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    “Circumnavigate this body 
    Of wonder and uncertainty 
    Armed with every precious failure 
    And amateur cartography” 
 
     -taken from the song “Aside” by the Weakerthans 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 1:  Introduction 

 

 Despite the astounding advancements in the GISciences over the past several 

decades, no geospatial dataset will ever be perfect.  The certainty of geospatial data is 

compromised by imprecise or imperfect collection techniques, improper spatial and 

temporal resolutions, incompletion due to time and cost constraints, and an imperfect 

understanding of the phenomenon being measured, among other issues.  Slight 

uncertainties propagate as the geospatial data is manipulated, transformed, and combined 

with other uncertain data, providing less than ideal conditions for decision making and 

data exploration.  It is argued that “uncertainty is an intrinsic property of knowledge and 

not just a flaw that needs to be excised” (Couclelis 2003).  As it is impossible to eliminate 

all uncertainty from a dataset, it is important to understand the nature of such uncertainty, 

how it aggregates, and how it influences the decisions made based off of graphical 

representations of the dataset in map form.   

 A central difficulty in the understanding and representation of geospatial 

uncertainty is the many forms that uncertainty can take.  It was recognized as early as 

Sinton (1978) that uncertainty has multiple components which need to be treated 

differently during measurement and representation.  However, uncertainties derived from 

positional, attribute, or temporal imperfections may be easier to conceptualize, measure, 

and represent graphically than uncertainties produced by the theoretical model of the 

measured phenomenon, the credibility of the data provider, or the dependence of one data 

source on other data sources.  A typology first offered by Thomson et al. (2005), and 

recently extended by MacEachren et al. (2005), included nine different categories of 
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uncertainty in geospatial data: 1) accuracy/error, 2) precision, 3) consistency, 4) 

completeness, 5) lineage, 6) currency, 7) credibility, 8) subjectivity, and 9) 

interrelatedness1. 

 Investigating typological differences is necessary due to the potential impact on 

decisions made based off of graphical representations of this geospatial data in map form.  

Research concerning the influence of uncertain representations on decision making has 

already been conducted in the GISciences using such domains as soil science (Fisher 

1993), water quality (Howard and MacEachren 1996), climatology (Pang 2001), 

environmental policy (Cliburn et al. 2002), historical GIS (Plewe 2002), oceanography 

(Djurcilov et al. 2002), and urban planning (Aerts et al. 2003a), among many others, with 

the end goal of generalizability to all domains that use geospatial data for support of 

making decisions.  Determining if different types of uncertainty influence decision 

making differently (and in what ways) can help inform how the data is represented 

graphically, providing more effective representations of the phenomenon to decision 

makers.   

 This research involved the specific domain of floodplain mapping, a field where 

incorrect decisions based upon uncertain data can mean a loss of millions of dollars or 

even human lives.  Geospatial floodplain data contains all of the components of 

uncertainty discussed in the MacEachren et al. (2005) typology.  The inclusion of 

uncertainty representations aims to help decision makers safely place structures in the 

landscape as well as aid in assessing insurance rates based on the relative flood risk of 

existing structures, allowing insurance companies to charge high premiums only to those 

                                                 
1 These different types will be fully defined in Section 2.2.3 and in the glossary. 
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who rightfully carry the associated risk (helping the owner) while also reducing the 

frequency that companies are pinned with unexpected claims (helping the firm).   

 Adopting the MacEachren et al. (2005) typology, this research explored the way 

in which different types of uncertainty influence both the decisions that were made (i.e. 

the outcomes) as well as why these decisions were made (i.e. the processes).  The 

research aimed to answer the following questions2: 

 
(1)  Does graphically representing different types of uncertainties influence the decision 

that is made as well as the speed and confidence of this decision?   
 
(2)  Which type of uncertainty elicits particular decision responses, as well as the most 

immediate and confident decisions?  Which the least?  
 
(3)  How much of the variation in the decision outcome is explained by the expertise 

level of the decision maker or the decision difficulty? 
 
(4)  Which type of uncertainty is the most influential on the decision making process?  

Which is the least influential?   
 
(5)  Why is uncertainty used in decision making the way that it is? 
 
(6)  Is the MacEachren et al. (2005) typology a valid categorical model of geospatial data 

uncertainty?  Are there any categories to remove or new categories to add?    
 

To answer these questions, the research was divided into two stages: the first 

employing a quantitative online survey and the second employing a qualitative focus 

group.  The online survey was used to determine if different categories in the 

MacEachren et al. (2005) typology had any effect on decision making (Question #1 

above), and if so, which type of uncertainty elicited particular decision responses and 

how these types influenced the immediacy and confidence of the decision (Question #2 

above).  The survey also spoke to the importance of the expertise level of the decision 

                                                 
2 The italicized key terms are fully defined in Chapter 4 and in the glossary. 
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maker and the difficulty of the decision when making choices off of uncertainty data 

(Question #3 above).  The second stage of research, the group interviews, attempted to 

push the quantitative findings of the first stage and examined which of the uncertainties 

was most influential in making decisions (it may not be the same as the those that yield 

the most accurate and confident decisions) and why different uncertainties, when 

represented graphically, influenced the decision making process in different ways 

(Questions #4 and #5 above).  Finally, the second stage of the research investigated if the 

MacEachren et al. (2005) typology is a valid model for understanding and categorizing 

geospatial data uncertainty (Question #6 above).   
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CHAPTER 2 – Relevant Literature 

 

 The topic of uncertainty in geospatial data has drawn increasing attention in 

cartography and GIS over the past decade and a half due to its important role in decision 

making.  Much of the early research on uncertainty is complicated by vague terminology, 

where terms like error, quality, reliability and validity are defined in a way that only 

partially matches the modern usage of ‘uncertainty’ (Edwards and Nelson 2001).  

Illustrating this point, a core GIS text of the late 1990s, Principles of Geographical 

Information Systems, by Peter A. Burrough and Rachael A. McDonnell (1998), does not 

once mention the term uncertainty.  Discussion of uncertainty is provided briefly with 

every technique, often explained using the terms reliability and validity.  In contrast, the 

current core GIS text, Geographic Information Systems and Science by Longley and his 

colleagues (2005), reserves an entire chapter early in the text to explain the nature of 

uncertainty and related statistical measures to quantify uncertainty levels.  The 

presentation of this material so early on in the text (Chapter 6) allows the concepts to 

resonate throughout the rest of the material when specific spatial analysis techniques are 

introduced, serving as an overarching reminder that there are no perfect data or 

processing techniques.  There is a similar finding in the core cartography textbooks, as 

the current primary text, Thematic Cartography and Geographic Visualization by Slocum 

and his colleagues (2003), is the first major cartography text to include a full chapter on 

uncertainty.   

 Longley and his colleagues (2005) begin their definition of uncertainty as the 

inability to perfectly reconcile representations of the landscape with the actual reality of 
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the landscape.  In this respect, uncertainty is generated by any imperfect match between 

the collected or modeled data and the geographic phenomenon being measured.  Such a 

definition is easily confused with the well accepted definition of accuracy from 

Heuvelink (1998) as the difference between the reality and our representation of reality.  

One distinguishing aspect of the Longley et al. (2005) definition of uncertainty from the 

Heuvelink (1998) definition of accuracy is the inclusion of the “user” in measurement of 

uncertainty, stating that “uncertainty may thus be defined as a measure of the user’s 

understanding of the difference between the contents of a dataset, and the real phenomena 

that the data are believed to represent.”  To avoid confusion, the terms quality, reliability, 

and ambiguity will not be acknowledged individually and are assumed to be part of 

(although not synonymous with) the larger definition of uncertainty, following the 

recommendations from Longley et al. (2005).  

 Such a definition fits well with the departure about a decade ago from the 

communication model of cartography.  The communication model asserts that 

information is disseminated, or communicated, through the map objectively to the map 

user (Board 1967, Koláčný 1969).  Proper communication of the information meant that 

every map reader would receive the same message.  This model of communication was 

replaced by MacEachren’s (1995) cartographic model of representation.  In map 

representation, the mapmaker converts the world into a set of symbols, which are then 

placed on the map, and the map user reassembles these symbols to construct meaning.  

Rather than information being communicated through the map, it is reassembled by the 

individual, allowing past experiences and biases to influence the end message.  Such a 

user-centered model of cartography fits well with the Longley et al. (2005) definition of 
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uncertainty.  The investigator takes the position that the message is inextricably linked to 

both the data and interpreter and that uncertainties can arrive at both levels.   

 In description and support of the definition of uncertainty to include the user’s 

understanding, Longley et al. (2005) provides a schematic to conceptualize the four 

suggested levels in which our representation of the landscape can deviate from the real 

world.  The four described levels are: 1) conception (how a phenomenon is defined as a 

variable), 2) measurement and representation (how data on this variable is collected, 

organized, and stored), 3) analysis (how data is used to construct information), and 4) 

interpretation, validation, and exploration (how information is used to construct 

knowledge about the original phenomenon, retroactively informing and revising the 

initial two levels).  At each level, a filter is present that acts to remove direct 

correspondence between phenomenon and representation.  The Longley et al. (2005) 

conceptual schematic of uncertainty is provided in Figure-1.   

 

 

 

 

 

 

 

 

 

  

   

Figure-1: A conceptual 
schematic of uncertainty 
from Longley et al. (2005, 
p296).  This schematic 
illustrates the four levels in 
which uncertainty can enter 
the representation. 
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 This definition is controversial in that the uncertainty is no longer internal to the 

dataset.  By including the user’s interpretation of the data, perceptions and opinions 

external to the dataset itself are included as a mode in which the representation deviates 

from reality.  While much of the study on uncertainty is focused on the second stage, the 

measurement and representation of the phenomenon, the investigator felt it necessary to 

broaden the definition due to the emphasis of the researching questions on the decision 

making process.  This research adopts the Longley et al. (2005) definition of uncertainty, 

including the user (defined in the research as the decision maker) as an important aspect 

of the uncertainty. 

 

2.1  Graphic Representations of Uncertainty 

 Much of the work in cartography on the subject of uncertainty deals with finding 

ideal graphic representations for its depiction.  The first known cartographer to study the 

issue was J.K. Wright during the Second World War (McGranaghan 1993).  His early 

investigation into the certainty of map information led him to recommend the inclusion of 

certainty information using textual labels directly on the map called a ‘legend statement’ 

or having a split display with a smaller map of the same region to symbolize the certainty 

of the original data, called a ‘reliability diagram’.  The legend statement and reliability 

diagram are termed ‘traditional accuracy indicators’, and are characterized by the 

separation of data and its accompanying uncertainty into two displays (Edwards and 

Nelson 2001).  The naming of these representation techniques predates the widespread 

use of the term uncertainty, but are taken to mean such by the investigator.  Figure-2 

shows an example of both a legend statement and reliability diagram: 
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Figure-2: An example from Edwards and Nelson (2001, p21) of (a) the legend statement and (b) the 
reliability diagram.  Both of which are considered ‘traditional accuracy indicators’. 
 

Wright was also the first to suggest a form of integrated symbolization, what he termed 

the ‘broken contour’, where the same graphic symbol shows both the thematic data and 

the degree of uncertainty associated with it.  The location of the broken contour on the 

page represented the data surface itself and the value and texture of the line represented 

its certainty (Wright 1942).  Such broken line symbolization is still used to represent the 

positional uncertainty of fault lines and intermittent streams on geological and 

topographic maps respectively (Fisher 1993).   

 A common usage of Bertin’s (1983) set of visual variables (location, shape, size, 

color hue, color value, grain, and orientation) is for the symbolization of uncertainty.  

Manipulating these visual variables allows for an integrated representation of uncertainty 

on maps, as one variable can be used to represent the statistical data and a second used to 

represent the degree of uncertainty.  Such depictions have been termed ‘static verity 
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visualization’, as the use of multiple visual variables allows for the simultaneous 

depiction of the data and its uncertainty (Beard and Buttenfield 1991, MacEachren 1992, 

Pang et al. 1997, Kyriakidis 2003).  It was initially argued that the visual variables of 

color hue, color value, and texture (a variation of Bertin’s grain) were most appropriate 

for integrated representations (Davis and Keller 1997).   

 Since Morrison’s (1974) suggestion, color saturation (the third dimension of 

color, sometimes called ‘purity’) has been readily accepted as another basic graphic 

variable.  Saturation was initially triumphed as a good method for uncertainty 

representation, as it was theorized that brighter, more saturated colors showing highly 

certain data would draw the eye away from the duller, less saturated pastels showing low 

data certainty (MacEachren 1992, 1995).  Figure-3 gives an example of using saturation 

to represent uncertain information. 

 

 

Figure-3: An example from Brewer (1994) showing the use of color saturation to represent uncertain 
data.  Here, enumerations units with less certain data are given the same hue as their certain 
counterparts, but are less saturated. 
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Representing uncertainty with saturation allows the data itself to be integrated into the 

symbol using one of the other dimensions of color (color hue or color value).  However, 

empirical studies have shown that saturation is not effective in communicating 

uncertainty when a different dimension of color is used to represent the data, as the 

viewer conflates saturation with the other represented dimension of color, creating the 

appearance of only a single variable upon which to make decisions (Schweizer and 

Goodchild 1992, MacEachren 1998 et al., Drecki 2002).  Instead, color value and texture 

prove to be much more effective (Leitner and Buttenfield 2000).  Figure-4 shows an 

example of using texture to represent uncertain data. 

 

 

Figure-4: An example from MacEachren et al. (1998, p1552) using texture to represent uncertainty.  
Here, the hatching (a form of texture) is used to show enumeration units with uncertain data. 
 

MacEachren (1995) suggested the addition of crispness, resolution, and 

transparency to the list of visual variables.   These three variables, described together as 
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‘clarity’, deal specifically with the representation of uncertainty on integrated displays.  

Crispness uses a gradient fill (manipulating the visual variable color value) to represent 

the probable location of a linear edge when its exact position is uncertain.  With 

crispness, the probability of the edge position is higher where the gradient fill is darker.  

The variable crispness was renamed in MacEachren (1995) from the van der Wel (1994) 

usage of the term ‘focus’ to prevent mistaking it with the term ‘data focusing’, however 

the two terms are still used interchangeably in the literature (Edwards and Nelson 2001).  

Figure-5 provides an application of MacEachren’s visual variable crispness.  

 

 

Figure-5:  An example of MacEachren’s crispness to represent uncertainty, reprinted in Slocum et 
al. (2005, p421).  Here, color value is used to represent the uncertain location of the grits line. 
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 Resolution displays the spatial precision of the data and is typically (although not 

solely) applied in raster format.  When the uncertainly level is high, the spatial resolution 

is coarsened (using larger pixels), generalizing the data in a way that does not “over-sell” 

the certainty (MacEachren 1995).  Figure-6 provides an example of the use of resolution 

to represent uncertainty. 

 

 

Figure-6:  Two applications of the visual variable resolution, printed in MacEachren (1995, p277).  
Here, the pixilation of linework is varied depending on the certainty of the data.   
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 Finally, transparency (or ‘fog’ as it is sometimes termed) is a non-opaque overlay 

where the spatial data is covered in hopes to “obscure the map theme in proportion to the 

uncertainty” (MacEachren 1995).  Using this graphic variable, only highly certain areas 

are viewed with complete clarity.  Figure-7 provides an example of transparency. 

 

 
Figure-7:  An example from MacEachren (1995, p278) showing the use of the visual variable 
transparency to encode the level of certainty in the data.  Here, areas are overlaid with varying 
degrees of transparency to mask the linework when uncertain. 
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 Many other techniques have been developed to represent uncertainty on static 

maps, including realism by McGranaghan (1993), graphic scripts (Monmonier 1993), 

glyphs (Pang 2001, Djurcilov et al. 2002), and opacity (Drecki 2002), among others.  It is 

largely agreed, however, that dynamic visualization of uncertainty improves the user’s 

understanding of data certainty more so than static displays.  Animation was first used by 

Gershon (1992) as a way to represent positional uncertainty by framing through multiple 

realizations of the same linework.  Animation was used in a slightly different way by 

Fisher (1993) for soil mapping and land cover classification of remotely sensed imagery, 

with the probability of each pixel belonging to a particular class represented by the 

dynamic visual variable duration (i.e. the higher the probably of membership, the longer 

it would be the classified color onscreen).  The probabilities of each pixel classification 

were determined by the inclusion rate (the percentage of misclassified locations on the 

map when compared to ground truth).  Similar studies of animation for multiple 

realizations of the same image have been completed by Davis and Keller (1997), 

Ehlschlaeger et al. (1997), Bastin et al. (2002), Kyriakidis (2003), and Dooley and Lavin 

(2007).  Rather than animating each realization in a dynamic display, the ‘Monte Carlo’ 

method generates 500 to 1000 realizations, altering a single stochastic variable each time, 

and then quantifies the error among all images to generate a single static uncertainty 

display (Aerts et al. 2003b).  Mowrer (1997) argued that this method has a broad range of 

applications because it does not specify a particular data type or end use.  The Monte 

Carlo method of representing uncertainty has been implemented and applauded by 

numerous other studies (Lee et al. 1992, Dungan et al. 1993, Journel 1996, Fisher 1998, 

Heuvelink 1998, Kyriakidis et al. 1999).   
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 Interactive displays for the visualization of uncertainty can be separated into two 

categories: intrinsic and extrinsic approaches (MacEachren et al. 2005).  Intrinsic 

displays alter the symbolization used to depict the actual thematic data based on its 

centainty.  The idea of an intrinsic display was first suggested by Paradis and Beard 

(1994) with the development of a ‘data-quality filter’.  The ‘data-quality filter’ included 

three parameters: 1) the quality component (the type of uncertainty), 2) the quality 

component measurement, and 3) a threshold.  On selection of these parameters, the 

display is updated such that only the geographic entities with certainty in the chosen 

category above the chosen threshold are shown.  Howard and MacEachren (1996) 

implemented this concept, creating an interactive visualization tool called R-VIS 

(standing for reliability visualization) that allowed the focusing of interpolated data based 

on a user-defined certainty threshold.  The usages of ‘date quality’ and ‘reliability’ 

predate the blanket term uncertainty, but are taken to mean such by the investigator.  

