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Predicting the spatiotemporal legality of on-street parking using open data and
machine learning
Song Gao a, Mingxiao Lia,b, Yunlei Lianga, Joseph Marksa, Yuhao Kang a and Moying Lic

aGeospatial Data Science Lab, Department of Geography, University of Wisconsin—Madison, USA; bInstitute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences, Beijing, China; cPace Suburban Bus, Chicago, IL, USA

ABSTRACT
Searching for a parking spot in metropolitan areas is a great challenge, especially in highly
populated areas such as downtown districts and job centres. On-street parking is often a cost-
effective choice compared to parking facilities such as garages and parking lots. However, limited
space and complex parking regulation rules make the search process of on-street legal parking
very difficult. To this end, we propose a data-driven framework for understanding and predicting
the spatiotemporal legality of on-street parking using the NYC parking tickets open data, points of
interest (POI) data and human mobility data. Four popular types of spatial analysis units (i.e. point,
street, census tract, and grid) are used to examine the effects of spatial scale in machine learning
predictive models. The results show that random forest works the best with the minimum root-
mean-square-error (RMSE) for predicting ticket counts and with the highest accuracy scores for
spatiotemporal legality classification across all four spatial analysis scales. Moreover, several
prominent categories of places such as those with retail stores, health-care services, accommoda-
tion and food services are positively associated with the number of parking violation tickets.
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1. Introduction

Parking is an important element in the transportation
system and plays an important role in people’s travel
decisions. Parking availability information and pricing
can influence people’s departure and arrival time, travel
mode choices, and activity duration. Almost all U.S. cities
have minimum parking requirements for each type of
land use, which determines the minimum number of
parking spaces that should be provided by land devel-
opers. Most on-street parking is free or underpriced
compared to garages and parking lots and therefore it
is often over-demanded. This makes searching for
a parking spot in metropolitan areas a great challenge
comparable to the Hunger Games, especially in highly
populated areas such as downtown districts, job centres,
etc. First, the supply and demand of parking spaces is
unbalanced with the increasing number of vehicles but
limited parking facilities in urban areas. Second, the
urbanization process is accelerating in most metropoli-
tan areas and attracting more job opportunities, human
flows, business and social activities. These popular des-
tinations together with underpriced parking generates
more travel demand and parking needs. Third, parking
availability and legality are highly variable spatially and
temporally.

On-street parking is often a cost-effective choice com-
pared to parking facilities such as garages and parking
lots. However, limited space and complex parking reg-
ulation rules make the search process very difficult.
Moreover, there is almost no real-time information
about available on-street parking spots and it is legal
or illegal to park. Even if the driver is a local resident,
compound parking rules can still surprise the driver and
generate tickets due to various reasons such as street
cleaning schedules, proximity to a fire hydrant, and no
standing or no stopping rules during certain time peri-
ods. New York City (NYC) is among the most ticketed and
the highest ticket cost cities in the United States1. There
are over 10.8 million parking violation tickets generated
in NYC in the fiscal year 2017 and 11.7 million in
fiscal year 2018. Figure 1 shows the kernel density esti-
mation (KDE) map of all parking violation tickets over the
two fiscal years. It is worth noting that the spatial dis-
tributions of these tickets without overlaying any geo-
graphic backgrounds already outline the majority of
streets in NYC. The Manhattan Borough in NYC already
generates over $200M revenue in on-street parking fines
per year by itself. The motivation of this research is to
first understand the spatiotemporal patterns of on-street
parking violation tickets and then build reliable machine
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learning models to predict the spatiotemporal legality of
on-street parking using NYC open data2.

