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Abstract: Modeling vague objects with indeterminate boundaries has drawn much attention in
geographic information science. Because fields and objects are two perspectives in modeling
geographic phenomena, this paper investigates the characteristics of vague regions from the
perspective of the field/object dichotomy. Based on the assumption that a vague object can be viewed
as the conceptualization of a field, we defined five categories of vague objects: direct field-cutting
objects, focal operation-based field-cutting objects, element-clustering objects, object-referenced
objects, and dynamic boundary objects. We then established a categorization system to formalize
the semantic differences between vague objects using the fuzzy set theory. The proposed
framework provides valuable input for the conceptualization, interpretation, and modeling of vague
geographical objects.
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1. Introduction

Vagueness is a pervasive phenomenon in the physical world [1,2]. For example, spatially, a region
is vague insofar as its boundary is indeterminate [3]. Objects with indeterminate boundaries, such
as geomorphological units [4,5], landscape objects [6–8], forests [9–12], and places (e.g., the Bay Area,
Northern California) [13,14], have been widely studied in different fields.

It is necessary to quantitatively model vague regions so they can be formalized and managed
in information systems and databases. Fuzzy sets and fuzzy logic [15] provide an effective tool
to conceptualize and model vague objects [3]. Based on the fuzzy set theory, the degree to which
an individual point belongs to a set is represented by a membership function (MF). Hence, vague objects
can be considered “fuzzy objects” in fuzzy logic. Many studies use fuzzy logic and fuzzy sets to model
geographic features. For example, Schneider defined and formalized three types of fuzzy objects: fuzzy
points, fuzzy lines, and fuzzy regions [16]. Fonte and Lodwick [17] proposed a method to calculate
the area of fuzzy geographic entities. Cohn and Gotts [18] developed the “egg-yolk” model, which
describes indeterminate regions based on their minimal and maximal extents, in order to represent
the topological relation between vague geographic entities. Shi and Liu [19] proposed a quantitative
approach to modeling fuzzy topological relations based on membership degrees. Researchers have
emphasized that the overlay operations (e.g., union, intersection, and difference) of two fuzzy regions
are different from those of two crisp regions. Zhan and Lin [20] investigated the overlay operations of
fuzzy regions based on the α-cut level of a fuzzy set. Dilo et al. [21] proposed an extensive framework
of types and operators to handle vague spatial objects.

Although previous studies have extensively investigated the models and operations of vague
objects, defining membership functions for different types of vague objects remains an open question.
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Because vagueness can be subjective, cognitive experiments [7] provide a direct approach to
establishing membership functions of vague objects based on human cognition. However, this method
can be time-consuming and costly. Jones et al. [22] thus proposed a method to model vague places
based on the information extracted from web pages. Recently, social media data provided a new
approach to representing vague places [14]. A widely used method for the modeling of vague regions
is to extract them from other pre-collected geographic data, such as remotely sensed images [6,21] and
digital elevation models (DEM) [5,23]. This allows us to investigate vague regions from the field/object
dichotomy [24,25], since both remote sensing imagery and DEMs are instances of field models. Because
most geographic objects, whether crisp or vague, are extracted from a corresponding field [26–28],
field-based models are more suitable for modeling vague geographic objects [29]. We thus propose
a categorization system with five categories of vague regions based on the ontology of each category.
Using the fuzzy set theory, we established a conceptual membership function for each category of
value regions. Because the membership function is one of the most important characteristics for
defining a fuzzy set [30,31], the proposed categorization system provides valuable insight into the
representation of different categories of vague areal objects.

2. Modeling Vague Regions from an Ontological Perspective

Field and object models are two widely adopted approaches to conceptualizing and modeling
geographic phenomena [24,25]. In a field model (e.g., the raster model), each location in space is
mapped to an attribute value. In an object model, space is perceived as a region that contains various
discrete entities, each with different characteristics and attributes, such as in the vector model [32]. It is
widely accepted that geographic objects are extracted and conceptualized from fields. In other words,
the field model of the real world can be perceived as pre-ontological, and the process of identifying
objects gives it ontology [28].