Figure-8 shows a series of screenshots from the R-VIS software. 

 

 

 

 

 

 

 

 

Figure-8:  A series of 
screenshots of the R-VIS 
software, printed in Howard 
and MacEachren (1996, p72).  
As the reliability threshold is 
increased, data below the  new 
certainty threshold is removed 
from the display. 
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 Conversely, explicit displays symbolize the degree of certainty by placing a 

separate symbol atop the display of the thematic data.  Cliburn et al. (2002) proposed the 

application of interactive extrinsic bar glyphs that represent the uncertainty levels across 

a surface.  The interactivity limits the confusion associated with the large field of 

uncertainty indicators, as users could select individual points or subsets to further 

interrogate and clarify the display.  It is important to note that the intrinsic/extrinsic 

binary of interactive displays differs from the separated/integrated binary of static 

displays in that both intrinsic and extrinsic interactive displays produce an integrated 

symbolization where data and its certainty are on the same map.   

 

2.2  Decision Making under Uncertain Conditions 

 It long has been asserted that the user of a map or GIS tool approaches it with the 

assumption that the data displayed is fully certain (Wright 1942, Goodchild 1991, 

McGranaghan 1993).  However, it is unclear how the representation of uncertainty in 

these tools changes this perception.  As Harrower (2003) points out, a fundamental 

question that needs to be addressed is if “incorporating uncertainty information acts to 

clarify the map, as reported by Leitner and Buttenfield (2000) and Edwards and Nelson 

(2001), or clutter the map, as suggested by McGranaghan (1993)?”  It was at first thought 

that uncertainty information was much like any other type of spatial information in that 

its inclusion only made the map more complex, cluttered, and difficult to use.  Such a 

position led McGranaghan (1993) and Beard and Mackaness (1993) to caution 

representing uncertainty information, warning that it may be necessary to limit the 

symbolization of uncertainty so that the actual thematic data does not becomes clouded 
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and useless.  Leitner and Buttenfield (2000) took the first step to test this hypothesis, 

demonstrating that the integration of uncertainty representations actually decreases the 

time it takes to make decisions by clarifying the underlying thematic data and by 

increasing the confidence the decision maker has in his or her decision.   

 To construct knowledge of how graphic representations of uncertainty are used in 

decision making, the GISciences have turned to the discipline of risk management and 

insurance.  Geospatial uncertainty can be thought of as a form of risk when the decisions 

made off the uncertain information carry negative consequences.  Agumya and Hunter 

(2002) incorporated theory from risk management by implementing a fitness for use 

approach to using uncertain data.  To determine if the geospatial data can be used for 

decision making, the certainty of the data is first assessed to see if it is fit for use by 

weighing the potential consequences of possible decision outcomes against the likelihood 

of the outcome’s occurrence.  Because of this, there are three components that are 

necessary for the estimation of risk: (1) the data itself (which carries a given degree of 

uncertainty), (2) the probability of a risk occurring, and (3) the consequences of that risk 

if it occurs.  This estimated risk is then compared against a ‘threshold’ level of acceptable 

risk to determine the appropriate response. 

 Agumya and Hunter (2002) identified four possible options to deal with uncertain 

data: (1) risk avoidance (not using the geospatial data in the decision), (2) risk reduction 

(reducing the severity of the consequences, reducing the probability of the consequences 

occurring, or reducing the degree in which the decision is based off the data), (3) risk 

retention (accepting all data as long as it surpasses a threshold of certainty), and (4) risk 

transfer (reducing liability of the decisions made off of the uncertain geospatial 
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information – e.g. via insurance).  It is important to explicitly represent the degree of 

uncertainty on maps so that the user can make informed decisions, even if the added 

ambiguity makes it more difficult to make a confident decision.  Figure-9 illustrates the 

Agumya and Hunter (2002) decision making model.  

 

 

 

 Depending on the domain, there are several factors that i

above risk response options are chosen.  Building upon the decis
Figure-9:  The decision making 
process under uncertain conditions, 
printed in Agumya and Hunter (2002, 
p407).  This framework shows how 
decision makers come to conclusions 
by weighing the risk of a possible 
incorrect decision that was based upon 
uncertain data. 
nfluence which of the 

ion making theory in risk 
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management, the GIScience literature has pointed to three possible factors that influence 

decision making under uncertain conditions:  

   
  (1) the level of expertise, 
   
  (2) the difficulty of the decision, and  
   
  (3) the type of uncertainty that is being represented.   
 
 

2.2.1  Factor #1: Level of Expertise 

 A first possible factor in applying risk theory to making decisions under uncertain 

conditions is the level of expertise the decision maker has on the topic represented.  In the 

age of the democratization of the GISciences, tools for the display and exploration of 

geospatial data are now available to non-experts (Rod et al. 2001, Wood 2003).  

Couclelis (2003) asserts that such tools are mechanisms that allow users to construct 

knowledge from geospatial information.  It is hypothesized by Couclelis (2003) that 

different types of data uncertainties will affect the knowledge construction of novices and 

experts differently.   Following this thread of thought, it is important to understand how 

types of uncertainties influence decision makers of different levels of expertise so that 

novices and experts alike can come to similar conclusions about the represented 

geospatial information (even if they came to these similar conclusions in a dissimilar 

manner).   

 Three studies concerning the representation of uncertainty have specifically 

looked at the difference between experts and novices.  The first study, conducted by 

Evans (1997), did not focus on decision making explicitly but rather compared several 

depictions of uncertainty.  It was determined, however, that most users could at least 
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understand and utilize uncertainty regardless of level of expertise with the subject.  A 

study by Kobus et al. (2001) specifically examined decision making, recording the impact 

of representations of uncertainty on the speed and accuracy of employing military tactics.  

It was determined that more experienced officers made decisions under uncertain 

conditions more quickly than their inexperienced counterparts.  Interestingly, under 

certain conditions, there was no significant difference of decision making speed between 

experienced and inexperienced officers.  A final study by Aerts et al. (2003) examined 

visualizing uncertainties in an urban growth model called SLEUTH.  Unlike other 

experiments, they only tested expert urban planners using an easily distributed online 

survey, but still discriminated subjects based on their level of visualization experience.  

Several differences between experts and novices were uncovered, including the ability to 

discern spatial patterns and the preference of bi-color schemes for portraying uncertainty. 

 

2.2.2  Factor #2: Decision Difficulty 

 A second identified factor is the difficulty of the decision (sometimes called ‘task 

difficulty’ in the literature).  Beard and Mackaness (1993) were early to recognize the 

existence of different types of uncertainty assessment tasks, termed ‘data quality 

assessment tasks’ by the authors but taken to refer to the broader term of uncertainty by 

the investigator.  Three different levels of assessment were identified:  (1) notification, 

(2) identification, and (3) quantification.  Notification indicates the presence of 

uncertainty in the dataset, while identification indicates the type of uncertainty and where 

it is located.  Quantification describes the magnitude of certainty in the dataset, linking 

numbers to the degree of certainty.  While Beard and Mackaness (1993) ranked difficulty 
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based on the initial assessment of a dataset (i.e. it is easier to determine if uncertainty is 

present than it is to quantify it), it can be logically transferred to the difficulty in 

decisions made from representations of that dataset.  The Evans (1997) study cited in 

Section 2.2.1 also commented on decision difficulty, reporting that most users could 

understand and utilize uncertainty regardless of decision difficulty, a finding that suggests 

at least notification of uncertainty is not determined by the complexity of the task.  

 The most involved study on the effect of difficulty on decision making under 

uncertain conditions comes from Leitner and Buttenfield (2000).  While their broader 

project goal was to determine if representing uncertainty graphically aided or hindered 

decision accuracy, speed, and confidence, they also examined how the decision difficulty 

affected these three aspects of decision making.   Leitner and Buttenfield defined two 

tasks: (1) selecting the optimal location for a park based on predetermined planning 

criteria and (2) selecting the worst location for an airport using the opposite of the given 

planning criteria for the park.  Because the subjects needed to reverse the criteria for the 

airport siting decision, it was deemed more difficult in comparison to the park siting 

decision.  One of the most significant findings is that decision time decreased when 

uncertainty information was included for easy tasks, but not for difficult tasks.  This is a 

clear indication that the difficulty of the task impacts the importance of uncertainty on the 

decision. 

 

2.2.3  Factor #3: Type of Uncertainty 

 A final characteristic stressed in the literature that affects the way decisions are 

made based off of uncertainty representations of geospatial data is the type of uncertainty 
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itself.  In almost all studies conducted on the representation of uncertainty, only a single 

graphic depiction is used to encode all of the many types of uncertainties the geospatial 

data may contain.  However, MacEachren et al. (2005) has indicated that a challenge 

before the field of cartography and geographic visualization is “Developing 

representation methods for depicting multiple kinds of uncertainty”.  While Leitner and 

Buttenfield (2000) and Edwards and Nelson (2001) have empirically demonstrated that 

representing uncertainty acts to clarify the underlying data, it is not clear if representing 

multiple types of uncertainty will have the same clarifying effect or instead confuse the 

map reader and hinder decision making.  To answer the call of MacEachren et al. (2005), 

it is necessary to first examine if the representation of multiple types of uncertainty acts 

to clarify the decision and then, if so, examine the nature of each type.   

 Although not a true typology of geospatial data uncertainty, MacEachren (1992) 

acknowledged early on that there are three different aspects to geospatial data: (1) 

positional/locational, (2) attribute, and (3) temporal.  Uncertainty can be introduced into 

the data at each one of these aspects.  Figure-10 provides examples of uncertainty for the 

above three aspects of geospatial data.   

 

 

 

 

 

 

Figure-10:  MacEachren’s (1992, 
p12) discussion of three aspects of 
geospatial data in relation to 
uncertainty.  Here, an example of 
accuracy and precision is 
provided for the positional/ 
locational, attribute, and temporal 
components of geospatial data. 
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 The first typology of uncertainty offered in the literature adopted the Spatial Data 

Transfer Standard (SDTS) categorization of the U.S. Federal Information Processing 

Standard (FIPS) (Buttenfield 1993).  The SDTS lists five types of possible uncertainties: 

(1) positional accuracy, (2) attribute accuracy, (3) logical consistency, (4) completeness, 

and (5) lineage.  Paradis and Beard (1994) discussed this typology in their ‘data-quality 

filter’, theorizing that each type of uncertainty could be used individually to filter the 

dataset.  Zhu (2005) offers an interesting categorical analysis of what he terms “aspects 

of data accuracy.”  Elements of the accuracy of a dataset included in the Zhu (2005) 

typology are: (1) accuracy, (2) precision, (3) resolution, (4) consistency, and (5) 

completeness.  It is important to note that this typology does not match the adopted 

definition of uncertainty from earlier in the chapter, as each listed element is internal to a 

single dataset.  MacEachren et al. (2005) provides an updated typology based off of the 

components suggested by Thomson et al. (2005).  The following topology, taken 

verbatim from MacEachren et al. (2005), is the most contemporary and extensive list of 

uncertainties, and has been adopted for this research:  

 
(1)  Accuracy/error: difference between observation and reality, usually 

estimated based on knowledge of the measurement/estimation device and 
of phenomena in the work. 

 
(2)  Precision: exactness of measurement/estimate, derived from parameters of 

the measurement, estimation device, and/or procedure. 
 
(3)  Completeness: extent to which information is comprehensive. 
 
(4)  Consistency: extent to which information components agree. This is a more 

general definition than that found in formal standards for spatial data. 
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(5)  Lineage: conduit through which information has passed. This is a complex 
category that has at least the following subcomponents:  number of 
individuals, organizations, processes through which information moves; 
specification of which individuals, organizations, or processes. 

 
(6)  Currency: time span from occurrence through information 

collection/processing to use. The certainty that information is “current” 
will be a function of both time span and context, e.g., year-old data about 
vehicles parked in a factory loading bay is less certain to be current than 
year-old data about location of the factory. 

 
(7)  Credibility: combination of factors such as reliability of information source. 

Certainty may be based on past experience, e.g., the analyst is correct 85 
percent of the time, or on categorization of the source, e.g., U.S. analyst 
versus a non-U.S. informant; motivation, experience, or other factors. 

 
(8)  Subjectivity: the extent to which human interpretation or judgment is 

involved in information construction. This component of uncertainty is, of 
course, difficult to assess—and that assessment will have some level of 
subjectivity. 

 
(9)  Interrelatedness: source independence from other information. This is a 

common standard used in the news media to assess certainty that a story is 
authentic. 
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CHAPTER 3 – The Case Study 

 

Floodplain maps are a formalized cartographic tool used for the evaluation of 

flood liabilities.  Urban planners use these maps to assess potential hazards of 

construction in a watershed before areas are developed.  Similarly, federal emergency 

agencies and private insurance firms use these maps to evaluate the risk scenarios of 

structures that are already in the landscape, whose construction cannot now be avoided.  

Such a mapping application provides a powerful situation in which to investigate the 

impact of uncertainty representations on the decision making process and its relation to 

risk management and insurance.  Decisions made off of these maps have real world 

importance, with millions of dollars and lives hanging in the balance.  Understanding 

how uncertainty can be successfully integrated into these maps facilitates the making of 

informed decisions about placing and insuring structures in the landscape, helping both 

the individual owner and the insurance firm. 

 The Great Midwest Flood of 1993 illustrated the importance of obtaining 

geospatial information with a high degree of certainty.  The flood, occurring along the 

Mississippi and Missouri Rivers between May and October of 1993, is an example where 

an incomplete understanding of a phenomenon, fueled by uncertain data, caused decision 

makers to grossly underestimate the ‘worst-case’ flooding scenario (FEMA 2003).  Due 

to these miscalculations, over one-thousand levees failed across the Midwest, allowing 

the flood waters to aggregate downstream.  As a result, an estimated 12 to 16 billion US 

dollars in damaged was caused, dislocating fifty-four thousand people from their homes, 

and taking the lives of fifty individuals (Strahler and Strahler 2002).  This catastrophe 
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demonstrated the real-world risk of making an incorrect decision (or in this case, a set of 

incorrect decisions) based upon uncertain data. 

  

3.1  Domain Concepts and Terminology 

 The term ‘stream’ is defined as “a long, narrow body of flowing water occupying 

a trenchlike depression, or channel, and moving to lower levels under the force of 

gravity”, while the term ‘river’ tends to be used only when describing a stream of 

significant flowage (Strahler and Strahler 2002).  The stream drains the unabsorbed, 

excess water from the two adjacent hillslopes, transporting the water downstream into a 

larger system.  As the discharged water moves to continually lower levels, it becomes 

organized into a hierarchical drainage system of stream tributaries which flow into larger 

rivers, eventually discharging into the river’s mouth (Knighton 1998).  When this 

drainage system is constrained by ridges (called drainage divides), the system is termed a 

‘drainage basin’ or ‘watershed’.  

 The water level in the stream’s channel, which is a function of the raw volume of 

water that is being discharged and the size of the channel itself, fluctuates during periods 

of heavy precipitation or extreme drought.  The term ‘flood’ can be defined as any 

occurrence when the size of the stream’s channel is no longer large enough to 

accommodate the volume of water that is being discharged (Strahler and Strahler 2002). 

When the waters exceed the channel, they spill onto flat, surrounding lowland called the 

‘active floodplain’.  The active floodplain is defined by the adjacent lands that are 

expected to flood on an average of once a year.  In contrast, the ‘genetic floodplain’ is 
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defined as all adjacent lowland areas that become periodically inundated by water over 

the course of roughly 100 years (Alexander and Marriott 1999).  