Another important aspect that needs attention when
analysing the point-based parking violation data is the
scale effect and the modified area unit problem (MAUP).
The scale effect may cause variations in statistical results
among different spatial aggregation levels and MAUP
affects results when point-based measures are spatially
aggregated into different zoning configurations
(Openshaw 1984; Fotheringham and Wong 1991). How
much detail a machine learning model needs while still
producing an acceptable error rate is worth of explora-
tion. To this end, we propose a data-driven framework
for understanding and predicting the spatiotemporal
legality of on-street parking by training machine learn-
ing models using the NYC parking tickets open data. And
four types of spatial analysis units (i.e. point, street,
census tract, and grid) are used to examine the impact
of spatial aggregation scale in machine learning predic-
tive models.

The remainder of the paper is organized as follows.
First, in Section 2, we present the literature review on
parking availability prediction studies in transportation
and computer sciences. Then, in Section 3, we introduce
the datasets and preprocessing steps in order to feed the
data into machine learning models. In Section 4, we
formulate the problem into regression and classification
approaches, and briefly introduce a set of machine learn-
ing models used in this study. In Section 5, we test our
framework at different spatial scales and compare the

model performance. In Section 6, we show the designed
Web prototype for exploring the parking legality infor-
mation in NYC. Finally, we conclude this work with some
considerations on the potential of this work for urban
transportation planning and driver decision-making in
Section 7.

2. Related work

Parking has long been studied in the transportation
domain. Parking availability and parking fees are impor-
tant attributes influencing people’s travel demand and
mode choice (Christiansen et al. 2017). Researchers
(Shoup 2006, 2017) argue that parking in the U.S. is
underpriced. The low price of parking reduces the total
cost of travel and creates induced travel demand with
a mode shift from public transit and other active travel
modes to driving. Studies also explored the congestion
externality created by cruising for parking (Arnott and
Inci 2006; Inci and Lindsey 2015). Parking management
policy such as parking regulation rules, pricing, and time
limitation are widely used to balance the parking
demand and supply (Litman 2018). With better parking
information provided, drivers can enhance their parking
decision-making and prevents parking overflow from
one place to another (Caicedo, Blazquez, and Miranda
2012).

There have been many research efforts towards
improving the search efficiency for an available parking
space given its impact on driving time, traffic, and even
air pollution (Teodorović and Panta 2006). One study
found that 30% of the average traffic cruising in investi-
gated areas was actually caused by searching for park-
ing, with an average search time of 8.1 min (Shoup
2006). Google AI research team developed a logistic
regression model to predict parking difficulty (e.g. lim-
ited parking or easy) by utilizing anonymous aggregated
trajectory information from mobile users who opt to
share their location data (Cook, Li, and Kumar 2017).
They used grids as a spatial unit for training the model.
Using this, Google launched a new feature for the
Google Maps App across 25 US cities that offers predic-
tions about parking difficulty close to users’ destination.
There also have been studies focused on detecting the
availability of parking spaces either using instrument
parking infrastructure with special sensors (Chatman
and Manville 2014) as well as using crowd-sensing solu-
tions (Chen, Santos-Neto, and Ripeanu 2012; Zheng,
Rajasegarar, and Leckie 2015; Pflügler et al. 2016; Bock,
Attanasio, and Di Martino 2017), but both types of stu-
dies rely on the existence of predefined parking spaces
or the development of mobile applications such as
PhonePark, iPark, and UPDetector (Xu et al. 2013; Yang,

Figure 1. The kernel density map for the spatial distributions of
parking violation tickets in the New York city over the fiscal years
of 2017 and 2018.
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Fantini, and Jensen 2013; Ma, Wolfson, and Xu. 2014).
This study focuses on determining the legality of
a parking space at a given time and day and the location
at different spatial scales by utilizing machine learning
algorithms and using publicly available parking violation
ticket information. One challenge on the prediction of
spatiotemporal legality of parking using machine learn-
ing is the inconsistency or unbalanced observation data
for training. Some efforts have been made in smoothing
the training data using support-vector regression (SVR)
model in the SFPark project (Bock, Di Martino, and
Origlia 2017). With these methods, we hoped to be
able to provide parking availability estimates while
requiring none of the external infrastructure mentioned
in the previous studies.