From a field point of view, identifying an object from the real world requires at least two phases.
For example, we first established a temperature field based on the concept “temperature” in the
geographic space. Then we extracted objects, such as the “semi-tropic zone”, “mesothermal zone”,
and “frigid zone” from the temperature field. Their spatial extents and boundaries are determined
by the minimum mean annual temperature at each location in the field. This conceptualization
process can get more complicated. For example, an object (e.g., a tree) may be identified based
on the spatial pattern of field values, which is a commonly used approach in pattern recognition.
Moreover, according to mereotopology ontology, an object can consist of several smaller-sized objects.
Woodlands are a typical example in this case, considering the part-whole relationship between trees
and a woodland. Freksa [33] discussed the granularity of concepts and summarized two approaches
for conceptualization: bottom-up and top-down. A common example of bottom-up conceptualization
is identifying a woodland, going from small-sized tree objects to a large-sized woodland. Therefore,
the conceptualization of a woodland object has three phases, as illustrated in Figure 1.

Figure 1. A three-phased conceptualization for woodland objects, using the field model.

As argued in [34,35], the conceptualization of objects often relies on widely accepted common
knowledge. Let us take “woodland” again as an example (Figure 2). Intuitively, a woodland consists
of a number of trees, and the quantity of these trees should be large enough to form a woodland.
Moreover, the trees should be reasonably dense in space, meaning that a piece of grassland with
sparse trees should not be viewed as a woodland. This high density criterion also means that no
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two neighbouring trees should be too far apart. This close clustering of trees satisfies the maximal
connectedness requirement, which is one of the most important factors in determining whether
a component belongs to a vague region [11]. Finally, the spatial distribution of these trees should
follow an areal pattern. Trees lined in a row should not be considered a “woodland”, although the
quantity and density of these trees can potentially be high.

Figure 2. The dilemma in conceptualizing a woodland. (a) A single tree is clearly not a piece of
woodland. (b) A woodland consists of a number of trees with a certain density. (c) Whether a tree
belongs to a woodland depends on the distance between this particular tree and other trees.

Hence, the vagueness of a spatial object is mainly caused by the semantic vagueness when
conceptualizing the object (e.g., a mountain and a downtown area). It is hard to answer questions
like “How small can a downtown area be?” because “downtown” itself is an ontologically vague
concept [2]. Bennett (2001) proposed a similar question, “What is a forest?” In addition, there is
an ontological distinction between natural/bona fide boundaries and artificial/fiat boundaries: the
former can be conceptualized based on the physical discontinuity or qualitative heterogeneity between
an entity (such as a soccer field) and its surroundings, whereas the latter is defined more subjectively
(e.g., a downtown area) [4,36]. Clearly, most fiat objects are ontologically vague. Therefore, we should
define the membership functions of vague areal objects based on their ontologies and semantics.

3. A Categorization System for Vague Regions

Zadeh [15] introduced the fuzzy set theory to formalize vague concepts caused by the impreciseness
and subjectivity of human language and perception. A fuzzy set on a classical set X can be formally
defined as:

Ã = {(x, µA(x))|x ∈ X} (1)

where µA(x) is the membership function that measures the degree to which an element x belongs
to set X. A membership degree 0 means that an element is not included in the given set, whereas
a membership degree 1 describes an element that is certainly included. The membership values vary
between 0 and 1.

Since many concepts and rules in geographic information systems (GISs) are not crisp, the fuzzy
set theory provides a powerful tool to represent spatial knowledge and to model vague objects in the
geographic space [37–39].

3.1. Five Categories of Vague Regions

In a two-dimensional geographic space, a fuzzy set is a subset of the two-dimensional Euclidean
space. Each point in the space has a membership value that represents the degree to which this location
point belongs to a given object. The membership values of fuzzy objects with indeterminate boundaries
are always larger than 0 and smaller than 1. Hence, for a given fuzzy object, the corresponding
membership values can be represented as a field. Because the fuzzy object itself is conceptualized
based on an original field (e.g., the temperature field), the membership field can be viewed as a mapping



ISPRS Int. J. Geo-Inf. 2019, 8, 306 4 of 14

from the original field to the range [0, 1]. Let the original field be f : x → v, then the membership field
can be formalized as:

m : dom( f )→ [0, 1] (2)

In the above equation, m is a higher-order mapping (or function) of f , f being what various field
operations are defined upon. Meanwhile, the conceptualization of different geographic entities also
leads to different mapping processes. Therefore, we can establish a categorization system of fuzzy
regions based on the field operations and the conceptualization process.