 Despite the ever-present risk of flood damage, floodplains are one of the most 

heavily settled areas in America.  Although only five percent of the United States is 

located in a floodplain (either fluvial or coastal), these lands hold approximately 25% of 

the nation’s population (Krimm 1998).  Settlement on a floodplain has two major 

economic advantages: (1) fertile lands for agricultural activity and (2) a natural mode of 

transportation for trade (Alexander and Marriott 1999).  Periodic flooding acts to 

constantly replenish nutrients in the floodplain’s soil, making the areas extremely 

productive for the cultivation of crops.  Also, the overland flow of water off of the 

surrounding bluffs concentrates water on the lowlands, providing natural irrigation when 

there is not a flood event.  Finally, the proximity of the floodplain to a stream or river 

provides a natural means for the exchange of goods cultivated or produced in the 

floodplain.  Many of the cities incurring the most damage from the Great Midwest Flood 

of 1993, such as Cape Girardeau, MO, Grafton, IL, and St. Louis, MO, have economies 

reliant upon the river for transportation and trade, illustrating how the river is both a 

source of prosperity and destruction for the surrounding floodplain (FEMA 2003).    

 

3.2  Application of the Agumya and Hunter (2002) Model 

Assessing the flood risk of a site in the floodplain is a decision task that fits well 

with the Agumya and Hunter (2002) decision making model based on risk management 

(see Figure-9).  In order to estimate the risk of a flood, three components are necessary:  
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 (1) geospatial data,  
  
 (2) the probability of that the identified event will occur, and  
  
 (3) the consequences of the event.   
 

In the domain of floodplain mapping, the geospatial data include a delineation of the 

floodplain extent and a point coordinate of the site in question.  Regarding the delineation 

of the extent, most floodplains exhibit a common topographic anatomy, as shown in 

Figure-11. 

 

 

Figure-11:  The topographic anatomy of a floodplain, printed in Alexander and Marriott (1999, p4).  
The boundary of the genetic floodplain is typically marked by a terrace edge.   
 

The above diagram illustrates how a stream or river meanders over the landscape to 

elongate the course of the discharging water, slowing the flow to a more stable energy 

level.  Important to this diagram is the demarcation of the genetic floodplain based on the 
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lowest terrace edge.  A ‘terrace’ is a flat section of land that is marked by a steep descent 

at its edge and is caused by a coupling of a river’s incision into the landscape with 

periods of massive sedimentation during flooding (Knighton 1999).  It is not uncommon 

to have multiple terraces before finding the hard bluff line, with the terrace of highest 

elevation being the most ancient.  Because the terrace of lowest elevation confines the 

genetic floodplain, the simplest method of floodplain delineation is to accept the contour 

of the inner-most terrace as the floodplain line (Alexander and Marriott 1999).   

 A second method to delineate the extent of a flood is to use historical data 

(Thorndycraft et al. 2002).  The most common usage of historical flood data is to plot the 

magnitude of a flood against the frequency that the magnitude occurs in the historical 

record (Strahler and Strahler 2002).  Because floods of large magnitudes occur much less 

frequently than small flood events, there is typically an inverse relationship between 

magnitude and frequency.  The frequency is then used to describe the probability of a 

particular magnitude occurring in a given year.  For instance, the 100-year flood 

represents a magnitude that has a 1% probability of being equaled or exceeded each year.  

A common misconception is that the 100-year flood only occurs every one hundred 

years; a 100-year flood can occur in continuous years as well as multiple times in the 

same year.  Because the genetic floodplain represents a flood that occurs approximately 

every one hundred years, the floodplain can also be defined as the extent of the 100-year 

flood.   

 A final method for delineating the floodplain extent is to examine the stream 

discharge itself.  Stream discharge is defined as the volume of water flowing through a 

particular areal cross-section of the stream over a given unit of time, and is measured in 
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cubic meters or cubic feet per second (Strahler and Strahler 2002).  A hypothetical level 

of discharge can be simulated against the average or expected discharge to determine if 

the water will spill over the channel banks.  The discharge rate associated with the level 

of exceedance that inundates the adjacent lowlands can then be used to determine the 

extent of the floodplain.  The use of a hypothetical exceedance of discharge reduces the 

reliability on an accurate historical record.  

 The second two aspects necessary for the Agumya and Hunter (2002) decision 

making model, the probability of occurrence and the consequences of occurrence, are 

directly related to the probability of the occurrence of a given flood magnitude and the 

degree of damage a flood of the same magnitude would generate.  The probability value 

used in the decision is a function of the structure’s position in the landscape relative to 

the delineated floodplain boundary in the dataset.  The consequence, when thinking 

purely in monetary terms, is a function of the magnitude of the given flood and the value 

of the damaged structures.  The consequence value requires the utilization of an outside 

data source (see Figure-9), in this case some sort of property value assessment.   In this 

research, the probability of a flood and the consequence are held constant so that only the 

difference in submitted data uncertainty is reflected in the estimated risk.   

The National Flood Insurance Program provides a real-world application for the 

Agumya and Hunter (2002) model.   The National Flood Insurance Program offers 

proactive protection to individuals living in the floodplain through the sale of federally 

backed flood insurance (Krimm 1998).  The National Flood Insurance Program has the 

responsibility of assessing the flood risk of structures that are currently in the landscape 

as well as promoting sound construction practices to reduce future property damages.  



 Roth 32 

Figure-12 illustrates the decision making process of the National Flood Insurance 

Program according to the Agumya and Hunter (2002) model: 

 

 

Figure-12:  Applying the Agumya and 
Hunter (2002) decision making model 
to floodplain mapping. 
 

 

 The decision begins with floodplain data provided by FEMA (Krimm 1998).  

Because of an array of uncertainties associated with the data (examples provided in 

Section 3.3), the decision response using the FEMA data will be uncertain.  Using the 

data, a series of flood scenarios are constructed for a specific site depending on the 

magnitude of the flood event.  Once each flood scenario is identified, the probability of 

that flood event occurring is weighed against the damage that the flood event with cause.  
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The evaluation of the probability of the flood against the consequences of the flood 

generates the estimated risk of a structure in the landscape.  This estimated risk is then 

compared with the acceptable level of risk determined by the National Flood Insurance 

Program.  The acceptable risk level is a ‘threshold’ determined by planners that ranges 

between a zero-risk event (a non-flood or flood that causes no damage) to the ‘worst-case 

scenario’ (representing the gravest possible situation where property damage and lethality 

are peaked) (Kondo 1998).  After this comparison, the National Flood Insurance Program 

has four options: (1) avoid the risk by not offering insurance, (2) reduce the risk by either 

improving the certainty of the data on which the decision is made or by reducing the 

consequences of the risk by promoting local practices of flood prevention, (3) retain the 

risk by offering flood insurance to the individual, or (4) transfer the risk to FEMA so that 

the individual only receives retroactive protection in the form of disaster relief aid.  

 

3.3  Application of the MacEachren et al. (2005) Typology 

 Floodplain data contains all of the components of geospatial uncertainty outlined 

by the MacEachren et al (2005) typology.  According to category theory, the groupings in 

a theoretical typology must be both mutually exclusive (a single instance belongs in only 

one category) and collectively exhaustive (no instance can be assigned to a category) 

(McGrew and Monroe 2000).  However, it is important to note that when this typology is 

applied to floodplain mapping, the categories are not mutually exclusive or collectively 

exhaustive.  In several situations, an uncertainty category from the MacEachren et al. 

(2005) typology is completely reliant upon the degree of uncertainty in another defined 

category.  For this research, the term first-order component is defined as an uncertainty 



 Roth 34 

type about the data itself (either the positional, attribute, or temporal value), while the 

term second-order component is defined as a derived uncertainty type that is contingent 

upon, at least in part, the degree of uncertainty in a first-order component.  A discussion 

on the methodological impact of first-order versus second-order components on the 

research is provided in Section 4.1.2.  

 For floodplain data, this research identifies first-order components as (1) 

accuracy/error, (2) completeness, (3) credibility, (4) currency, (5) precision, and (6) 

subjectivity, while second-order components include (1) completeness (found at both 

levels), (2) consistency, (3) interrelatedness, (4) lineage, and (5) subjectivity (found at 

both levels).  This division is only theorized for the domain of floodplain mapping, and it 

is unsure how it would transition to other case studies.  Figure-13 summarizes the divide 

between first-order and second-order uncertainties.  

 

 

 
Figure-13:  A Venn Diagram dividing the MacEachren et al. (2005) typology into first-order and 
second-order components 
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3.3.1  First-Order Components in Floodplain Mapping 

 (1) Accuracy/error:  MacEachren et al. (2005) defines the first type of 

uncertainty as the difference between the observation (the floodplain delineation) and the 

reality (the actual floodplain).  It is important to note that accuracy and error are not 

interchangeable terms.  While accuracy is used to describe the difference between 

observation and reality (see Chapter 2), error is viewed as the “inverse of accuracy” and 

is defined as “the discrepancy between the attribute value in the database and the actual 

attribute value” (Zhu 2005).  Error, in a scientific sense, has also been defined as the 

“differences between observers or between measuring instruments” (Longley et al. 2005).  

In this regard, error is the degree of repeatability in the measurement, either among 

observers or among measuring devices, and not related to the ability to correctly capture 

the underlying reality.  While the Zhu (2005) definition justifies the conflation of the 

terms accuracy and error, the Longley et al. (2005) definition suggests this conflation is 

perhaps inappropriate.  For simplicity, the Zhu (2005) definition is adopted in this 

research. 

 In its application to floodplain mapping, positional accuracy/error is the ability to 

draw the observed floodplain boundary in the correct location.  When defining the 

floodplain based on the historical record, there is also a very important temporal 

accuracy/error component to the certainty of the data.  The ability to correctly predict the 

probability of a flood occurrence of a given magnitude relies on the matching of a flood 

to a date (Strahler and Strahler 2002).  This is especially true when attempting to 

determine changes and trends in the flood tendency over time.  Accuracy/error in 

floodplain mapping, like uncertainty derived from inaccuracy or error in all other 
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domains, is very difficult to determine because the reality is never fully known (if reality 

was known, then there would be no need for a measurement of the accuracy or error).  

Because of this, accuracy/error uncertainty is best reported at a ratio level as the 

probability or likelihood of the position of a line in a given location and is typically 

represented using the visual variable crispness (Longley et al. 2005, MacEachren et al 

1995).  The calculation of these accuracy/error probabilities is modeled for the full spatial 

extent based upon sampled control points.  Such quantification of uncertainty using 

probability theory has several drawbacks, as described by Zhu (2005).  Because the type 

of uncertainty is important to the study, and not the mode in which the uncertainty was 

statistically generated, the probability of a flood event, derived by the frequency of the 

event in the historical record, was used a proxy for the category accuracy/error.   

Discussion of the limitations of using this proxy as the accuracy/error measure is 

provided in the concluding chapter.   

 (2) Completeness:  When used as a first-order component of uncertainty, 

completeness describes the degree to which the dataset is comprehensive in location, 

attribute, and time.  The linework that FEMA provides is not continuously exhaustive for 

all of the United States, leaving locations unmapped.  Because FEMA provides data in 

‘panels’, it is not uncommon to have an abrupt and arbitrary edge to floodplain data, 

leaving a portion of the floodplain unmapped (Krimm 1998).  Completeness is also an 

issue for non-FEMA sources, as floodplains often do not correspond to the arbitrarily 

placed enumeration units that restrict the jurisdiction of state or local data commissions.   

(3) Credibility:  Credibility relates to the reliability of the data provider or 

source.  The most credible source for floodplain data was expected to be FEMA.  
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Because the collection of detailed geospatial floodplain information is important for the 

allocation of disaster prediction and relief, FEMA has spent over 1 billion US dollars on 

floodplain data and currently maintains over 90,000 map panels (Krimm 1998).  

However, FEMA only generates new linework or reviews existing linework if a 

community petition is granted or if significant changes in the area have occurred (e.g. 

rapidly increased development, a recent flood of unexpected magnitude, severe change in 

flood boundaries, etc.).  Because of this, the best available data may be from a local or 

state source.   

This example of credibility of the data source addresses the definition of 

uncertainty as “a measure of the user’s understanding of the difference between the 

contents of a dataset, and the real phenomena that the data are believed to represent.”  

Unlike accuracy/error and completeness, which are measured at a ratio level internally, 

the inclusion of credibility information is categorical internally (as the source is a 

metadata recording with no attached credibility judgment), but becomes ordinal in nature 

during the final filter of user interpretation described in Figure-1 (as the user attaches 

judgments of credibility based on experience with the source, certification of source, 

etc.).  The inclusion of credibility as an uncertainty type decisively separates the 

MacEachren et al. (2005) typology from that described by Zhu (2005) due to the 

inclusion of external evaluations of uncertainty on a dataset.   

 (4) Currency:  Currency deals with the time span between collection of the data 

and presentation of the data for decision making.  Unlike temporal accuracy, discussed 

above, currency focuses on the degradation in the data’s relevancy over time, rather than 

accurately pinpointing the dataset’s creation date.   Drainage networks are dynamic in 
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nature, with the location of the floodplain characterized by massive movements over time 

(Knighton 1999).  Because the floodplain can shift greatly in a short amount of the time, 

the more current the geospatial information, the more certain a decision maker can be 

when assessing a location’s risk of flood.  While data generated from FEMA would likely 

be taken as the most credible, it is often characterized by a large degree of currency 

uncertainty because the linework is not updated at a regular interval.  Further, even after 

existing linework is revised by FEMA, the processing time for surveying of the 

floodplain and publication of the updated data is on average 58 months (Krimm 1998).  

 (5)  Precision:  The precision component involves the exactness of the 

measurement.  Typically, the precision is described as the number of digits used to report 

a measurement (Longley et al. 2005).  However, the description of precision as the 

“degree of detail that can be recorded” calls into question a parallel issue of resolution 

(Zhu 2005).  There is a considerable amount of research that separates the definition of 

the term resolution, as the level of spatial detail, from precision, as the exactness of 

measurement.  Resolution deals with a fundamental cause of uncertainty: it is impossible 

to continuously collect data on a phenomenon at every single point in space.  Because of 

this, it is necessary to collect data over subdivisions of space (pixels, enumeration units, 

etc.).  The size of these spatial units is typically a function of the scale at which the data 

is collected.  The aggregation of measurement into larger spatial units filters detail from 

the representation of reality, introducing uncertainty.  In accordance with category theory, 

this issue of resolution is incorporated into the uncertainty category precision in order to 

remain collectively exhaustive.  Discussion of limitations in collapsing precision and 

resolution into a single category are provided in the concluding chapter.   
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 The most applicable element of precision/resolution in floodplain mapping deals 

with positional delineation of the floodplain.  Positional precision/resolution involves the 

level of detail in the demarcation of the floodplain line and is a function of the scale at 

which the data is produced.   As Knighton (1999) points out “Channeled flow occurs over 

a large range of spatial scales, from small headwater streams to major rivers.”  The scale 

that is chosen for the generation of the linework dictates the level of detail that is 

captured.  Floodplain boundaries that are delineated at too coarse of a scale run the risk of 

over-generalizing the landscape, smoothing over important nuances that may place a 

structure inside or outside of the floodplain.   

 An example of uncertainty derived from positional imprecision is documented in 

a review of the ‘Floodplain Redelineation Project’ in Winnebago County, WI (Lulloff 

1994, LICGF 1998).  In the early 1990s, Winnebago County desired to use FEMA Flood 

Insurance Rate Maps (FIRMs) with its new large-scale, digital planimetric, topographic, 

and cadastral mapping.  Due to the fact that the FEMA data was compiled at a coarser 

scale, the discrepancies due to precision (as well as currency) were so severe that the 

river channel often jumped over the floodplain linework.  This ultimately led to a re-

delineation of the floodplain linework to match the local base mapping.   

 (6)  Subjectivity:  When used as a first-order component, subjectivity relates to 

the amount of human decision involved in the generation of the data.  Although the 

subjective interpretations or judgments should be informed by experts in the domain, they 

can be at times arbitrary.  An important uncertainty in defining the floodplain is the 

locational/positional subjectivity of the method chosen to draw the line.  As Alexander 

and Marriott (1999) point out, a floodplain can be defined in many different ways, and 
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the only accepted definition by scholars is deliberately vague.  As discussed in Section 

3.2, the delineation of the floodplain can be completed by using the terrace contour, by 

examining the probability of flooding using the historical record, and by simulating a 

hypothetic level of discharge exceeding the average flow rate.  Each of these will produce 

a different floodplain extent, introducing a degree of subjective uncertainty into the 

linework.  Similar to the first-order component credibility, subjectivity is categorical in 

nature when recorded internally to the geospatial data, but becomes ordinal when 

interpreted by the decision maker (as previous experiences and technique biases come 

into play).   