Utilizing machine learning and deep learning in geo-
graphic information science is quickly gaining popularity
due to its effectiveness and the automation of some
tiresome tasks, such as geographical classification and
object detection, geographic knowledge discovery
(Huang and Jensen 1997; Vatsavai et al. 2012; Jiang
et al. 2012; Mao et al. 2018; Hu et al. 2019). It is already
being used in a variety of fields, such as landslide sus-
ceptibility and hazard mapping, gully susceptibility map-
ping, wildfire, environmental modelling, and
groundwater studies (Naghibi, Pourghasemi, and Dixon
2016). In this study, we examine the importance of spa-
tial resolution when incorporating spatial data with
machine learning. At the time of writing, machine learn-
ing models examining the spatial heterogeneity at dif-
ferent spatial resolutions are still an emerging study area
(Lu et al. 2018; Yang et al. 2019). Such research incorpo-
rates Tobler’s First Law of Geography (Tobler 1970) and
the scale effect, which is to say that more detailed spatial
resolution should provide more related features and
likely produce less error than less detailed spatial resolu-
tions. The idea that a machine learning model is able to
provide these predictions at all is Tobler’s First Law of
Geography in practice, and potentially transferable
according to the Third Law of Geography which focuses
one the similarity of geographic configuration of loca-
tions in spatial predictions (Zhu et al. 2018). By examin-
ing different spatial resolutions or at aggregating into
different spatial analysis units, we provide insights into
how much detail a machine learning model needs while
still producing an acceptable error rate.

3. Data

3.1. Parking violation tickets open data

As mentioned above, we downloaded over 10.8 million
parking violation tickets generated in NYC in the

fiscal year 2017 and 11.7 million in fiscal year 2018
from the NYC Open Data platform. Each ticket contains
information including a summons number, violation
code, street address, ticketing time, vehicle plate, etc.

3.2. Points of interest

In order to understand what kind of surrounding envir-
onments are associated with more parking violation tick-
ets, such as the presence of an employment centre, retail
stores, health-care services, shopping centres, and so on,
we collected data for over 137,000 points of interest
(POIs) in NYC from the Safegraph business venue
database3. The POIs are first classified based on the
North American Industry Classification System (NAICS)
two-digit sector codes. To begin, the POIs are classified
into 23 categories based on the NAICS two-digit sector
codes, including Agriculture Forestry Fishing 11, Mining Oil
and Gas Extraction 21, Utilities 22, Construction 23,
Manufacturing (31,32,33), Wholesale Trade 42, Retail
Trade 44, Retail Trade 45, Transportation Warehousing
(48,49), Information 51, Finance Insurance 52, Real Estate
& Rental Leasing 53, Professional Scientific Tech 54,
Administrative Support and Waste 56, Educational
Services 61, Health Care and Social Assistance 62, Arts &
Entertainment & Recreation 71, Accommodation & Food
Services 72, Other Services 81, Public Administration 92. In
addition, the category of Parking Lots and Garages (NAICS
Code: 812,930) is treated as a separate POI category since
it is directly related to parking activity. This gives a total of
24 categories of POIs at the root level of categorization as
part of model features (See Figure 5 in detail).

3.3. Human mobility patterns

In addition to the static spatial distribution of POIs infor-
mation, we also retrieved the fine-resolution visit patterns
of all POIs from the aforementioned SafeGraph database
which covers dynamic human mobility patterns of mil-
lions of anonymous smartphone users. For each POI, the
records of aggregated visitor patterns illustrate the num-
ber of unique visitors and the number of total visits to
each venue during the specified time window, which
could reflect the attractiveness of each venue. The
mean hourly visits over a week were recorded as a 168-
dimensional vector to show the dynamic stream of visit
patterns. If a visitor stays for multiple hours, a visit will be
shown in each hour during which the visitor stayed.

