Reliability
* Reliable clusters 098089 (h8) :
0.63 - 0.75 (n=147)
— Stable across scales 051062 (n=83)
0.26 - 0.37 (n=84)
— dark-green color 8385 ey

- ((3;-‘9_-’ C'éJSt_er IB’ D,E F Summary of 8 scans with 8 scale values: 4%, 6%, 8%, 10%,
InTed circles 20%, 30%, 40%, 50%

* Note: reliability is different from validity, the later indicates if a cluster is a true high risk region.



Reliability visualization alleviate scale

 Compare two reliability maps that were produced at different set of 8 scales.

« Similar reliable, high risk clusters ( in red circles) are reported by both maps.

* Therefore, the results produced by a reliability map are less sensitive to the
scaling choices.

Reliability
0. 88 1. 00 (n=341)

Ty

8 scales. 4%, 6%, 8%, 10%, 20%, 30%, 40%, 50% | raamy

0.88 - 1.00 (n 362)

8 scales: 5%, 7%, 9%, 11%, 19%, 29%, 39%, 49%



Reliability visualization extracts hom

High reliable clusters are more homogeneously in high risk

The SMR map below displays
reliable, high risk clusters are in
black circles

1.60 - 37.37 (n=682) A\
1.20 - 1.59 (n=398)
0.80 - 1.19 (n=598)
0.40 - 0.79 (n=576)
0.00 - 0.39 (n=851)




Concurrently visualize SMR and reliability score

Reliable, high risk regions of US cervical cancer mortality 2000-2004: southern CA, New
Mexico, NV, Deep South, Appalachia, south Carolina, Chicago area.

reliable unreliable

>1.50 hlgh
14 1.01-1.50
5 0.51-1.00
low
0.0

1.0

Reliability Score



Compare to simple rate mapping

SMR + reliability

unreliable

high

N low
1.0 0.0

- Reliability Score .

37.37 (n=682)

1.20 - 1.59 (n=398) ﬂ

0.80 - 1.19 (n=598) }
0.79 (n=576)
0.39 (n=851)

SMR map



Visual Inquiry Toolkit (VIT)

* VIT is coupled with spatial scan statistic to present clusters on geographic maps.
* Allow interactive exploration of spatial clusters at multiple scales

B Visual Inquiry Toolkit —E X
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Conclusion

* Asingle “optimized” scale is hardly found, multi-scale
cluster analysis is necessary.

e Reliability visualization can alleviate scale sensitivity of
spatial scan statistics methods

* See more in the paper:

INTERNATIONAL JOURNAL OF
HEALTH GEOGRAPHICS

BioMed Central home | Journals A-Z |

Home | Browse articles | Search | Wehblinks | Submit article | My IHG | shout 1IHG

Top Methodology Highly accessed

sestract - GeoVisual analytics to enhance spatial scan statistic
eackrouna | iNtErpretation: an analysis of U.S. cervical cancer mortality

Fesultz and | Jin Chent B4, Robert E Rothl B, Adam T Naito! B4, Eugene 1 Lengerichz B4 and Alan M MacEachren B
discussion | 1 GeOVISTA Center, Department of Geography, the Pennsylvania State University, University Park, USa
2 Department of Public Health Sciences, the Pennsylvania State University, Hershey, USa

Conclusion . . .
B4 author email B corresponding author email

Methods ) . .
International Journal of Health Geographics 2008, 7:57  doi: 10.11856/1476-072K-7-57

Abbreviations The electronic version of this article is the complete one and can be found online at: hitp: Afwww.ij-healthgeographics.com

focontent/7/ 1757

Competing interests
. Received: 29 July 2008

ff«uthors accepted: 7 Movember 2008

contributions | pyuklished: 7 Movember 2003



Thank you very much for your attention. .

* Related information can be found at:
http://www.personal.psu.edu/users/j/x/jxc93/
( or simply google: Jin CHEN PSU)

e Questions?


http://www.personal.psu.edu/users/j/x/jxc93/