 

3.3.2  Second-Order Components in Floodplain Mapping 

 (1) Completeness:  Completeness as a second-order component of uncertainty 

looks at the comprehensive coverage of the first-order uncertainty components in space 

and time.  Completeness in this respect translates to the availability of metadata 

explaining the first-order uncertainties and represents the existence or non-existence of a 

particular first-order component at a given location.  Completeness as a second-order 

component of geospatial data uncertainty enters into floodplain mapping through five of 

the six first-order components: the completeness of accuracy/error information, the 

completeness of credibility information, the completeness of currency information, the 

completeness of precision/resolution information, and the completeness of subjectivity 

information.  It is theorized that examination of the completeness of the sixth first-order 

type, completeness, is a redundant, self-referencing activity and therefore not a valid type 

of geospatial data uncertainty.  Each of the five cases of completeness as a second-order 
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uncertainty only determines if the first-order uncertainty is provided throughout the full 

areal or temporal extent (if at all).  This existential quality can extend to the other second-

order components as well, making the category completeness either an overarching 

uncertainty type of the other eight or an internal type that exists within each of the eight, 

and therefore not part of the MacEachren et al. (2005) typology.   

 (2) Consistency:  The consistency component of geospatial data uncertainty looks 

at how a particular first-order component varies over space and time.  While 

completeness as a second-order component looks at the existence of a first-order 

component, consistency examines the variation in quality of a first-order component over 

space and time.  In floodplain mapping, consistency addresses each of the first-order 

components, excepting completeness (since consistency is an evaluation on data that has 

already been deemed to exist through completeness).  A particularly prevalent uncertainty 

of floodplain data is derived from the consistency of credibility.  It is not uncommon for 

FEMA to incorporate the data generated by a local or state commission directly into their 

own linework to avoid redundancy of data collection (Grimm 1998).  Although this 

occurs only when the local or state data is agreed to be of much higher quality, it still 

introduces an inconsistency of source. 

 (3) Interrelatedness:  The interrelated component involves the extent to which 

source data layers are dependent on each other.  An ideal application of floodplain 

delineation would use source layers that contained equal degrees of each of the first-order 

uncertainties (e.g. same degree of accuracy/error, same level of precision, same source, 

same time period, etc.).  However, because this is rarely the case, the weight of a 

particular dataset needs to compensate for the permutation of uncertainty through 
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different steps of the data creation (Longley et al. 2005).  This is a difficult component to 

assess because it is a function of each of the first-order components of uncertainty. 

 (4) Lineage:  Lineage refers to the channel through which the data passed from 

collection to use.  It appears that the second-order component lineage is a combination of 

the first-order components credibility and currency.  Lineage realistically assumes that 

the data creation does not occur in a single instance in time, and because of such, can be 

spread over time among multiple data collectors, manipulators, and presenters.  In 

floodplain mapping, lineage would represent the tracking and articulating of each step in 

the data’s lifecycle, addressing both the time a particular step was completed (the 

currency of the step) and the firm that completed the step (credibility).  Such a full 

recollection of the data creation process provides a more detailed account for decision 

making than the first-order components of currency and credibility alone.    

 (5) Subjectivity:  When used as a first-order component of uncertainty, 

subjectivity involves any judgment that the client made until the completion of the map 

product.  Subjectivity as a second-order component of uncertainty gets at the core of the 

inclusion of the “user’s understanding” in the evaluation of uncertainty (Longley et al. 

2005).  Here, the decision maker uses personal experience to weight the importance or 

restriction of each of the first-order components.  While examples of the first-order 

components accuracy/error and precision/resolution will likely lead to a uniform 

subjectivity response because they are internal to the dataset, other first-order 

components may lead to a more ambiguous weighting.  For example, the data creator 

may have made the first-order subjective choice to map the floodplain based on the 

terrace contour, but the map reader may be critical of this decision, and in a second-order 
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subjective choice, choose to place more weight on the floodplain linework generated 

from the historical record or a hypothetical discharge exceedance.  While this component 

of uncertainty is clearly not internal to the dataset itself, it is included because the 

Agumya and Hunter (2002) model includes all aspects of the decision making process. 
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CHAPTER 4 – Methodology 

 

 To answer the research questions posed in the opening chapter, two separate 

stages of research were conducted.  The first stage employed an online, interactive survey 

aimed at acquiring initial data.  Because little empirical research has been published on 

typological differences of uncertainty, the first purpose of the survey was to determine if 

different categories of uncertainty in the MacEachren et al. (2005) typology have a 

differing effect on decision making.  If there was a significant difference in the 

recordings for one or all of the categories, the survey then served the secondary purpose 

of matching uncertainty types with particular decision responses, decision speeds, and 

confidence levels.  The survey was designed to obtain repeatable results with recorded 

data at the ratio level so that significant differences can be quantified. 

 The second stage of the research employed several group interviews designed 

much like a focus group.  The qualitative results of the focus groups were used to 

supplement the quantitative survey data and help explain patterns in the survey results.  

Questioning in the focus groups was posed to help find which category of uncertainty 

was most influential in the decision making process.  The results of the survey were then 

compared to the offerings in the interview session to see if the most influential categories 

of uncertainty on decision making were the same that yielded the most accurate and 

confident decisions.  This analysis aimed to help mapmakers prioritize the different types 

of uncertainty for graphic representation when space on the map is limited.  The focus 

group also looked deeper into the decision making process, asking why particular 

categories of uncertainty were more influential than others.  Insight gained from this 
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questioning aimed to go beyond the outcomes of decision-making and instead examined 

the process of decision making itself, an agenda Harrower (2004) called “…a promising 

and important new direction for research in GIScience.”  Finally, the focus groups 

investigated the validity of the MacEachren et al. (2005) typology. 

 

4.1  Quantitative Online Survey 

 The survey was built using the Flash Macromedia software and proctored over the 

Internet.  The major drawback to conducting research online is that the participants are no 

longer in a controlled environment, meaning that the participant can be interrupted 

midway, have his or her attention split on another website or activity, and be assisted by 

another person during the survey.  However, like the Aerts et al. (2003a) study, the use of 

an online survey was justified because of the desire to question a large amount of domain 

experts, located across the United States, in a very short period of time.  It was 

determined that evaluating domain experts in an uncontrolled environment would 

produce a more realistic description of expert decision making under uncertain conditions 

than evaluating easy-to-access university students in a controlled environment.  Each 

subject of the online survey was asked individually to participate via email so that the 

survey response rate could be recorded.  In this contact email, participants were asked to 

simulate a controlled environment while taking the survey and were reminded of this 

again during the introductory section of the survey itself.  The survey results were stored 

anonymously in an external database, making all results confidential and untraceable 

back to the participant.  
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 The design of the survey consisted of three components:   

  (1) the maps used in the survey,  

  (2) the legends describing symbology on the maps, and  

  (3) the survey questions associated with each map-legend pair. 

 

4.1.1  The Map Component of the Survey 

 The maps used in the survey were based on the floodplain of the Willamette River 

in Albany, Oregon, located 70 miles south of Portland.  The floodplain itself was 

modeled using floodplain data produced by Rich Catlin (2002) of the City of Albany 

Planning Division.  The data was produced in evaluation of a 1996 flood event and 

delineated the floodplain in great detail.  Although the attribute data was available for this 

area, categorical uncertainty information was incomplete.  Because of this, the final 

uncertainty linework on the survey was hypothetical.  Supplemental data also from the 

City of Albany was utilized to conform to the local terrain when making the hypothetical 

linework.  This map is representative of the common technique for representation of the 

floodplain boundary.  The floodplain line is depicted using a light blue fill overtop 

structural information of the area, with the river itself depicted in a darker blue.  The edge 

of the floodplain boundary is shown as a hard line, with no graphic uncertainty 

representations included.  Interestingly, this map provides a unique example of a 

floodplain map that includes uncertainty information as a legend statement in fine print 

along the bottom of the map page.  Figure-14 shows this floodplain data in a 2002 map 

produced by Rich Catlin for display purposes.   

 



 Roth 47

 

Figure-14:  A map from Catlin (2002) showing the Willemette River floodplain at the city of Albany, 
Oregon. 
  

 On each map, three depictions of a single uncertainty type were represented in 

three different hues, chosen from a safe color scheme on ColorBrewer.org to ensure 

legibility of the lines for the color deficient.  This representation of uncertainty is 

different that the multiple realization technique of the ‘Monte Carlo’ method in that the 

three variations signified three different datasets (each with its own description of 

uncertainty) rather than signifying three versions of the same dataset.  No map contained 

information on multiple types of uncertainty.  The three depictions were not animated and 

remained visible on the map throughout its entire usage.  Each depicted variation of 

uncertainty was explained by an accompanying legend, following the Leitner and 
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Buttenfield (2000) study.  The variations themselves are defined in Section 4.1.2.  Three 

sites, represented by a black circle, were placed on the map relative to these depictions.  

For each type of uncertainty used in the survey, there were four accompanying versions 

of the map: three representing only one of the above sites individually and a fourth 

representing all three at one time.  For the remainder of the document, the first three 

versions are referred to as one-site maps and the fourth version is referred to as a three-

site map.  The sites were labeled using a 14pt black font encased in white so that they 

could be referenced by the survey questions. 

 The four map versions were designed by the investigator to exhibit a varying 

degree of difficulty.  The three-site map was expected to be the most difficult for 

participants, due to the added complexity of a ranking task described by Leitner and 

Buttenfield (2002).  The individual one-site maps were also designed to have a varying 

level of difficulty.  The first two one-site versions were designed so that the represented 

site was within only a single depiction of the floodplain.  The containing floodplain 

depiction was different for these two versions, with one version showing the site 

contained only by the most certain depiction (labeled site-C on the three-site maps) and 

the second version showing the site contained only by the least certain depiction (labeled 

site-A on the three-site maps).  The third one-site version placed the site within two 

depictions of the floodplain boundary (labeled site-B on the three-site maps).  It was 

expected by the investigator that the map versions would vary in difficulty in the 

following order, from easiest to most difficult: the site-B one-site map, the site-C one-site 

map, the site-A one-site map, and the three-site map.  Also, because the same sites 
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represented on the one-site maps were placed together on the three-site maps, the 

expected risk ranking on the three-site maps was B-C-A.   

 The background of the map was represented in varying shades of gray 

corresponding to the amount of overlap or agreement among the three depictions.  Areas 

within the floodplain on all three lines were colored the darkest shade of gray and areas 

outside of the floodplain on all three lines were colored the lighted shade of gray.  Areas 

inside the floodplain on one or two of the depictions were given intermediate shades of 

gray according to their place in the ordinal color scheme.  Because the uncertainty dataset 

was hypothetical, this sequential grayscale color scheme was designed to suggest only a 

nominal degree of certainty; no ratio level data on certainty was represented.  The river 

and surrounding oxbow lakes were represented in black.  The reasoning for using black 

rather than the more traditional blue was to suggest that the river was the highest category 

in the grayscale representation of floodplain certainty.  The river linework was drawn 

directly from the Catlin (2002) data source.  Figure-15 shows an example map from the 

survey: 

 

 

  Figure-15:  An example three-
site map, taken from the online 
survey, showing three datasets 
with a varying level of detail 
(precision/resolution) 
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 Several controls were implemented in the map component to avoid the use of 

previous knowledge of the area and to discourage learning throughout the course of the 

survey.  To disguise the geographic location of the dataset, all signifiers were removed 

from the map, including information on roads, houses, geographic markers, and labels.  

The lesser known Willamette River floodplain at Albany, Oregon was chosen over the 

Mississippi River floodplain, described in the opening of Chapter 3, to decrease the 

likelihood that subjects would have prior knowledge of the area before participation.  The 

use of hypothetical uncertainty information further reduced the influence of prior 

participant knowledge, as it was ensured that the participants have never seen the 

uncertainty dataset upon which they were making decisions.  To control learning during 

the survey, each newly loaded map was randomly rotated around its center.  The order of 

maps was also randomized for each participant, making it unlikely that two participants 

saw the same order of maps.  The randomization of rotation and order were learning 

controls also implemented in the Leitner and Buttenfield (2000) study.   

 

4.1.2  The Legend Component of the Survey 

 The second component of the survey, the legend, described to the participant what 

is being represented and was therefore the focal way in which typological uncertainty 

was communicated to the participants.  The upper portion of the legend described the 

type of uncertainty represented.  Each description is associated with a variation of the 

uncertainty type that is represented in the map. 

 Selection of the appropriate types to be included in the study and their associated 

variations was complicated by two issues: 
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  (1)  the division between first-order and second-order types of uncertainty 
   
  (2)  the level of measurement of each depicted uncertainty type (nominal,  
   interval, and ratio) 
 
 

 The explicit division between first-order and second-order uncertainty types, 

explained in Section 3.3, was necessary due to the lack of mutually exclusive and 

collectively exhaustive categorization in the MacEachren et al. (2005) typology.  It was 

important to only test uncertainty types that were not contingent upon another type of 

uncertainty (first-order components) for two reasons.  The first was to maintain a constant 

level of map complexity.   Depictions of second-order components required the synthesis 

of several first-order components, creating a much more complex map, and therefore, a 

more complex legend.  Such variations in complexity would create a varying level of 

decision difficulty, introducing a confounding variable.  The second reason for displaying 

only first-order components was to maintain independent random sampling during 

statistical analysis.  The testing of second-order components introduced conditional 

dependency, complicating the comparison of groupings with common statistical 

techniques like analysis of variance (ANOVA).  Because of these two reasons, only first-

order uncertainty types from the MacEachren et al. (2005) typology were tested 

(accuracy/error, completeness, credibility, currency, precision/resolution, and 

subjectivity). 

 The second issue, level of measurement, addressed unit scale associated with each 

variation.  As described in Section 3.3, several of the first-order uncertainty types are 

commonly measured at the ratio level.  Because other first-order uncertainty types, like 
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credibility and subjectivity, are intrinsically categorical to a dataset and extrinsically 

ordinal to the decision maker, all of the types of data needed to be degraded to the 

nominal level to maintain a constant level of map complexity.  The change in level of 

measurement can be expressed in terms of the Beard and Mackaness (1993) ‘data-quality 

assement task’ typology as a move from quanitification to identification of uncertainty.  

Such degradation was especially difficult with the category accuracy/error, as it is 

typically reported probabilistically at the ratio level.  Because of this, the proxy of the 

flood frequency was used; the investigator acknowledges that this solution was not a 

representation of uncertainty per se, but would yield more interesting results than the 

ordinal descriptors of ‘highly accurate’, ‘moderately accurate’, and ‘not accurate’.  Is it 

important to note that any statistical findings associated with the category accuracy/error 

would need to remain speculative due to the use of the proxy.  Table-1 describes the six 

legends for the six different first-order uncertainty types and the corresponding variations 

represented in the map: 

 

Uncertainty Type Variation #1 Variation #2 Variation #3 

Accuracy/Error Proxy 0.2% annual chance of 
flood 1% annual chance of flood 5% annual chance of flood 

Completeness Data/No Data Line Floodplain/Non-Floodplain 
Line <unavailable> 

Credibility (Source) Local Source Statewide Source Federal Source 

Currency Data collected in 2005 Data collected in 1995 Data collected in 1985 

Precision/Resolution High Detail Intermediate Detail Low Detail 

Subjectivty Floodplain defined by the 
inner-most terrace 

Floodplain defined by the 
historical flood record 

Floodplain defined by a 
simulated discharge level 

 
Table-1:  The uncertainty descriptions used in the legend component of the digital survey.  Each 
variation was associated with one of the depictions shown on the map by labeling a particular hue in 
the legend.  It is important to reiterate that these variations are based off of a definition of 
uncertainty that includes the user’s interpretation of the dataset.   
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 Because understanding the legend is vital to understanding the map, and therefore 

correctly assessing the risk of a structure, several precautions were taken to ensure that 

the legend was read with every map-legend pair.  Firstly, before the participants were 

given the survey questions, they were required to complete a brief training session.  In the 

training session, the importance of the legend was communicated and the participants 

were warned to first analyze the newly loaded legend before examining the map.  

Secondly, as a result of a pilot survey, the legend was placed at the top, left corner of the 

screen.  Eye-movements studies have shown that Western readers tend to process a page 

from the top, left corner to the bottom, right corner, similar to the way text is read in a 

book (Slocum et al. 2003).  Placing the legend at the top, left corner put the legend in the 

highest priority location on the screen and ensured that the participant did not need to 

scroll the browser to view the legend.  Thirdly, a loading screen was programmed to 

darken the screen after the completion of questioning for each map to signal that a new 

map was being loaded.  During this time, the previous map and legend were removed, 

providing a visual cue that a new legend was being loaded onscreen.  Finally, the 

questions panel on the survey was disabled until the legend was fully loaded and visible.  

This prevented responding to a particular map before the new legend was loaded and 

visible.  Also described in the legend component of the survey were the varying shades of 

gray for the depiction overlap, the river, and the circular symbol for the sites.  Figure-16 

shows the matching legend for the precision/resolution map shown in Figure-15.    
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Figure-16:  The matching legend 
component to the precision/resolution 
map shown in Figure-15.  Each legend 
describes the three depictions of the 
floodplain, the grayscale basemap 
shading, the river, and the site symbol. 
 