3.4. Data preprocessing

In this study, we discretized the study area into four
spatial scales (point level, street level, census tract
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level, and 1 km grid level) and the time into 168 hourly
slots (7 days of a week � 24 h of a day) to capture the
snapshots of the legality of street parking. To perform an
analysis at the selected spatiotemporal scale, we first
found the coordinates of each tickets by using the online
geocoding service through Google Maps API. Then, since
we focus on the on-street parking legality, the violation
ticket points that were more than 50 m away from the
road were deleted. Finally, we distributed the number of
tickets and corresponding attributes as follows for each
spatial unit and each time slot.

At the point level, the following features were chosen:
the location of pjðxj; yjÞ, the time of day th, and the day of
week td . The corresponding number of tickets Numðj;h;dÞ
was used as the label data for model training. At the street
level, besides the spatiotemporal characteristics pj, th, and
td, the street width stwid , street length stlen, street type
sttype, andwhether it is a two-way street stdir were selected
to characterize each street. In sum, the training features
can be represented as follows: [pj,th,td,stwid ,stlen,sttype,stdir].
As for the census tract level and 1 km grid level, the
features were more complex. At these levels, we not
only considered their spatiotemporal characteristics pj ,
th, and td, their street attributes with the summation of
street length sum_st_len and street area sum_st_area, but
also considered the dynamic human mobility patterns
and the POI distributions in the corresponding spatial
unit. The POI data were aggregated to each spatial unit
and represented as 24 features. In addition, the number of
visits observed in the specified unit sum visitj , the number
of unique visitors sum visitorj, the number of visits of
corresponding to the time of day visitðj;hÞ and the number
of visits of corresponding to the day of week visitðj;dÞ were
added to model the human mobility patterns. Thus, the
training features can be represented as follows: [pj, th, td ,
sum_st_len, sum st area, POI1, � � � , POI24, sum visitj ,
sum visitorj, visitðj;hÞ, visitðj;dÞ]. Table 1 shows the number
of samples at each spatial scale and the ratio of positive
and negative cases for parking legality classification (See
Section 5.3 for more details).

Figure 2 shows the spatial distributions of georefer-
enced parking violation tickets at four scales and their
temporal variation curve of the summation of tickets.

The figure of point level data was derived using kernel
density estimation, and the other three figures were
derived by aggregating the number of tickets to each
spatial unit. In order to show the spatial distributions at
different scales more clearly, the number of tickets in
each scale were normalized to [0,1] with the Min-Max
Feature scaling (Aksoy and Haralick 2001). The corre-
sponding values were classified into four categories:
safe, low probability, high probability, and extremely
risky, to show the probability of getting tickets. In
order to make the value of class ‘safe’ small enough
and the interval of class ‘dangerous’ large enough to
meet people’s awareness, the thresholds were set at
0.001, 0.01, and 0.1, respectively.

4. Methods

In this section, we provide the details of our proposed
framework to understand and predict the parking legality.
In this framework, we approach the parking legality pre-
diction as a regression problem to predict the number of
parking violation tickets given a location and time, and as
a binary classification problem to interpret parking legal-
ity. To this end, a series of machine learning models are
trained in four spatial scales with processed datasets that
are mentioned in the previous section. The architecture of
our proposed framework is shown in Figure 3.

4.1. Prediction of parking violation counts

To investigate the impact of the spatial scale on dif-
ferent regression models, we selected the following
six machine learning models for this study:

MLR: Multiple linear regression (MLR) attempts to
model the relationship between two or more expla-
natory variables and a response variable by fitting
a linear equation to the observed data (Galton
1886).

SVM: Support vector machines (SVM) construct a set
of hyperplanes in a high-dimensional space. New sam-
ples are mapped into the same space and predicted
based on the gaps which they fall into (Cortes and
Vapnik 1995).

Decision Tree: It is a non-parametric supervised learn-
ing method to create a model that predicts the value of
a target variable by learning simple decision rules
inferred from the data features (Quinlan 1986).