According to map algebra, operations on raster data can be categorized into the following four
groups: local, focal, zonal, and global [40]. Because raster is a type of field representation of the
geographic space, we can generalize the same categories of operations to be applied to field data.
Additionally, the conceptualization can either be a one-step or multi-step process. In the former
case, objects are identified directly based on the field values, whereas for the latter, lower-order
objects need to be identified first and higher-order objects are conceptualized based on the extracted
lower-order objects (e.g., trees versus a woodland). Taking into account different field operations and
conceptualization processes, we identified five categories of fuzzy regions: direct field-cutting objects,
focal operation based field-cutting objects, element-clustering objects, object-referenced objects, and
dynamic boundary objects. We also constructed a conceptual membership function for each category
of fuzzy regions.

3.1.1. Direct Field-Cutting Objects

A direct field-cutting object (DFCO) is the simplest type of fuzzy object. DFCOs can be identified
directly based on the attribute values of a field. The membership function for a direct field-cutting
object can be defined as:

g = (m ◦ f )(x, y) (3)

where g is the membership value at location (x, y), obtained by applying an object identification
function m on the original field f . Obviously, m is a local operation, meaning that the membership
value of (x, y) only depends on the attribute value of this particular location in the original field.
The attribute values of neighboring locations have no impact on the membership value of (x, y). In the
geographic space, a plateau (Figure 3a) is a typical direct field-cutting object. The degree to which
a certain location belongs to a plateau is only determined by its elevation. For example, the membership
value of a location belonging to the Tibetan Plateau (µT) is a function of the elevation of this location,
as shown in Figure 3b. Hence, in order to delineate the boundary of the Tibetan Plateau, we need to
obtain a cut set according to a pre-defined threshold (e.g., 0.5) of the membership degrees. The result is
equivalent to cutting the original field directly based on the local operation m. This is why we named
this category of fuzzy regions “direct field-cutting objects”. Another DFCO example is climatic zones,
such as the semi-tropical zone. A climatic zone is determined on the basis of the average temperature
over time. In practice, many non-spatial concepts can be characterized using membership functions
similar to DFCOs, such as “tall”, “large”, and so on. These concepts only depend on the attribute
values of the original field.

3.1.2. Focal Operation-Based Field-Cutting Objects

A focal operation-based field-cutting object (FoFCO) is slightly more complicated than DFCOs
because the identification of such objects requires focal operations. When conducting a focal operation,
the membership degree of a location not only depends on the attribute value of this specific location,
but also relies on the values in a regularly-shaped neighborhood in the original field. Focal operations
are very common in raster data processing. A typical focal operation is calculating slopes from a grid
DEM dataset. There are two crucial parameters in a focal operation: the definition of the neighborhood
and the operator to be executed on the original field. The neighborhood type can be a rook, bishop, or
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queen, whereas the operator can be a sum, maximum, median, and so on (Shekhar and Chawla 2003).
The membership function for this type of fuzzy region is defined as follows:

g = m( f (u, v), x, y, N, Oper) (4)

where the neighborhood and the operator are denoted by N and Oper, respectively.

Figure 3. (a) The Tibetan Plateau and (b) its membership function.

In ecological science, topographic aspect is an important factor that influences a species’ spatial
distribution. Aspect values can be calculated by applying a focal operation to a DEM field. Furthermore,
we can identify and extract vague regions such as “south slope area” (Figure 4) and “east slope area”
based on the aspect values. Their spatial extents are indeterminate due to the inherent vagueness of
the concept “south” or “east”. These vague regions are typical examples of FoFCOs. Similarly, a “steep
slope area” is also a type of fuzzy object in this category.

Figure 4. The south slope area of (a) a volcano and (b) its membership function.

Here, we use “south slope” as an example to demonstrate how Equation (4) can be instantiated
and customized in practice. Assume that a grid DEM is represented by a function f (u, v), u, v ∈ N,
with the top-left point as the origin, (0, 0). For a given location (x, y) in the study area, its queen
neighbourhood can be defined as:

N(x, y) = {(i, j)||i− x| = 1 or |j− y| = 1} (5)
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and the aspect represented by its compass direction (i.e., the value of north is 0) can be computed using:

Oper( f (u, v), x, y) =

{
360− angle + 90, if angle > 90

90− angle, else
(6)

angle =
180
π

atan2(
dz
dy

,− dz
dx

) (7)

dz
dx

=
f (x + 1, y− 1) + 2 f (x + 1, y) + f (x + 1, y + 1)− f (x− 1, y− 1)− 2 f (x− 1, y)− f (x− 1, y + 1)