 

 

 

4.1.3  The Question Component of the Survey 

 The final component of the survey was the questioning.  Like the Aerts et al. 

(2003a) study, the survey began with a short ‘background’ section to determine the level 

of expertise of the participant.  The research focused on two specific ‘expert’ groups:  (1) 

GIScientists who prepare and reads maps daily for decision makers and (2) domain 

experts who specifically use floodplain maps for decision making.  The background 

survey presented two triplets of questions aimed at determining the expertise level in 

each of the two expert groups.  The first question in each triplet surveyed the degree of 

education or training in the topic (‘Have you taken a course of map design or map use?’ 

or ‘Have you taken a course in flood events, hydrology, or risk management?’), the 

second question in each triplet surveyed the degree of work experience in the topic (Does 
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your current or previous job require you to design or use maps in anyway?’ or ‘Does your 

current or previous job require you know about flood events, hydrology, or risk 

management?’), and the final question in each triplet surveyed the self-reported expertise 

level in the topic at the ordinal level (novice, intermediate, and expert).  The term 

expertise level was defined as the response to these initial questions and these tabulations 

were used to determine if there were any significant differences in performance across 

expertise level in education, work experience, and self-reporting.   

 After completion of the background survey and the training session, the series of 

related maps and legends were loaded in a randomized order.  For each map-legend pair, 

the participants were required to answer three questions.  The first question varied based 

on the number of sites included in the map.  When one-site maps were displayed, the first 

question required the participant to assess the flood risk of the site on a scale of 1-5 (‘1’ 

being safely located and ‘5’ being insecurely located).  When three-site maps were 

displayed, the first question required the participant to rank the three locations based on 

their relative flood risk.  The term decision or decision task was defined as the response 

to this first survey question.  Because of the nature of uncertainty, there is no ‘correct’ 

response for this first question, and instead all results were compared to the average 

response.   

 The second and third questions for each map-pair were follow-up questions for 

the initial risk assessment.  The second question asked the participant to rank the 

difficulty of the risk assessment on a scale of 1-5 (‘1’ being an easy siting decision and 

‘5’ being a difficult siting decision).  The term decision difficulty or perceived decision 

difficulty was defined as the response to this second question.  Although the four versions 



 Roth 56 

of each uncertainty map were intended to create a varying degree of decision difficulty 

throughout the survey much like the Leitner and Buttenfield (2000) study, this second 

question allowed for the recording of a perceived decision difficulty, independent of the 

investigator-defined difficulty grouping.  The third question asked the participant to rank 

his or her confidence in the risk assessment on a scale of 1-5 (‘1’ being least confident 

that the decision was correct and ‘5’ being most confident that the decision was correct).  

The term confidence was defined as the response to this third question.   

 Tallying each question triplet for each map-legend pair, along with the six initial 

background questions, leads to a total of seventy recorded user-input questions.  

However, the time that the participant took to answer each question in the main survey 

was also recorded.  The term decision speed was defined as the time (in seconds) that the 

user took to answer an individual question.  For the first question in the triplet, the time 

was defined as the number of seconds from when the map completed loading to the 

selection of an answer.  For the second and third question in the triplet, the time was 

defined as the number of seconds between the response input of the previous question 

and the response input of the current question.  It is acknowledged that the recording of 

time in an uncontrolled environment is highly problematic, and it will be suggested that 

any significant findings in time be verified under a controlled laboratory experiment.  The 

final recorded variable from the online survey is the order in which the map-legend pairs 

were shown to the participant, pushing the total recorded variables to 135 (six 

background survey, sixty-four user-input in the main survey, sixty-four time-based in the 

main survey, and the order of the map-legend pairs).   
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4.2  Qualitative Focus Groups 

 The second section of the research, the focus groups, was used to complement the 

digital survey, attempting to move beyond the outcomes of the decision making process 

and attempt to learn something about the process itself.  The focus groups were organized 

to be composed of 2-4 subjects and to take one full hour.  Unlike the digital survey, 

participation in the focus groups was restricted to domain experts in floodplain mapping.  

Reasoning for the exclusive use of domain experts was three-fold.  Firstly, the years of 

experience in floodplain mapping helped the domain expert comment on how geospatial 

data uncertainty enters into floodplain mapping, and further, which type of geospatial 

uncertainty was most influential in the decision making process and why.  Secondly, 

interviewing domain experts allowed for the teasing out of any disconnects between 

suggestions in the academic literature and actual conduct by practitioners.  Finally, each 

subject was compensated $20 for their participation.  Because the funding backing this 

section of the research was limited, it was deemed more cost-effective to limit the 

participation to experts.   

  

4.2.1  Interview Organization 

 The interview began with the completion of a consent form providing a brief 

explanation of the study and outlining the rights of the research participant.  In the 

consent form, the participants were informed that the research was authorized by both the 

University of Wisconsin-Madison, that they could refrain from answering any question, 

and that the interviews would be voice recorded with digital devices.  Participants were 

also asked in the consent form to confirm that they have completed the online digital 
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survey as a precursor to the interviews.  Finally, the same biographical survey described 

in Section 4.1.3 was circulated to ensure that those tested were experts. 

 Questioning during the interview was kept informal and open-ended, following 

Eyles’ (1988, as cited in Valentine 1997, p111) idea that an interview should be a 

“conversation with a purpose,” rather than a rapid-fire series of predetermined questions.  

Further, all questions were posed with the goal of neutrality so to not lead the 

participants, with any questions concerning the research angle or the researchers’ 

opinions deferred to the final ten minutes of the interview session.  The following are the 

three primary themes that were covered during the interviews.  Again, the ordering of 

these questions was fluid and, because of the open structure, many of these prewritten 

questions were not discussed in all of the sessions. 

 (1) Overview of Uncertainty in Floodplain Mapping:  Each session opened by 

first discussing uncertainty generically to get an overview on the subjects’ understanding 

of the topic.  Each participant was asked to define uncertainty in geospatial data and 

provide real-world examples.  It was hoped that having everyone provide a unique 

definition would emphasize the idea that uncertainty can take many forms, although no 

reference to a typology was made by the investigator.  Following the overview, the 

discussion was turned to how uncertainty enters into the specific domain of floodplain 

mapping.  Example questions posed here include: ‘How has uncertainty entered into 

floodplain mapping in your experience?’, ‘Has uncertainty changed the way you collect 

floodplain data or make floodplain maps?’, and ‘How do you represent uncertainty in 

your floodplain maps?’  The purpose of these questions was to provide initial insight into 

how domain experts deal with uncertainty in floodplain maps as well as to have the 
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subjects volunteer different types of uncertainty before the MacEachren et al. (2005) 

typology was addressed.  During this opening section of questioning, the investigator did 

not prompt the participants with a definition of the term uncertainty or suggestions of 

different types of uncertainty. 

 (2) Discussion of the MacEachren et al. (2005) typology:  At approximately 

twenty minutes into the interview, a sheet explaining the MacEachren et al. (2005) 

typology (as shown in the conclusion of Chapter 2) was circulated and the participants 

were given several minutes to examine it.  The only instruction provided while 

circulating the typology sheet was to try to think of examples of each of the types in the 

domain of floodplain mapping.  Once the reading of the list was completed, the 

participants were asked to provide real-world examples of each type, both hypothetical 

and observed.  Participants were not discouraged from offering multiple examples of a 

single type or from offering examples from a type that was already discussed.  After this 

brainstorming, the subjects were asked if the typology reflects the real-world.  Example 

questions posed here include: ‘Do any of these types not apply to the uncertainty that is 

found in floodplain mapping?’, ‘Are there any types of uncertainty in floodplain mapping 

that is not included in this list?’, and ‘Does knowing about this list change the way you 

would work with uncertainty in floodplain mapping?’  Throughout the second section of 

questioning, the investigator only answered questions that asked for clarification of a 

particular uncertainty type definition; no examples were provided. 

 (3) Determining the Influence of Each Type of Uncertainty:  The final section 

of the interview aimed at understanding which uncertainty types were relied upon during 

decision making and why these types were used with such importance.  Several variations 
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of the same question were asked during this session, including: ‘When making a decision 

off of a floodplain map, which uncertainty type(s) would you weight most heavily?’, 

‘When making a decision off of a floodplain map, which uncertainty type(s) do you think 

is (are) the most important to represent?’, and ‘If you were to be informed that 

uncertainty exists in a particular type(s), which informed type(s) would cause you to 

approach a decision task with the most caution?’  While posing the same question in 

different ways was used to stimulate discussion, responses to any of these questions were 

used to define the term influence.  It is important to note that for each question posed, 

participants were also asked to list the least influential type(s).  Finally, the participants 

were asked if the most influential type would change based on a particular situation or 

context, as well as if there would be a change in influence when the consequences of an 

incorrect decision increased or decreased.  Subjects were then asked to explain this shift 

with real-world examples.  Although the idea of decision difficulty was never discussed, 

this line of question was used to see if the term ‘influence’ varies according to the 

difficulty of the decision.   

 The final five to ten minutes of the interview were reserved to allow the 

participants to ask questions about the research theory and methodology.  During this 

time, data CDs containing important literature on geospatial data uncertainty and 

documents describing the research in more depth were distributed as intellectual 

compensation in addition to the monetary compensation provided.  It is not until this time 

that the primary research questions posed in the opening chapter were revealed, as well as 

any initial findings from the online survey or preliminary hypotheses generated by the 
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investigator.  The interview sessions were concluded precisely sixty minutes after their 

initiation.   
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CHAPTER 5 – Results and Discussion 

 

5.1  Results of the Quantitative Online Survey  

 A link to the online quantitative survey was emailed to a total of 135 potential 

participants and was completed by 56 participants, producing a surprisingly high survey 

response rate of 41.5%.  Among those asked were university faculty and graduate 

students studying GIScience and fluvial processes, as well as private, state, and federal 

level professionals working in the GISciences and floodplain mapping.  Due to the 

anonymous nature of the survey, it is uncertain how well each of these groups was 

represented.  The survey was left online for a total of four weeks from mid-February 

2007 thru mid-March 2007.  

 As explained in Section 4.1.1, there were four different map versions for each 

type of uncertainty tested.  The first three versions represented only a single site on the 

map and required the participant to assess flood risk of the portrayed site.   Conversely, 

the fourth version portrayed all three of the sites from the first three versions together on 

a single display and required the participant to rank the sites based on their relative risk of 

flooding.  Because of the increased task complexity of the fourth version from the first 

three, summary statistics for the terms decision task, decision speed, decision difficulty, 

and confidence were calculated separately for one-site and three-site maps in Sections 

5.1.1 and 5.1.2.  It is not until the decision difficulty was taken into account in Section 

5.1.3 that the results from the two groups were pooled.   

 As explained in Section 4.1.3, assessment questions concerning the three-site 

maps required the participant to rank the sites (consistently labeled ‘Site A’, ‘Site B’, and 
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‘Site C’) on an ordinal scale from low risk to high risk.  To represent the decision task 

responses for three-site versions in a tabular fashion, the response was divided into three 

variables, termed site-A ranking, site-B ranking, and site-C ranking relating to the label 

given to the site on the map.  These rankings were converted to numbers, similar to the 

assessment questions for the one-site maps, so that the site with the lowest risk was given 

a ‘1’, the site with an intermediate degree of risk was given a ‘2’, and the site with the 

highest risk was given a ‘3’.  The answer deemed correct by the investigator prior to the 

proctoring of the survey was B-C-A (from lowest risk to highest risk) on all six maps, 

although it was not assumed that this ranking would be reflected in the collected data.  

Because of this, the expected site-A ranking was a value of ‘3’, the expected site-B 

ranking was a value of ‘1’, and expected site-C ranking was a value of ‘2’.  Finally, it is 

important to note that the decision speed associated with the three-site versions still 

aggregated the time taken to rank each of the three sites into a single value, as the time 

spent for an individual ranking was dependent on the order in which the sites were 

ranked. 

 After each participant selected their answer for decision task, decision difficulty, 

and confidence, an accompanying speed was also recorded, representing the amount of 

time, in seconds, that the user needed to complete the survey question.  As described in 

section 4.1.3, recording speed in an uncontrolled environment is problematic, and was the 

most significant drawback to disseminating the survey online.  As expected, two 

participants exhibited a single, dramatic increase (>10x the average response time) in the 

recorded speed sometime during the survey.  This spike in the speed recordings likely 

represented a period when the participant shifted attention away from survey (e.g. phone 
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call, browsing another website, etc.).  Both of these speed spikes were associated with 

questions concerning the decision task variable while the one-site map versions were 

displayed; speed recordings for the decision difficulty and confidence responses did not 

exhibit any unexpected spikes nor did the decision task responses associated with the 

three-site map versions.  As of such, summary statistics and hypothesis tests were 

conducted for an adjusted decision task speed variable that removed the two spikes, 

decreasing the sample size from 56 to 54 for all adjusted speed statistics.   The speed 

recordings for the responses to the decision difficulty and confidence questions were not 

included in the Section 5.1 analysis because they were highly varying and statistically 

insignificant.  Because of this, the term decision speed was redefined to describe only the 

amount of time a participant needed to answer the initial decision task question.  Finally, 

all statistics provided in the following sections on decision speed are in the units of 

seconds. 

 

5.1.1  Examining the Results across Uncertainty Type 

 Table-2 provides the descriptive statistics for the decision task, decision speed, 

decision difficulty, and confidence variables for each of the six first-order types of 

uncertainty displayed in the survey.   Provided in Table-2 are individual calculations of 

mean and standard deviation for each uncertainty type and an overall calculation 

independent of uncertainty type.   The summary statistics were calculated separately for 

responses to one-site and three-site maps.   
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Variable Acc/Err Proxy Completeness Cred./Source Currency Prec/Res Subjectivity Overall 

  avg std avg std avg std avg std avg std avg std avg std 

Decision Task 3.065 1.027 3.232 1.257 3.256 1.027 3.321 1.128 3.173 1.163 3.339 0.110 3.241 1.121 

Decision Speed 26.218 20.693 68.235 628.761 25.688 23.161 42.607 216.027 24.115 18.518 27.285 18.756 35.858 271.733

Adjusted Decision Speed 26.272 20.971 21.006 13.437 25.453 22.809 25.731 21.101 23.904 18.691 26.976 18.568 24.890 19.543

Decision Difficulty 2.089 0.867 2.571 1.329 2.280 0.978 2.220 0.975 2.232 0.954 2.387 0.941 2.297 1.027 O
ne

-S
ite

 

Confidence 3.738 0.937 3.214 1.350 3.595 0.98 3.619 1.002 3.732 0.994 3.613 0.935 3.585 1.055 

Site-A Ranking 2.679 0.636 2.339 0.769 2.625 0.620 2.661 0.581 2.536 0.660 2.554 0.570 2.565 0.648 

Site-B Ranking 1.214 0.530 1.375 0.676 1.161 0.458 1.304 0.658 1.124 0.494 1.089 0.394 1.226 0.549 

Site-C Ranking 2.107 0.493 2.143 0.672 2.214 0.530 2.036 0.571 2.214 0.624 2.357 0.520 2.179 0.576 

Decision Speed 44.790 30.141 32.605 24.306 44.979 33.693 42.359 35.022 40.793 30.335 54.862 38.329 43.398 32.706

Decision Difficulty 2.357 1.086 2.821 1.377 2.839 1.125 2.732 1.07 2.589 1.075 2.911 1.133 2.708 1.156 Th
re

e-
Si

te
 

Confidence 3.482 1.191 2.893 1.289 3.250 1.179 3.393 1.123 3.500 1.095 3.357 1.086 3.313 1.172 
  
Table-2:  The summary statistics for the decision task, decision speed, decision difficulty, and 
confidence variables, separated across uncertainty type.  Shown in the table are the mean (‘avg’) and 
standard deviation (‘std’).  The values for decision task, decision difficulty, and confidence are 
reported on a scale of ‘1’ to ‘5’ and the values for decision speed and adjusted decision speed are in 
seconds. 
 

 When running individual statistical Z-tests, no single map displayed significance 

in decision task, decision difficulty or confidence.  This result is logical, as a Z-test relies 

heavily on the variance of the population.  Because the entire population contained 

responses to questions of varying difficulty, the variation of the responses when grouped 

solely by uncertainty type was expected to be quite large.  For example, the spread of the 

data for the one-site decision task variable produced a variance so large (1.121) that 

finding statistical significance was impossible (with a 95% confidence interval of 0.999-

5.483 when the range of answers is only from 1-5).  Rather than comparing each 

grouping against the entire population, each variable instead was tested using an analysis 

of variance (ANOVA) hypothesis test.  The ANOVA statistical test required the 

acceptance of two primary assumptions (Aczel and Sounderpandian 2006): 
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 (1)  the populations were normally distributed and randomly sampled 

 (2)  although the means of each population may have been different, the variances 
  of each population were equal 
 

Figures in Table-2 are provided mostly for summary purposes, but also to validate the 

assumption of homogeneity of variance.  It was also assumed that the data conforms to a 

normal distribution due to the large sample size.   

