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What is Geovisual analytics 

• Visual analytics
– "the science of analytical reasoning facilitated by interactive 

visual interfaces." (Thomas 2005).

– Proposed by National Visual Analytic Center (NVAC), National 
Institute of Health (NIH), and NSF

– Draws upon methods from multiple disciplines:  visualization, 
statistics, data mining, cognition science...

– Offers new perspectives, approaches for addressing complex 
questions. 

• Geovisual analytics 
– focus on solving problems in geographic context

I. Background



This research

•This research combines visual, statistical, and 
computational methods to indentify spatial disease 
clusters at multiple scales.

• Study on U.S. cervical cancer mortality 2000-2004.

I. Background



U.S. Cervical Cancer Mortality Ratio
All races, 2000-2004 I. Background

Standardized Mortality Ratio (SMR)  

 Measure relative risk:  SMR = observed deaths/expected deaths

 In theory, a ratio value of 1.0 means normal risk. 

• High risk

– ratio >1.2

– orange 

• Normal risk

– ratio = 0.8-1.2 

– white 

• Low risk

– ratio < 0.8

– blue



Scan Statistics

• Introduced by Naus(1965). GAM  by Openshaw et.al 
(1988). Rushton and Lolonis (1996).

• Detect a local excess or deficiency of events (e.g. 
death rate due to a disease).

• Employ a moving 
“window”,  collect cases 
least consistent with null 
hypothesis (e.g. constant 
risk of a disease). The cases 
are most likely clusters.



Scale in spatial cluster identification

 Geographic scale - size or spatial extent of study area [McMaster, Goodchild 2004]. 

 Cluster scale - the size limitation of spatial clusters.

 Finding appropriate scales is not easy. Where to ‘cut’?

III.  Scale effects



Scale sensitivity

• Spatial cluster detection is sensitive to scale choices

– at large scales, heterogeneous clusters are often reported.

– at small scales, clusters are unstable in size and location.

• Scale critically affects spatial cluster identification.

• This research focuses on addressing the scale sensitivity 
problem.

III.  Scale effects



Scale parameter in scan statistic method

Explicitly, set the cluster scale as the maximum

circle size (i.e., diameter) of a cluster.

 Implicitly, set the cluster scale  as the 

percentage of population at risk. 

 E.g.,  a scale of 50% of population means a cluster 

can contain at most 50% of total population at risk. 

 This way is often seen in studies of public health, 

and adopted in this research.

III.  Scale effects



Heterogeneous clusters reported at large scales

• Heterogeneous clusters 

– A high-risk cluster containing considerable number of low risk locations.

• Clusters reported by SaTScan

Reduce the scale to 40% of population
- three clusters are reported
- one is much more homogeneous

- two clusters are reported at scale of 50%
- they are heterogeneous, less informative
- homogeneous regions in the black circles 
are  more interesting. 

III.  Scale effects



Unstable clusters at small scales

• With smaller scales, some clusters are unstable in 
size and location.

20% 10%

8% 4%

III.  Scale effects



Multi-scale analysis to confound scale sensitivity

• Instead of searching for a single “optimized” 
scale, we proposed to run multiple scans at 
systematically-selected scales.

• Try to find agreement (i.e., high risk locations) 
among the results produced at different scales.

• High risk locations reported by more results are 
more reliable.



Reliability Visualization

• Reliability ( as high risk )

R = C / S

R - reliability score for a 
unit (e.g., a county)

S - total number of scans

C - count that a unit is 
identified as high risk

• Reliable clusters
– Stable across scales

– dark-green color

– e.g.,  cluster  B, D, E, F, 
G in red circles

 Note: reliability is different from validity, the later indicates if a cluster is a true high risk region. 

Summary of 8 scans with 8 scale values:  4%, 6%, 8%, 10%, 
20%, 30%, 40%, 50%
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Reliability visualization alleviate scale sensitivity 

8 scales: 5%, 7%, 9%, 11%, 19%, 29%, 39%, 49%

8 scales: 4%, 6%, 8%, 10%, 20%, 30%, 40%, 50%

• Compare two reliability maps that were produced at different set of 8 scales.
• Similar reliable, high risk clusters ( in red circles) are reported by both maps.
• Therefore, the results produced by a reliability map are less sensitive to the 

scaling choices.
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Reliability visualization extracts homogenous clusters

High reliable clusters are more homogeneously in high risk

The SMR map  below displays 
reliable, high risk clusters are in 
black circles

4%, 6%, 8%, 10%, 20%, 30%, 40%, 50%
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Concurrently visualize SMR and reliability score

Reliable, high risk regions of US cervical cancer mortality 2000-2004:  southern CA, New 
Mexico, NV, Deep South, Appalachia,  south Carolina, Chicago area.



Compare to simple rate mapping

SMR + reliability

SMR map
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Visual Inquiry Toolkit (VIT)

• VIT is coupled with spatial scan statistic to present clusters on geographic maps.
• Allow interactive exploration of spatial clusters at multiple scales

III. Results

A: a list of results reported
at 50 scales. B:   clusters reported

a scale.

C:   locations with a cluster.



Conclusion

• A single “optimized” scale is hardly found, multi-scale
cluster analysis is necessary. 

• Reliability visualization can alleviate scale sensitivity of 
spatial scan statistics methods 

• See more in the paper:



Thank you very much for your attention.

• Related information can be found at: 
http://www.personal.psu.edu/users/j/x/jxc93/
( or simply google: Jin CHEN PSU) 

• Questions?

http://www.personal.psu.edu/users/j/x/jxc93/