8
(8)

dz
dy

=
f (x− 1, y + 1) + 2 f (x, y + 1) + f (x + 1, y + 1)− f (x− 1, y− 1)− 2 f (x, y− 1)− f (x + 1, y− 1)

8
(9)

Note that there are other algorithms which can be used to calculate aspect values. Here, we adopt
the method from [41] as an example. We can then define a trapezoid membership function (Figure 4b)
for the direction “south” as follows:

g = m( f (u, v), x, y, N, Oper) = m(aspect) =


(aspect− 90)/45, if 90 < aspect < 135

1, if 135 ≤ aspect ≤ 225

(270− aspect)/45, if 225 < aspect < 270

0, else

(10)

where the aspect values can be calculated using the Oper function (i.e., Equations (6)–(9)).

3.1.3. Element-Clustering Objects

An element-clustering object (ECO) is defined as an object consisting of several smaller objects.
An ECO and its smaller components thus form a part-whole relationship, similar to the ontological
relation between stars and galaxies in astronomy. Generally, the “part” objects should satisfy the
following conditions: (1) They should be easily identifiable in human cognition or in machine pattern
recognition; (2) They belong to the same category (e.g., all trees) so all component objects play an equal
role when forming the “whole” object; and (3) Two neighboring objects should be close enough to be
considered in the same cluster.

According to Gestalt psychology, human beings tend to group similar items together. An ECO
can therefore be viewed as an instance of a Gestalt, as these component objects are usually similar to
each other (Figure 5a). For an ECO, the spatial distribution of the component objects determines its
boundary. Even though the boundaries of the component objects are often determinate, the boundary
of the entire ECO is indeterminate and vague. This vagueness mainly comes from the “gaps” between
the component objects inside the ECO (e.g., the grassland between trees in a forest). Although many
analytical tools can be applied to approximate an ECO’s boundary, it still remains an open question
whether or not these gaps should be included when defining an ECO.

As mentioned earlier, a piece of woodland (or forest) is a typical ECO (Figure 5b), in which the
trees in the woodland are the element (component) objects. The membership function of an ECO can
be defined as:

g = m(S, x, y) (11)

where S stands for a set of the component objects, and m determines the membership value at location
(x, y) based on the spatial distribution of S (e.g., the density of trees). Note that the choice of the
clustering algorithm will inevitably influence the resulting membership function. In most cases,
the membership degree is positively correlated with the density of the element objects, which can be
calculated by different density measurements, such as the kernel density estimation (KDE). In addition,
parameters of the applied density measurement (e.g., the bandwidth of KDE) can also impact the
extracted ECOs. Given that this paper focuses on proposing a conceptual framework of membership
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functions, the choice of the clustering algorithm can be determined by researchers based on their
practical needs.

Because the element objects are identified from the original field, we have:

S = c( f (u, v), x, y) (12)

where f (u, v) is the original field, and function c identifies the component objects from f at location
(x, y). A typical example of c is the extraction of buildings from remote sensing imagery. As can be
seen, the membership values in Equation (11) eventually depend on the attribute values of the original
field. Compared to FoFCOs, ECOs are based on zonal operations because identifying a component
object requires a search in an irregular neighborhood in the original field. Note that the component
objects of an ECO can include not only physical objects such as buildings and trees, but also human
activities such as “drinking” or “shopping”. A typical example is to extract “nightlife districts” from
social media check-in data [42].

Figure 5. (a) Hypothetical ECOs based on Gestalt psychology; (b) Woodland: an example of ECOs.

Previous research has demonstrated that many geographic phenomena are scale-dependent [43].
For ECOs, another factor that should be considered is the size of the measurement unit (to avoid
confusion, we do not use the term “scale” here). If the measurement unit is too small (e.g., smaller
than the size of gaps between element objects), it is difficult to extract interesting distribution patterns
since the granularity is too fine. Similarly, we may lose too much detail if the size is excessively large.
Therefore, we need to apply an appropriate measurement size when extracting ECOs, which depends
on the sizes of the component objects and the sizes of the gaps between them.