 A one-way ANOVA hypothesis test, using uncertainty type as the grouping 

factor, was conducted for each of the eleven variables summarized in Table-2.  For each 

test, the null hypothesis was that there was no difference among the six uncertainty 

groupings3.  Table-3 summarizes the results of these ANOVA hypothesis tests.  Findings 

that are significant at alpha = 0.05 are bolded.   

 

Variable Overall 
    F-stat p-value 

Decision Task 1.801 0.110 

Decision Speed 0.712 0.614 

Adjusted Decision Speed 1.990 0.078 

Decision Difficulty 4.436 0.001 O
ne

-S
ite

 

Confidence 5.703 0.000 

Site-A Ranking 2.105 0.064 

Site-B Ranking 1.942 0.087 

Site-C Ranking 2.098 0.065 

Decision Speed 2.798 0.017 

Decision Difficulty 1.773 0.118 Th
re

e-
Si

te
 

Confidence 2.091 0.066 
 
Table-3:  A set of one-way analysis of variance (ANOVA) hypothesis tests using uncertainty type as 
the grouping factor.  Findings that are significant at alpha = 0.05 are bolded. 
 

                                                 
3  H0: µaccuracy = µcompleteness = µcredibility = µcurrency = µprecision = µsubjectivity 
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 Of the eleven ANOVA tests conducted, three were found to be significant at alpha 

= 0.05.  It is important to note that an added five tests were significant at alpha = 0.10, 

and two more tests were almost significant at this alpha level.  Only the unadjusted 

decision speed on one-site maps, included in this initial test to contrast the adjusted 

decision speed, was not near rejection of the null hypothesis.  These hypothesis tests 

provided initial evidence that for simple decisions, the type of uncertainty represented 

significantly influenced the map reader’s perceptual difficulty in making a decision (p-

value of 0.001) and their personal confidence in the decision that was made (p-value of 

0.000).  Further, the analysis suggested that the type of uncertainty that was represented 

perhaps influenced the decision outcome (p-value of 0.110) and the time it took to arrive 

at this outcome (p-value of 0.078), although more testing is required to see if this 

connection is statistically significant.  For more difficult tasks, the analysis suggested that 

uncertainty type significantly impacted the amount of time it took to make a decision (p-

value of 0.017) and was perhaps influential on the decision outcome (p-value of 0.064, 

0.087, and 0.065 for the three site rankings), the perceptual difficulty of making the 

decision (p-value of 0.118), and the confidence in the decision (p-value of 0.066).  These 

initial findings were very suggestive that the type of uncertainty that was represented 

played an important role in the decision making process. 

 Following the ANOVA hypothesis testing, Tukey Pairwise-Comparison tests 

were conducted to see which of the groups from the ANOVA testing caused the rejection 

of the null.  The null hypothesis is rejected as long as a single tested group was 

significantly different from any other group in the ANOVA test.  The Tukey Pairwise-

Comparison test examines each possible pairing of groups tested during ANOVA using a 
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single, “family” level of significance (Aczel and Sounderpandian 2006).  For each Tukey 

comparison, the null hypothesis was that there was no difference between the two groups 

at hand4.  The Tukey test was a more appropriate way to pinpoint the significant 

difference than the use of multiple Z- or Student-T tests.  Table-4 provides a listing of the 

significantly different pairings from the eleven ANOVA hypothesis tests:   

  

Variable Overall 
    significant at alpha = 0.05 significant at alpha = 0.01 

Decision Task none none 

Decision Speed none none 

Adjusted Decision Speed none none 

Decision Difficulty completeness vs. currency acc./err. proxy vs. completeness 

  completeness vs. precision/resolution   

Confidence completeness vs. credibility/source acc./err. proxy vs. completeness 

    completeness vs. credibility/source 

    completeness vs. precision/resolution 

O
ne

-S
ite

 

    completeness vs. subjectivity 

Site-A Ranking none none 

Site-B Ranking none none 

Site-C Ranking currency vs. subjectivity none 

Decision Speed currency vs. subjectivity completeness  vs. subjectivity 

Decision Difficulty none none Th
re

e-
Si

te
 

Confidence none none 
 
Table-4:  A listing of the significantly different group pairings underlying the ANOVA results in 
Table-3.  The data was produced using the Tukey Pairwise-Comparison test.  Any pairing not 
showing on the table was found to not be significant at alpha = 0.05.   
 

 Results from the Tukey test uncovered two interesting occurrences in the survey 

data.  For the one-site responses, the completeness group differed strongly with almost all 

of the other groups for both decision difficulty and confidence.  When revisiting the 

summary statistics, completeness had a higher average decision difficulty and a smaller 

average confidence value than the other five uncertainty types.  This evidence suggested 

                                                 
4  H0: µA = µB 



 Roth 69

that for simple decisions, the representation of completeness increased the difficulty of 

making a decision and decreased the confidence in this decision compared to the 

representation of other uncertainty types.  When evaluating the summary statistics for the 

three-site responses, the completeness group also had one of the highest average decision 

difficulties and had the lowest average reported confidence, although these levels were 

not found to be statistically significant at alpha = 0.05.  Because the null was accepted for 

decision task and decision speed on one-site maps, the Tukey analysis did not report any 

significantly different grouping in these variables at alpha = 0.05.       

 For the three-site responses, there was conflict between currency and subjectivity, 

showing significance in both the site-C ranking and the decision speed variables.  When 

examining the summary statistics, the participants were able to rank ‘Site C’ most 

effectively when currency was represented (as the average is closest to a ‘2’) and least 

effectively using subjectivity (where the average is the furthest from a ‘2’).  Similarly, 

subjectivity showed the highest average value for decision speed with currency providing 

the second lowest.  This evidence suggested that subjectivity decreased the ability to 

make the correct decision outcome for complex tasks, while the representation of 

currency increased this ability.  Paralleling this, subjectivity increased the amount of time 

needed to arrive at a decision, while currency decreased the amount of time necessary to 

make a decision.  These findings, however, do not transfer well to the one-site responses.  

 Perhaps the most interesting result from the Tukey test was the high degree of 

division in decision speed between the completeness and subjectivity groupings.  

Although the completeness group appeared to influence decision difficulty and 

confidence negatively, the participants were able to respond closer to the expected result 
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in a quicker fashion when completeness was represented.  Although the highly significant 

finding in speed may be a product of the recording of speed in an uncontrolled 

environment, the investigator theorizes that this result may be caused by the ability of the 

participants to degrade completeness down to a binary choice (either present or absence) 

when making a decision, while the other uncertainty types remain, at least to a degree, 

ratio level.  This hypothesis of creating binaries or thresholding is discussed in more 

detail in Section 5.2.3. 

 

5.1.2  Examining the Results across Expertise level 

 Following the initial look at the survey results, it was analyzed across the 

expertise level information collected in the background survey.  As discussed in Section 

4.1.3, the survey allowed for the definition of expertise level in three ways: 

   
  (1)  amount of education/training 
 
  (2)  amount of work experience 
 
  (3)  self-reported 
 
 
The data was evaluated across all three definitions of expertise level for both GIScience 

experts and domain experts, producing six categories of expertise.  Table-5 summarizes 

the frequency tallies of expert versus novice in each of the six categories.  A major issue 

discovered before analysis of the data was the under-sampling of GIScience novices with 

a more uniform distribution along domain expertise.  The even split of domain expertise 

suggested that many of the domain experts also listed themselves as GIScience experts.  

The investigator expected the two types of expertise to be, to a degree, mutually 
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exclusive.  Due to the lack of novice sampling against which to compare the experts, all 

findings about the relationship between GIScience expertise level and decision making 

must remain speculative.   

 

  Expertise Category Expert Intermediate Novice 
Education/Training 47 n/a 9 

Work Experience 42 n/a 14 

G
IS

ci
en

ce
 

Self-Reporting 40 14 2 

Education/Training 26 n/a 30 

Work Experience 21 n/a 35 

D
om

ai
n 

Self-Reporting 10 34 12 
 
Table-5:  Survey participation between expert and novice.  This study adopted three definitions of 
expertise level (education/training, work experience, and self-reporting), and identified two different 
types of relevant expertise (GIScience and domain).    
 
 

Similar to Section 5.1.1, the results were split between one-site and three-site maps and 

ten variables were examined (all variables from Section 5.1.1 excepting the unadjusted 

decision speed).  Descriptive statistics for one-site maps were not included due to length. 

 Several amendments to the ANOVA approach described in the previous section 

were required when examining the survey responses across the factor of expertise level.  

Both the interaction of expertise level on the entire population and the influence of 

expertise level on individual uncertainty types were of interest.  Ideally, a two-way 

ANOVA hypothesis test would have been conducted to efficiently answer both questions.  

The two-way ANOVA approach required that each cell in the factorA-by-factorB matrix 

contained an equal sample size, but the sampling distributions among different groupings 

of expertise were not uniform (Aczel and Sounderpandian 2006).  A multiple regression 

hypothesis test is typically conducted when cell sample size varies, but could not be 
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implemented in this situation due to the qualitative nature of the expertise level variable.  

As of such, expertise level and uncertainty type could not be examined jointly in a single 

test, requiring the completion of a separate hypothesis tests based on the expertise level 

division for each type of uncertainty, as well as a seventh hypothesis test on the expertise 

level division for the entire dataset.  Employing such a large number of hypothesis tests 

increased the probability of rejecting the null when it should be accepted by increasing 

the number of Bernoulli trials, and therefore increasing the likelihood of making false 

claims of significance.  This was a second reason for making any findings speculative.  

Due to these issues, discussion was limited to when the data was evaluated wholly in the 

seventh version of testing. 

 Hypothesis testing of the expertise level utilized two different types of tests:  

difference of means tests for expertise level definitions that contained only two categories 

(education/training and work experience) and ANOVA tests for expertise definitions that 

contained three categories (self-reported).  Table-6 and Table-7 describe the difference of 

means and ANOVA hypothesis tests respectively.  For the difference of means tests, the 

null hypothesis was that there was no difference between expert and novice5, and for the 

ANOVA tests, the null hypothesis was that there was no difference among the three self-

reported expertise categories6.  It is important to note that the expert group was treated as 

the lead in each hypothesis test.   

 

 
 
 

                                                 
5  H0: µexpert = µnovice 
6  H0: µexpert = µintermediate = µnovice 
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Variable Overall 
    t-stat p-value 

Decision Task 1.995 0.046 

Adjusted Decision Speed 0.797 0.426 

Decision Difficulty -4.032 0.000 

Ed
uc

at
io

n 

Confidence 6.453 0.000 

Decision Task 1.216 0.224 

Adjusted Decision Speed 0.923 0.356 

Decision Difficulty -0.146 0.884 G
IS

ci
en

ce
 E

xp
er
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e 

W
or

k 

Confidence 5.707 0.000 

Decision Task 3.064 0.002 

Adjusted Decision Speed 0.946 0.344 

Decision Difficulty 1.303 0.193 

Ed
uc

at
io

n 

Confidence 2.888 0.004 

Decision Task 3.316 0.001 

Adjusted Decision Speed 2.200 0.028 

Decision Difficulty -2.102 0.036 

O
ne

-S
ite

 

D
om
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e 
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Confidence 5.942 0.000 

Site-A Ranking 1.502 0.134 

Site-B Ranking -1.025 0.306 

Site-C Ranking -0.607 0.544 

Decision Speed -0.820 0.413 

Decision Difficulty -3.631 0.000 

Ed
uc

at
io

n 

Confidence 4.272 0.000 

Site-A Ranking 0.486 0.627 

Site-B Ranking 0.459 0.647 

Site-C Ranking -1.093 0.275 

Decision Speed -0.003 0.997 

Decision Difficulty -3.687 0.000 

G
IS

ci
en
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 E
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e 
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Confidence 3.525 0.000 

Site-A Ranking 0.470 0.639 

Site-B Ranking 1.340 0.181 

Site-C Ranking -2.071 0.039 

Decision Speed 0.978 0.329 

Decision Difficulty 0.425 0.671 

Ed
uc

at
io

n 

Confidence 0.863 0.389 

Site-A Ranking 1.000 0.318 

Site-B Ranking 2.169 0.031 

Site-C Ranking -1.272 0.204 

Decision Speed 1.482 0.139 

Decision Difficulty -2.381 0.018 

Th
re

e-
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D
om
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Ex
pe

rt
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W
or
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Confidence 3.280 0.001 
 
Table-6:  Difference of means hypothesis testing based on the expertise definition of 
education/training or work experience.  Participants could only select ‘expert’ or ‘novice’.   
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Variable Overall 
     F-stat p-value 

Decision Task 0.863 0.422 

Adjusted Decision Speed 1.435 0.239 

Decision Difficulty 11.470 0.000 

G
IS

ci
en

ce
 

Confidence 20.858 0.000 

Decision Task 5.159 0.006 

Adjusted Decision Speed 5.976 0.003 

Decision Difficulty 9.292 0.000 

O
ne

-S
ite

 

D
om
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Confidence 20.088 0.000 
Site-A Ranking 3.543 0.030 
Site-B Ranking 1.531 0.218 

Site-C Ranking 2.557 0.079 

Decision Speed 2.830 0.060 

Decision Difficulty 5.835 0.003 G
IS

ci
en

ce
 

Confidence 4.687 0.010 
Site-A Ranking 4.195 0.016 
Site-B Ranking 2.070 0.128 

Site-C Ranking 1.198 0.303 

Decision Speed 8.005 0.000 
Decision Difficulty 2.625 0.074 

Th
re

e-
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D
om
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Confidence 1.196 0.304 
 
Table-7:  ANOVA hypothesis testing results using the expertise definition of self-reporting as the 
grouping factor.  For this background question, the participant was able to rank themselves as 
‘expert’, ‘intermediate’, or ‘novice’.   Findings that are significant at alpha = 0.05 have been bolded. 
 
 

 Results of the ANOVA and difference of means hypothesis tests showed a 

significant difference along expertise level groupings for both decision difficulty and 

confidence.  Of the twelve hypothesis tests conducted for the variable decision difficulty 

in Table-6 and Table-7 (one for each of the six definitions of expertise level, performed 

for both the one-site and three-site maps), eight of the tests returned significance at alpha 

= 0.05.  Of particular interest were the associated p-values with the decision difficulty 

tests that displayed significance.  Six of the hypothesis tests returned a p-value 

approaching ‘0’, suggesting an infinitesimal chance of rejecting the null hypothesis when 

it should be rejected.  The type of expertise level definition used or the complexity of the 
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task had an inconclusive influence on decision difficulty, as no pattern was uncovered 

concerning the four hypothesis tests that did accepted the null hypotheses. 

 The difference of means and ANOVA hypothesis tests provided an even larger 

amount of evidence connecting expertise level to the variable confidence.  Of the twelve 

hypothesis tests conducted on confidence  (one for each of the six definitions of expertise 

level, performed for both the one-site and three-site maps), ten returned a significance at 

alpha = 0.05, expanding upon the eight significant tests found for the variable decision 

difficulty.  All ten of these tests reported statistical significance at alpha = 0.01, with most 

of the p-values approaching ‘0’.  The two tests that did not reject the null hypothesis 

occurred when using domain expertise on the three-site maps, a result that is also found 

in the decision difficulty hypothesis tests.   

 When re-examining the summary statistics, the average reported decision 

difficulty for nearly every single definition of experience was lower than its novice or 

intermediate counterparts and the average reported confidence for all definitions of 

expertise level was higher than its novice or intermediate counterparts.   In summary, the 

analysis suggested that an increase in expertise level significantly decreased the 

perceived difficulty of making a decision and significantly increased the confidence in 

the decision that was made.  These findings are logical, as it can be inferred that a person 

with experience assessing flood risk would have an easier time arriving at a decision and 

would be more confident that the decision he or she made was correct.   

 Compared to decision difficulty and confidence, the analysis on decision task and 

decision speed exhibited a larger degree of variation and was much less conclusive.  For 

the decision task variable, the only noticeable link to expertise level appeared for domain 
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experts when answering questions for one-site maps.  This link only slightly remains 

when examining decision speed for domain experts on the three-site maps.  For 

GIScience experts on both map versions and domain experts on the three-site maps, there 

appeared to be no relationship between expertise level and decision task or decision 

speed.  The contrast between decision task and decision speed versus decision difficulty 

and confidence exemplified a potentially dangerous issue when representing uncertainty 

for expert use in decision making.  Although the expert may feel that it is becoming 

increasingly easier to make decisions under uncertain conditions as he or she gains 

expertise, and thus increasing the confidence in these decisions, the actual decision 

outcomes are not improving in a parallel fashion as experience is added.  Although there 

is early evidence that domain experts may be improving their ability to complete simple 

decision tasks under uncertain conditions, this above concern remains due to the inability 

to transition the improvement to all definitions of expertise or to more difficult tasks.   

 

5.1.3 Examining the Results across Decision Difficulty 

 Similar to the analysis on expertise level in Section 5.1.2, the online digital survey 

allowed for multiple definitions of the term decision difficulty.  The digital survey results 

were analyzed using two forms of decision difficulty: 

 
  (1) self-reported 
 
  (2) investigator-defined  
 
 
The first definition of decision difficulty used the participant responses for the second 

question in each map-legend pair question triplet, defined as the variable decision 
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difficulty in previous sections.  As discussed in Section 4.1.3, the subjects could rate the 

perceived difficulty on a scale of ‘1’ through ‘5’.  It is important to note that the 

responses were now pooled across the one-site and three-site maps, with exception to the 

decision task variable.   

 The number of subjects responding with a perceived difficulty in each of the five 

categories was highly varying, with the majority of subjects responding with a value of 

‘2’ or ‘3’.  The frequency tally showed a comparable distribution of the decision 

difficulty rankings for all of the types of uncertainty excepting completeness.  Compared 

to the other types of uncertainty, the distribution for completeness was skewed greatly to 

the left.  This shift in frequency distribution suggests that the subjects had a greater 

amount of difficulty in answering questions associated with the completeness maps.  This 

increase in decision difficulty was also reflected in Table-2.   

 Similar to Section 5.1.2, the non-uniform cell frequency in the factorA-by-factorB 

matrix required the running of a separate ANOVA test for each of the six types of 

uncertainty across the five decision difficulty response groups, as well as a seventh 

hypothesis test on decision difficulty for the entire dataset.  A series of one-way ANOVA 

hypothesis tests were conducted, all using the null hypothesis that there was no difference 

in the variable being tested across the five decision difficulty groups7.  Due to the 

problems with running a multitude of hypothesis tests described in Section 5.1.2, the 

discussion was limited to the tests that analyzed the entire dataset.  Table-8 summarizes 

the six hypothesis tests using the factor decision difficulty conducted on the variables 

decision task (for one-site maps), site-A ranking, site-B ranking, site-C ranking, adjusted 

                                                 
7  H0: µdifficulty5 = µdifficulty4 = µdifficulty3 = µdifficulty2 = µdifficulty1 
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decision speed, and confidence.  No Tukey tests were conducted due to the inherently 

ordinal nature of the five decision difficulty groups.  

 

Variable Overall 
 F-stat p-value 

One-Site Decision Task 0.992 0.411 

Site-A Ranking 6.445 0.000 

Site-B Ranking 3.709 0.006 

Site-C Ranking 1.260 0.286 

Adjusted  Decision Speed 5.118 0.000 

Confidence 229.723 0.000 
 
Table-8:  A set of one-way analysis of variance (ANOVA) hypothesis tests using decision difficulty as 
the grouping factor.  Findings that are significant at alpha = 0.05 have been bolded. 
  

 The ANOVA hypothesis tests showed that the five categories of self-reported 

decision difficulty exhibit a significant difference for the variables decision speed and 

confidence at alpha = 0.01.  This was initial evidence that an increase in the perceived 

difficulty of the task significantly slowed the speed in arriving at a decision (p-value of 

0.000) and significantly decreased the confidence that the decision maker had in the made 

decision (p-value of 0.000).  However, the results for decision task were much less 

conclusive.  While the site-A and site-B ranking for three-site maps were statistically 

significant at alpha = 0.01, the one-site decision task variable and the site-C ranking were 

not significant.  The investigator theorizes that the significance found for the site-A and 

site-B rankings perhaps were due to the small sampling size in several of the self-reported 

decision groups (with the size getting as small as n=2 in some cells).  Testing of a larger 

sample is required to validate these preliminary findings concerning the connection 

between decision difficulty and decision task.  
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 The second version of decision difficulty used for the research was investigator-

defined.  As discussed in Section 4.1.1, the investigator designed the four map versions 

with an assumed ordinal level of difficulty.  It was expected that the four versions would 

increase in difficulty in the following order: the site-B one-site map, the site-C one-site 

map, the site-A one-site map, and the three-site map depicting sites A, B, and C together.  

When evaluating the summary statistics, it was interesting to find that the overall 

averages did not conform to the assumed ordinal ranking of map versions.  As expected, 

responses to the site-B one-site maps had the lowest decision speed and decision 

difficulty, with the highest associated confidence level, and responses to the three-site 

maps had the highest decision speed and decision difficulty, with the lowest associated 

confidence level.  However, the site-A and site-C one-site maps were reversed from the 

assumed order in the variables decision speed, decision difficulty, and confidence.  

Conversely, responses to the variable decision task did follow the ordinal ranking 

assumed by the investigator.  Such a mixture may suggest that the difficulty of the site-A 

and site-C versions was more similar than expected by the investigator.   

 Because each cell in the factorA-by-factorB matrix had an equal sample size 

when grouping the results based on the investigator-defined decision difficulty, a series 

of two-way ANOVA hypothesis tests were conducted.  Two-way analysis of variance 

testing answers the following three questions about a dataset (Aczel and Sounderpandian 

2006): 

  
  (1) is there is a significant difference in the grouping of factor A? 
  
  (2) is there is a significant difference in the grouping of factor B? 
  
  (3) is there is a significant interaction between factor A and B? 
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The factors used in the two-way ANOVA were the four groupings of investigator-defined 

decision difficulty and the six groupings of uncertainty type.  Because of the inclusion of 

uncertainty, the two-way ANOVA results helped to expand and verify the discussion 

from Section 5.1.1.  The null hypothesis for both the decision difficulty8 and uncertainty 

type9 factors was that there was no difference among groups, addressing the first two 

bulleted points from above.  The null hypothesis for the third bulleted question was that 

there was no interaction between factors.  Table-9 summarizes the results for the two-way 

ANOVA hypothesis tests.   

 

 Variable Question Overall 
    F-stat p-value 

Decision Difficulty 392.384 0.000 

Uncertainty Type 1.933 0.103 Decision Task 

Interaction 4.539 0.000 

Decision Difficulty 44.448 0.000 

Uncertainty Type 6.767 0.000 Adjusted Decision Speed 

Interaction 1.926 0.028 

Decision Difficulty 15.111 0.000 

Uncertainty Type 3.343 0.010 Decision Difficulty 

Interaction 4.329 0.000 

Decision Difficulty 6.500 0.000 

Uncertainty Type 8.368 0.000 Confidence 

Interaction 4.144 0.000 
 
Table-8:  A set  of two-way ANOVA hypothesis tests using the factors investigator-defined decision 
difficulty and uncertainty type.  Findings that are significant at alpha = 0.05 have been bolded. 
 
 
 The results of the ANOVA hypothesis test confirmed the findings on uncertainty 

type from Section 5.1.1 as well as the one-way ANOVA hypothesis testing on decision 

difficulty using the definition of self-reported difficulty.  Significant difference at alpha = 

0.01 was found for the decision speed (p-value = 0.000), decision difficulty (p-value = 
                                                 
8  H0: µsiteA = µsiteB = µsiteC = µthreeSite 
9  H0: µaccuracy = µcompleteness = µcredibility = µcurrency = µprecision = µsubjectivity
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0.000), and confidence (p-value = 0.000) variables when grouping the data by the factor 

investigator-defined decision difficulty.  Similar significance at alpha = 0.01 was found 

for decision speed (p-value = 0.000), decision difficulty (p-value = 0.010), and 

confidence (p-value = 0.000) when grouping the data by the factor uncertainty type.  Due 

to the parallel findings of Table-3, Table-7, and Table-8, the investigator concluded that 

both the type of uncertainty represented and the difficulty of the decision were significant 

causal variables in the perceived difficulty of making a decision and the level of 

confidence that the decision maker had in their decision choice.  Although the findings on 

speed need confirmation in a controlled setting, the investigator believed that this 

relationship also extended to the speed in which the decision was made.   

 The two-way ANOVA results for the decision task also matched findings from 

previous analysis in this section and analysis from Section 5.1.1.  The findings in Table-8 

show that the difficulty of the decision had a significant impact on the decision task at an 

alpha of 0.01 (p-value of 0.000), while the uncertainty type impacted the decision task to 

a lesser degree (p-value of 0.103), just missing significance at alpha = 0.10.  When 

coupling the results from both definitions of decision difficulty, the investigator 

determined that the difficulty of the task does impact the decision outcome, although the 

inconsistent findings from the self-reported definition of decision difficulty required this 

claim to be curbed slightly.  Further, when coupling the uncertainty type results from 

Table-8 with those in Table-3, the investigator determined that there was no connection 

between uncertainty type and the decision task.  Although more testing is required to 

support this claim, the investigator has the initial hypothesis that the uncertainty type that 

was represented on the map has little effect on the decision outcome.   
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 Interestingly, the interaction between decision difficulty and uncertainty type 

showed significance at alpha = 0.05 across all four tested variables and approached a p-

value of ‘0’ in three out of four hypothesis tests.  This high level of significance 

suggested that decision difficulty and uncertainty type need to be considered in tandem 

when assessing their impact on decision task, decision speed, decision difficulty, and 

confidence.  This means that a single level of decision difficulty or a particular type of 

uncertainty does not consistently produce a given response in decision task, decision 

speed, perceived decision difficulty, or confidence.  Instead, each decision making 

situation needs to be evaluated in a case-by-case manner, considering the decision 

difficulty and represented uncertainty type jointly.   

  

5.2 Results of the Qualitative Focus Groups 

 Participants for the qualitative focus groups were recruited using the ‘gatekeeper’ 

technique, a method that utilizes a single or several individuals (the gatekeepers) within 

larger organizations to help recommend and gain access to many other individuals within 

the organization who fit the ideal participant description (Valentine 1997).  An important 

characteristic of a gatekeeper is that he or she must have the power to provide contact 

information, such as email addresses and office phone numbers.  For this research, the 

gatekeeper was Ann Barrett, the Executive Services Manager for the Wisconsin Land 

Information Association (WLIA).  The WLIA is an organization composed of 

professionals working for both government and private firms dealing with land 

information and geospatial technologies.  Ann Barrett provided a contact list of all WLIA 

members as well as recommendations for members working specifically in floodplain 



 Roth 83

mapping.  Further, Ann Barrett authorized the focus groups to be conducted during the 

2007 WLIA annual conference in Appleton, WI on the 8th and 9th of March.   

 A call for participation in the focus groups was circulated several weeks in 

advance of the 2007 WLIA annual conference.  Although the participation call was sent 

to all non-student registered members of the WLIA, it explicitly stated that only those 

with experience in floodplain mapping were eligible for participation in the research.  

The call for participation also made clear that those interested were required to complete 

the online digital survey before attending a focus group session.  Ten qualified 

conference attendees replied with interest and two, one-hour focus group sessions were 

organized, with five participants per session.  Of the ten subjects intending to participate, 

only six attended the sessions; two cancelled via email within twenty-four hours of their 

scheduled session and two were absent without excuse.  Although the cancellations 

occurred too close to the sessions to recruit more participants, the sessions were balanced 

with three participants apiece, meeting the size specifications set in Section 4.2.  

 

5.2.1 Unprompted Response to Uncertainty in Floodplain Mapping 

 The initial section of the interview process had the participants talk aloud about 

the ways in which uncertainty enters into floodplain mapping, with the hope of the 

participants identifying and describing different types of uncertainty without being 

prompted by the investigator.  It is the investigator’s opinion that the participants had an 

exceptional understanding of the uncertainty involved in making decisions off of 

floodplain maps.  All participants readily agreed that all floodplain maps contained a 
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degree of uncertainty and that there was “no guarantee” of the location of the floodplain 

depiction for decision making purposes.   

 In both sessions, uncertainty was initially described as the “reliability” of a 

floodplain line that is placed on a map.  This working definition matches well with the 

concept of positional/locational accuracy/error and was expressed to be the most 

important aspect of uncertainty in floodplain mapping.  However, in both sessions the 

concepts of precision/resolution and currency were unanimously identified without 

prompting as important to the overall certainty of a dataset.  Precision/resolution was 

framed in terms of the scale at which the dataset was created and the level of detail in the 

dataset.  Currency was defined as the date when the data was collected.  Participants in 

both sessions emphasized that the more current the dataset the better due to the dynamic 

nature of the phenomenon being represented on floodplain maps.  A participant in one 

session went as far as saying that the accuracy/error is inextricably connected to the 

currency of the dataset, stating that to him “currency means accuracy.”  Although the 

investigator would argue the uncertainty type accuracy/error depends on many more 

variables than simply currency, it was interesting to see how the other participants in the 

aforementioned session agreed with the assumption that more current always means more 

accurate.  This remark revisits the drawback of the MacEachren et al. (2005) typology’s 

lack of mutually exclusive categories and perhaps requires revision to the first-

order/second-order component division.  Further discussion of this concern is found in 

the concluding chapter.  Finally, in the first session, credibility and lineage were 

mentioned only once by separate participants when discussing the importance of knowing 
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who produced the dataset and, in the second session, subjectivity was briefly mentioned 

by a single participant in reference to the method used to produce the dataset.   

 This initial discussion of uncertainty prior to the introduction of the MacEachren 

et al. (2005) typology matched well with the Tukey results from Section 5.1.1.  The 

participants were most comfortable identifying and discussing accuracy/error, credibility, 

currency, and precision/resolution and less comfortable discussing completeness and 

subjectivity.  The Tukey hypothesis test results in Table-4 supported this division, as 

there were significant differences found for completeness on the one-site maps and 

subjectivity on the three-site maps.  The inability to describe completeness and 

subjectivity in-depth without being prompted suggested that the participants did not 

regularly work with these types of uncertainties or consider them when making decisions 

using geospatial data, perhaps explaining why the decision difficulty responses were 

significantly higher and the confidence responses were significantly lower for 

completeness and subjectivity.   

 

5.2.2  Confirmation of the MacEachren et al. (2005) typology 

 Concluding the open-ended discussion on uncertainty in floodplain mapping, a 

sheet detailing the MacEachren et al. (2005) typology was circulated and the participants 

were given several minutes to critically examine the list.  It was expected by the 

investigator that the introduction of the new uncertainty terms would generate discussion 

concerning the validity of each identified type as an actual occurrence in floodplain 

mapping.  However, each type of uncertainty listed was immediately accepted by all 

participants, even the categories of completeness, consistency, and interrelatedness that 
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were not mentioned in either session before prompting.  The positive reception in both 

interview sessions provided strong evidence that the MacEachren et al. (2005) typology 

was a valid categorical description of uncertainty in floodplain mapping.  No evidence 

was provided during either session suggesting that the MacEachren et al. (2005) typology 

was limited to only the floodplain mapping domain.   

 During discussion of the MacEachren et al. (2005) typology in the second focus 

group session, an interesting additional category was recommended by a single 

participant and then agreed upon by the other participants in the session.  The participant 

argued that any floodplain dataset needed to conform to certain levels of certainty in 

order to be adopted by a government agency or to be used by the decision maker.  It was 

agreed upon by those in the session that the actual uncertainty ‘threshold’ varied 

depending upon the end user.  To this end, it was argued that the party commissioning the 

dataset was another important category of uncertainty in floodplain mapping that was 

different from the MacEachren et al. (2005) definition of credibility.  The provided 

definition of credibility from Section 2.2.3 acknowledged only the data collector or 

provider, with no reference to the data requester.  The participants argued that the same 

firm could release two datasets mapping the same phenomenon, but that the datasets 

could have a varying degree of certainty based on the quality requirements of the client.  

In this example, the credibility of the dataset was equally dependent upon the data 

producer and the data requester.  Although the participants argued that this was a separate 

type of uncertainty, the investigator believed that the definition of credibility should 

instead be amended to include both the information source and client.  Other than this 
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discussion concerning the data requester, there were no further additions to the 

MacEachren et al. (2005) typology. 

 

5.2.3 Assessing Influence and Getting at the ‘Why?’ 

 The final portion of the focus groups required the participants to weight the 

relative influence of each type of uncertainty when making a decision off of floodplain 

maps.  Focal questions in this portion of the interviews included “Which type of 

geospatial uncertainty is most important to represent on a floodplain map” and “Which 

type of geospatial uncertainty would influence you the most when assessing the flood risk 

of a site.”  The participant reaction to this series of questioning was the most unexpected 

finding of the study.  Rather than immediately discussing the relative rankings of each 

uncertainty, participants in both sections volunteered that they would never include 

representations of uncertainty on a floodplain map or use any metadata recordings of 

uncertainty to help make the decision.  This discourse provided substantial insight into 

how uncertain information is used in the decision-making process.   