Additionally, a structurally more complex field will naturally lead to more complex membership
functions, so that an extracted ECO from this field may have holes and inner boundaries [44].
The boundary of the holes can be either crisp or vague. Assume that there is an ECO, O1, consisting
of a number of type I component objects, O2. Meanwhile, there is another type I I object, O3, inside
O1, and thus causes gaps between element objects O2. In general, whether O3 can be considered an
inner boundary of O1 depends on the size of O3. If O3 is big enough and breaks the “continuity” of O1,
we should consider O3 as a hole that creates an inner boundary for O1. For example, assume that O1 is
a piece of woodland and O3 is a large lake. From the point of view of the lake, the inner boundary is
crisp; however, from the point of view of the woodland, the boundary is vague. We suggest considering
the vagueness of the inner boundaries in the conceptualization process so that the membership function
can be constructed in a consistent way for both inner and outer boundaries.
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3.1.4. Object-Referenced Objects

An object-referenced object (ORO) belongs to another category of vague objects that require
a multi-step conceptualization. First, we need to identify a reference object from the original field.
Second, we extract the target object based on its (qualitative) spatial relation to the reference object.
There are three common types of qualitative spatial relations: topological, cardinal direction, and
qualitative distance. They have been studied extensively in GIScience and qualitative spatial reasoning
(QSR) [45,46]. For each type of qualitative spatial relation, researchers defined a set of jointly exhaustive
and pairwise disjoint basic relations to support the algebraic operations, such as overlap (topological
relation), north-east (cardinal direction relation), and close (qualitative distance relation). Many vague
regions are identified based on a reference object and a qualitative spatial relation, such as the Bay
Area (based on the topological and distance relations to the San Francisco Bay), the Far East (based on
the qualitative distance relation to Europe), and northern and southern California. Figure 6a shows the
synthetic spatial view of membership changes for southern California and northern California purely
based on the internal cardinal direction and distance to the borders [47], while Figure 6b shows the
corresponding vague cognitive regions using social media data [14]. Darker colors represent a higher
degree of membership, and vice versa. The cognitive vagueness of the border between northern and
southern California comes from multiple factors, including not only the different interpretations of the
internal cardinal directions within California [47], but also socioeconomic and cultural factors.

Figure 6. An example of ORO: northern and southern California. (a) Vague regions purely based on
spatial relations; (b) Vague cognitive regions using social media data.

The vagueness of an ORO comes from two aspects—the vagueness of the reference objects and
the vagueness of the spatial relations. Firstly, if the reference object is vague, the target object is
inevitably vague. Secondly, spatial relations, except for topological relations, are inevitably vague. For
example, we cannot precisely delineate the boundary between “southern California” and “northern
California”, or differentiate between “close to home” and “far away from home” in the metric space.
Previous literature addressing this type of fuzziness tries to integrate the fuzzy set theory and QSR in
a semi-quantitative way [48–50]. In other words, the membership degree of a location being included
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in an ORO is equivalent to the degree of the relation between this location and the reference object
being categorized as a certain type of spatial relation. The membership function for an ORO can be
written as:

g = m(x, y, O, R) = µR(x, y, O) (13)

where O stands for the reference object and R is the spatial relation between the reference object and
the target object in the ORO. Because O is usually identified from a field, it can be defined as:

O = C( f (u, v)) (14)

where C is a function representing the conceptualization of O from the original field. Although ECOs
and OROs are both vague regions that require a multi-step conceptualization, they are fundamentally
different. Figure 7 shows a class diagram demonstrating the relationships between first-order objects
and second-order objects for ECOs and OROs, respectively. The similarity between the two is that an
ECO is identified based on the spatial relation “closeness” (i.e., an element object should be merged
with other element objects if they are close enough), whereas an ORO can involve other types of spatial
relations, such as topological, directional, and qualitative distance relations.

Figure 7. Difference between ECOs (left) and OROs (right), represented by UML class diagrams.

3.1.5. Dynamic Boundary Objects

We did not consider the time dimension in the above four categories of fuzzy regions; however,
an object’s boundary can be indeterminate because it changes over time. We defined such objects as
dynamic boundary objects (DBOs) and identified four types of changes for an areal object based on
its location and shape: (1) discrete change (e.g., the merge or split of parcels); (2) simple movement
without a change in shape; (3) movement with a change in shape; and (4) expansion or shrinkage
without a significant location shift. A similar categorization can be found in [27]. The latter three are
all continuous changes. In these three cases, the spatial extent of a dynamic region is determinate at
each time point. However, its position and boundary are indeterminate during a long time period.
This type of temporal vagueness is also described in [51]. A typical example of dynamic changing
objects is a lake (Figure 8). Since a lake expands and shrinks periodically, it is difficult to determine its
exact boundary during a relatively long time period.