 The participants argued the primary motivation for collecting uncertainty 

information was to allow for a final quality check of the data before being incorporated 

into decision making, not for supplementary explanation of the geospatial data during the 

decision.  The use of the term quality in this regard follows the Beard and Mackaness 

(1993) definition of quality as “fitness for use” (i.e. the fitness that a dataset can be used 

in decision making).  This use of uncertainty information is parallel to installing a 

speedometer in a car so that the manufacturer can check that the vehicle meets speed 

requirements after assembly, rather than providing the speedometer for the customer to 
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more appropriately use the vehicle after purchase from the manufacturer.  This 

application of uncertainty in decision making fits well with the concept of thresholding, 

as discussed in the Agumya and Hunter (2002) model of decision making.  With 

thresholding, the decision maker marks a hard line of acceptable risk (the threshold) so 

that the decision task transforms from an infinite number of decision outcomes to the 

binary decision of acceptance or rejection.  This concept of thresholding matches with the 

credibility discussion in Section 5.2.2, where the participants pointed out that quality 

requirements outlined by the client have a large influence on the end certainty of the 

dataset.  The participants reiterated multiple times that once the linework meets the 

certainty requirements of the client, it is “as if it was completely accurate.”  This usage of 

uncertainty blurs the concepts of ‘best available’ and ‘best possible’.   

 Such a backlash against any representation of uncertainty on floodplain maps 

strongly contrasted the acknowledgment of the existence and importance of uncertainty 

described in Section 5.2.1.  However, participants in the focus groups hinted upon two 

possible explanations for degrading the uncertainty data down to the binary decision of 

‘good’ versus ‘bad’ using thresholding :  

    
  (1) the use of thresholding speeds the decision making process by   
   virtue of having less possible decision outcomes from which to  
   choose, and 
   
  (2) the use of thresholding prevents any explicit representations of   
   uncertainty on the map itself, reinforcing the probity of the dataset 
  

 The first bulleted explanation helped to interpret the results in Section 5.1.1 

concerning the completeness uncertainty type.  On the one-site maps, subjects reported a 

significantly lower response speed for decision tasks on maps representing completeness.  
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The investigator speculated that this reduction in speed is due to the binary characteristic 

of completeness.  Because the uncertainty representation already existed in terms of yes-

no, the decision maker did not have to mentally degrade the representation using a 

threshold.  It is important to note, however, that subjects did not perform any better on 

the task itself, providing early evidence that while the thresholding technique improved 

decision speed, it may not lead to better decision outcomes.  Finally, the investigator 

hypothesizes that it is this pre-existing binary quality of completeness that made it 

difficult to organize in the first-order versus second-order categorization in Section 3.3.2.   

 The implications of the second bulleted explanation for the thresholding decision 

making method are much more severe than for the first.  A common argument in the 

literature is that the mapmaker does not want to represent or discuss the uncertainty of the 

data for fear of undermining it.  Mowrer (1999) remarks that “Perhaps the worst 

nightmare of a natural resources manager is to appear ‘uncertain’ to the public, or to 

admit that there is ‘error’ in the decision process being presented.”  This concern was 

affirmed in the focus groups, with one participant arguing that the uncertainty should not 

be represented because it “would bring to the forefront the questionability [of the data].”  

The example provided was a bank using the floodplain data for insurance assessment.  It 

was predicted that the bank would likely not use the data if it was communicated to be 

uncertain, and that banks typically prefer hard lines on maps to alleviate their own 

liability.  Perhaps motivating this fear is the general opinion of the participants that most 

decision makers would not know how to use the uncertainty information provided.  It was 

only after the investigator offered the idea of conducting scientific research on finding the 
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best representation techniques that participants warmed to the idea of representing 

uncertainty on floodplain maps.   

 Following the lengthy discussion on the necessity (or lack thereof) of representing 

uncertainty on floodplain maps, the participants were asked the focused question “Which 

type of uncertainty is most influential in your assessment of the potential flood risk of a 

site.”  All participants in both sessions agreed that accuracy/error is the most influential 

type of uncertainty when making decisions and that it would be the type most needed 

when making an educated decision off of geospatial data.  Precision/resolution and 

currency were listed as having a secondary degree of influence and the remaining six 

types from the MacEachren et al. (2005) typology were groups as the least influential. 
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CHAPTER 6 – Conclusion and Future Directions 

 

6.1 Summary of Findings 

 The following is a bulleted summary of the findings from Chapter 5, organized 

around the questions posed from the introductory chapter.  All reported results were 

found to be significant. 

 
(1)  Does graphically representing different types of uncertainties influence the 
decision that is made as well as the speed and confidence of this decision?    
  

*The type of uncertainty represented does not affect the decision that is made. 
  
*The type of uncertainty impacted the speed in which the decision was made, the 

perceived difficulty of making the decision, and the confidence the 
decision maker has in the decision.   

   
 
(2)  Which type of uncertainty elicits particular decision responses, as well as the 
most immediate and confident decisions?  Which the least?  
 

*Representation of completeness elicited the fastest decision responses, while 
representation of subjectivity elicited the slowest decision responses.   

 
*Representation of completeness elicited the highest degree of perceived decision 

difficulty as well as the lowest degree of confidence in the decision. 
 
 
(3)  How much of the variation in the decision outcome is explained by the expertise 
level of the decision maker or the decision difficulty? 
  

*The decision maker’s level of experience impacted the perceived difficulty of 
making the decision and the confidence in the decision.   

 
* The decision maker’s level of experience did not impact the decision outcome 

or the speed in making the decision. 
 
*The difficulty of the decision impacted the decision outcome, the speed of the 

decision, the perceived difficulty of making the decision, and the 
confidence in the decision. 
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(4)  Which type of uncertainty is the most influential in the decision making 
process?  Which is the least influential?   
 

*Accuracy/error, above all, is the most influential type of uncertainty. 
 
*Currency and precision are also heavily influential in the decision making 

process. 
 
*Completeness, credibility, and subjectivity are the least influential types of 

uncertainty in the decision making process.   
 
 
(5)  Why is uncertainty used in decision making the way that it is? 
  

*Decision making under uncertain conditions uses a thresholding model of 
decision making. 

 
*Thresholding is used in decision making under uncertain conditions to speed the 

decision making process and to make the uncertainty of a dataset 
transparent 

 
 
(6)  Is the MacEachren et al. (2005) typology a valid categorical model of geospatial 
data uncertainty?  Are there any categories to remove or new categories to add?    
 

*The MacEachren et al. (2005) typology is a valid listing of uncertainty in 
geospatial data.  No subtractions or additions are recommended.  

 
*The MacEachren et al. (2005) typology lacks mutually exclusive categories. 
 
 
In summary, the quantitative online survey found a significant disconnect 

between the participant perception of the decision (decision speed, decision difficulty, 

and confidence) and the decision outcome (decision task).  The participants reported a 

varying level of decision speed, perceived decision difficulty, and confidence when the 

uncertainty type was varied.  However, there was not a parallel disparity in the actually 

decision task variable.  Similarly, the participants responded with a varying level of 

perceived decision speed, decision difficulty, and confidence when the level of expertise 

was varied, but again showed no difference in performance on decision task.  A 
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significant difference in all four variables was found only when the results were analyzed 

across decision difficulty.  This disconnection between the decision maker’s perception 

of the decision and the outcome of the decision is a serious issue that needs to be 

addressed.  The primary reason for representing uncertainty is so that the decision maker 

can make more informed decisions based upon the geospatial data.  However, this 

preliminary evidence suggests that such representations may increase the speed of 

completing the task, the perceived difficulty in completing the task, and the confidence 

that the decision maker has in their decision, but does little to improve the actual decision 

outcome.  While positively influencing decision maker perception is important, the 

ability to achieve better, more responsible decision outcomes is the core goal.   

The qualitative focus groups provided great insight into the decision making 

process, but also revealed a considerable hurdle that still needs to be leaped before 

uncertainty representation can be properly incorporated into practice.  Throughout the 

interviews, it was established that decision makers in the floodplain mapping domain use 

uncertainty information as a way to establish if the data is fit for use.  To see if a dataset 

is fit for use, a threshold of acceptable uncertainty is established, converting the 

uncertainty decision to a binary of ‘good’ or ‘bad’.  All participants acknowledged both 

the existence and the importance of understanding and recording uncertainty.  Despite 

this, there was consistent resistance to the idea of representing the uncertainty on the 

floodplain map itself.  This was the most unexpected finding of the study, and one that 

deserves a considerable amount of attention in future research.   
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6.2. Limitations of the Study 

 In critical evaluation of the research, the investigator has identified four possible 

limitations that need to be considered when judging the validity and generalizability of 

the research findings:  

 
(1) ambiguous term definitions of uncertainty in the literature,  
 
(2) the lack of mutually exclusive and collectively exhaustive categories in the 

MacEachren et al. (2005) typology,  
 
(3) the depiction of uncertainty among three datasets rather than within a single 

dataset, and  
 
(4) the proctoring of the quantitative section of the research in an uncontrolled 

environment.   
 
 
The solution to each limitation in the research was deemed the most appropriate by the 

investigator given the available literature, previous scientific experiments, and the 

specific domain.  However, argument can be built against each solution and the 

investigator encourages repeating the research using different assumptions.  The 

following is a discussion on how the identified four limitations may impact the 

conclusions. 

 (1) Uncertainty Term Definition:  For this research, uncertainty was defined as 

“a measure of the user’s understanding of the difference between the contents of a 

dataset, and the real phenomena that the data are believed to represent” (Longley et al. 

2005).  As described in Chapter 2, the inclusion of the user as another level in which 

uncertainty is present is controversial, with many others defining uncertainty as a 

quantifiable characteristic intrinsic to the dataset.  Because the research focuses on the 

decision making process under uncertain conditions, inclusion of the interpretation/ 
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validation/exploration filter shown in Figure-1 was deemed necessary by the investigator.  

A constrained perspective may also debunk the MacEachren et al. (2005) typology, as 

uncertainty types such as credibility, subjectivity, and interrelatedness are external user 

evaluations of uncertainty, at least when utilized to ordinally rank multiple datasets. 

 (2) Mutually Exclusive and Collectively Exhaustive Categorization:  

According to category theory, a typology must include categories that are both mutually 

exclusive and collectively exhaustive (McGrew and Monroe 2000).  Early on in the 

research, the investigator identified the violation of mutual exclusion in the MacEachren 

et al. (2005) typology and separated the categories into first-order components (those not 

reliant upon or connected to another type of uncertainty) and second-order components 

(those dependent upon a first-order or other second-order types of uncertainty).  The 

quantitative online digital survey was restricted to the former so that independent random 

sampling among groups could be established.  However, discussion from the qualitative 

focus groups provided early evidence that many of the first-order components identified 

in Section 3.3.1 may be partially dependent upon another first-order component.  

Examples included the reliance of accuracy/error on the currency of the dataset and 

credibility on the accuracy/error and precision/resolution of a dataset.  Although the 

investigator still hypothesizes that the first-order versus second-order division is correct, 

further examination is required.   

 Finally, the MacEachren et al. (2005) typology did not incorporate uncertainty 

derived from the resolution of a dataset.  To remain collectively exhaustive, resolution 

was grouped with precision because it is the most similar category.  However, Zhu (2005) 

provides arguments suggesting that the precision and resolution are different types of 
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uncertainty, and accordingly, the investigator suggests the revision of the MacEachren et 

al. (2005) typology to include the tenth category of resolution.   

 (3) Uncertainty Among Datasets versus Within a Single Dataset:  Depiction of 

uncertainty on the floodplain maps in the quantitative online survey was modeled after 

the Monte Carlo method of multiple realizations.  However, the Monte Carlo method is 

different in that it generates 500-1000 realizations of a single dataset (Aerts et al. 2003b).  

Because the representation of uncertainty in the survey used only a single realization of 

each dataset, and instead compared three datasets to convey the message, it can be argued 

that it was a much weaker representation technique.  This method of representation was 

chosen for two reasons.  First, the maps were designed to be as simplistic as possible so 

that comparison of expertise level would reflect differences in the decision making 

process, rather than the level of familiarity with complex maps.  Second, each uncertainty 

type needed to be symbolized in the same fashion.  Because credibility and subjectivity 

were categorical in nature intrinsically, all six representations needed to be converted to 

this level of measurement, allowing the decision maker to then ordinally rank them 

during the interpretation/validation/exploration level shown in Figure-1.  The investigator 

encourages the repetition of the experiment using a different method of representation to 

validate the findings.   

 (4) Research in an Uncontrolled Environment:  Finally, the quantitative survey 

utilized the Internet for dissemination, following the Aerts et al. (2003a) study.  As 

discussed in Section 4.1, the major drawback to conducting the research online was that 

the participants were no longer in a controlled environment.  Because of this, the 

participant could be interrupted during the survey, use reference materials to aid in 
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completing the tasks, and finish the survey with the help of others.  Despite this, it was 

determined that evaluating domain experts in an uncontrolled environment would 

produce a more realistic description of expert decision making under uncertain conditions 

than evaluating easy-to-access university students in a controlled environment.  The 

investigator encourages the repetition of the experiment in a controlled setting, although a 

shift in results is expected due to the likely under-sampling of domain experts. 

 

6.3 Future Directions and Concluding Remarks 

 This research provides an initial argument that the type of uncertainty represented 

greatly matters in the decision making process.  However, there are many more questions 

at this point than answers.  The follow is a list of future research questions that will help 

to understand how typological differences in uncertainty impact the decision making 

process: 

 
(1) How well do these findings transfer to representations of the identified 

second-order components of uncertainty and what are the implications of a 
division between first-order and second-order components of uncertainty? 

 
(2) How well do these results transfer to other domains and other types of 

decision tasks? 
 
(3) How would the results change if the experiment is conducted in a controlled 

environment? 
 
(4) How does the MacEachren et al. (2005) typology influence the cartographic 

symbolization of uncertainty?  How does the inclusion of multiple types of 
uncertainty on a single display influence the symbolization? 

 
(5) How do we bridge the gap between an acknowledgment by experts of the 

importance of uncertainty depictions and the fear of experts in 
undermining the data by representing this uncertainty? 



 Roth 98 

 Uncertainty is an inherent aspect of all geospatial data.  The results from this 

research, as well as the results from the many other projects cited in the second chapter, 

demonstrate that uncertainty has a statistically significant impact on the decision making 

process.  Because uncertainty can never be fully removed from a dataset, the research 

agenda should be shifted, at least in part, away from the discovery of new techniques that 

generate more ‘certain’ data and instead address the role that uncertainty plays in the 

decision making process to the end of providing the decision maker with visuals that will 

allow him or her to make more informed and appropriate decisions.    
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Glossary of Terms 
 
 
 

uncertainty (p6) - a measure of the user’s understanding of the difference between the 
contents of a dataset and the real phenomena that the data are believed to 
represent (after Longley et al. 2005) 

 
 
accuracy (p6, p24, p35) - the difference between the reality and our representation of 

reality (after Heuvelink 1998) 
 
completeness (p24, p36, p40) - extent to which information is comprehensive (after 

MacEachren et al. 2005) 
 
consistency (p24, p41) - extent to which information components agree (after 

MacEachren et al. 2005) 
 
confidence (p56) – the confidence that the decision that was made was correct 

(applicable to the quantitative online survey) 
 
credibility (p25, p37) - reliability of information source (after MacEachren et al. 2005) 
 
currency (p25, p37) - time span from occurrence through information 

collection/processing to use (after MacEachren et al. 2005) 
 
decision/decision task (p55) – assessment of the flood risk of a site (applicable to the 

quantitative online survey) 
 
decision difficulty (p55) – the perceived decision difficulty in completing a decision task 

(applicable to the quantitative online survey) 
 
decision maker (p8) – the user that is interpreting, validation, and exploring the dataset 

(after Longley et al. 2005) 
 
decision speed (p56, p64) – the time, in seconds, needed to respond to a decision task 

(applicable to the quantitative survey) 
 
error (p24, p35) - the discrepancy between the attribute value in the database and the 

actual attribute value (after Zhu 2005) 
 
expertise level (p55) – the degree of familiarity in completing the decision task 
 
first-order component (p34) - an uncertainty type about the data itself (either the 

positional, attribute, or temporal value) 
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influence (p60) – the degree to which a particular type of uncertainty was relied upon 
during the decision  

 
interrelatedness (p25, p41) - source independence from other information (after 

MacEachren et al. 2005) 
 
lineage (p25, p42) - conduit through which information has passed (after MacEachren et 

al. 2005) 
 
one-site map (p48) – a map version from the study that represents only a single site 

relative to the three floodplain depictions 
 
precision (p24, p38) - the exactness of measurement (after Zhu 2005) 
 
quality (p87) – fitness of a dataset for use (after Beard and Mackaness 1993) 
 
resolution (p38) - the level of spatial detail (after Zhu 2005) 
 
second-order component (p34) - a derived uncertainty type that is contingent upon, at 

least in part, the degree of uncertainty in a first-order component 
 
subjectivity (p25, p39, p42) - the extent to which human interpretation or judgment is 

involved in information construction (after MacEachren et al. 2005) 
 
three-site map (p48) - a map version from the study that represents three sites relative to 

the three floodplain depictions 
 