Therefore, a dynamic two-dimensional field can be modeled by a three-dimensional field (two
spatial dimensions plus one temporal dimension) [52]. The corresponding membership function is
defined as:

g = m( f (u, v, t), C, x, y) (15)

where f (u, v, t) is a dynamic field and C represents a procedure to extract objects from f . To compute
the membership degree of a location, a simple way is to calculate the proportion of the entire time
period, during which this location is covered by a given dynamic object. For instance, if a location is
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covered by a seasonal lake for 100 days in one year, then we can assume that the membership degree
associated with this location is 100/365.25 ≈ 0.274.

Figure 8. A lake as an example of DBO.

3.2. Discussion

Besides the categorization of fuzzy objects and the definition of membership functions, there
are still several issues that are worth further discussion. Firstly, the membership function for each
category in Section 3.1 is defined as a function of the original field; therefore, they cannot guarantee
the connectedness and the size constraints of a spatial object, which may cause inconsistency when
extracting vague objects in extreme cases. Taking a DFCO as an example, if there is a very small
area (e.g., 1 square meter) with a high membership value (e.g., >0.99), this point still should not
be considered an areal object in the original field based on the scale of most geographic objects
(e.g., mountain, river, lake, etc.). Fortunately, Tobler’s First Law (TFL) shows that this problem is not
common in reality. Following TFL [53], if the membership value of one point is high, other nearby
points tend to have high membership values as well. As a result, the area with high membership
values should be connected and large enough to be identified as an areal object.

Secondly, these five categories are not mutually exclusive. DFCOs have the most fundamental
membership functions. Based on a series of operations (e.g., local, focal, or zonal), the original field
associated with the other four types of vague regions can be transformed into a new field, from
which we can further extract DFCOs. For example, as mentioned earlier, the object “south slope
area” is categorized as a FoFCO. However, if we have already obtained a slope field, the “south slope
area” should be a DFCO. This conclusion is consistent with common sense, as membership values
themselves can be modeled using a field. Additionally, ECOs are worth noting compared to the other
four categories. Is a lake also an ECO at a molecular level, as it consists of an uncountable number of
water molecules? An intuitive answer is no, as molecules cannot be perceived and observed directly
by human beings. However, it is more difficult to answer this question for objects made of visible
particles, such as a “desert”. The size of the component objects adds another layer to the vagueness of
an ECO.

Finally, except for DBOs, we did not consider the time factor in the categorization framework.
However, the vagueness of the other four types of objects may still change in time. For example,
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the definition of a “semi-tropical zone” is vague because we do not have a fixed temperature threshold
to define this zone. However, climate change can lead to a change of the criteria and thresholds when
defining climate zones. The relationship between the five categories is described in Figure 9, which
further demonstrates that these categories of vague regions are not mutually exclusive.

Figure 9. The categorization system of the five categories of fuzzy regions and their relations.

4. Conclusions

Most geographic objects are naturally vague, due to the vagueness in the conceptualization
process of these objects. Different from crisp objects, vague geographic objects often have indeterminate
boundaries. The fuzzy set theory provides a feasible approach to representing vague objects extracted
from a field. To this end, we defined five categories of fuzzy geographic objects: direct field-cutting
objects, focal operation based field-cutting objects, element-clustering objects, object-referenced objects,
and dynamic boundary objects. We also established a conceptual membership function for each
category by taking its ontology into account. These five categories can cover most fuzzy objects in the
geographic space, but are not entirely separate from each other. We therefore developed a conceptual
framework representing the connections between different categories of fuzzy geographic objects.
This framework provides an ontological guideline and procedure to formally model vague geographic
objects. Firstly, one should decide which category a vague object belongs to. Secondly, researchers can
extend the conceptual form of a membership function to create concrete membership functions based
on their practical needs. Given that most vague objects are shaped or influenced by human behaviors,
multi-source big geo-data—such as location-based social media—offer an unprecedented opportunity
to model vague places or localities in the age of instant access. This categorization system provides
a valuable reference for managing fuzzy set-based objects and analyzing the semantic relatedness
between them.
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Abbreviations

The following abbreviations are used in this manuscript:

MF Membership function
DFCO Direct field-cutting object
FoFCO Focal operation based field-cutting object
ECO Element-clustering object
ORO Object-referenced object
DBO Dynamic boundary object
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