Random Forest: The random forest (RF) constructs
a multitude of decision trees and outputs the results by
computing the mean of the predictions of each indivi-
dual tree (Breiman 2001). RF is trained on different parts
of the same training set, with the goal of reducing the
variance.

Table 1. The number of samples at different spatial scales and
the ratio of positive and negative cases for parking legality
classification.
Spatial Unit # of samples % positives % negatives

Point 35,629,944 12.3 87.7
Street 6,716,976 29.7 70.3
Census Tract 356,496 70.5 29.5
1km Grid 139,440 69.2 30.8
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GBRT: The gradient boosted regression trees (GBRT)
use a gradient boosting method to construct a set of
decision trees as base learners and outputs the result by
computing the sum of the base learners (Friedman
2001). XGboost uses a more regularized model formali-
zation to control over-fitting issue and thus is chosen in
this study (Chen and Guestrin 2016).

DNN: Deep neural network (DNN) is a multi-hidden-
layer artificial neural network whose artificial neurons
can respond to a surrounding unit within a portion of
the coverage (Goodfellow, Bengio, and Courville 2016).

As shown in Figure 4, we constructed a DNN architec-
ture consisting of four fully connected dense layers
with reclinear activation functions and two dropout
layers with a 0.5 rate to regularize the DNN and improve
the generalization error. The output layer uses a linear
activation function for regression and a sigmoid activa-
tion function to produce a probability between 0 and 1
for binary classification using a threshold of 0.5. The
mean square error (MSE) is used as the loss function for
regression training while the cross-entropy is used for
classifier training.

Figure 2. The spatial distribution of parking violation tickets at four spatial scales and the temporal variation curves of tickets.
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Evaluation: The mean square error (MSE) is used as the
cost function for training the models and the root-mean-
square error (RMSE) is used for the model evaluation.

MSE ¼ 1
N

XN
i¼1

ðy0i � yiÞ2 (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðy0 i � yiÞ2
vuut (2)

Where y0i is the number of observed parking violation
tickets at the location i, yi is the corresponding predicted
value, and N is the number of fed data into each model.

4.2. Prediction of parking legality

In addition to interpreting parking legality as
a regression problem by estimating the number of viola-
tion tickets, it can also be interpreted as a binary classi-
fication problem of whether the corresponding time and
place can be legally parked by analysing the historical
parking violation ticket information. Therefore,
a specified location and time with at least one ticket is
marked as ‘positive case’ (i.e. the machine learning bin-
ary classification when the number of tickets � 1) to
represent ‘Risky Parking’ and the others will be marked
as ‘negative case’ (i.e. the number = 0 and no ticket
issued) to represent ‘Legal Parking’. In addition to the

Figure 3. The proposed parking legality predictive framework using multi-source data and machine learning.

Figure 4. The multilayer architecture of deep neural network used in this study.
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aforementioned SVM, random forest, and DNN machine
learning approaches that can also be used for the classi-
fication problem, four additional classification models
are used in this study:

KNN: k-nearest neighbours algorithm (KNN) classifies
an object by a vote of its neighbours, with the object
being assigned to the most common class among its k
nearest neighbours in feature space (Cover and Hart
et al. 1967).

Logistic regression: It uses a logistic function to model
the relationship between one dependent binary variable
and one or more nominal, ordinal, interval or ratio-level
independent variables (Berkson 1944).

Naive Bayes: Naive Bayes is a probabilistic classifier that
makes classifications using the Maximum A Posteriori deci-
sion rule in a Bayesian setting (Maron 1961).

SGD: Stochastic gradient descent (SGD) classifier imple-
ments linear support vector machines with SGD learning:
the gradient of the loss is estimated each sample at a time
and the model is updated along the way with a decreasing
strength schedule (Zhang 2004).

Evaluation: There are four outcomes from the binary
classification result (Mohri, Rostamizadeh, and Talwalkar
2018): true positives (TP), false positives (FP), True nega-
tives (TN), and False negatives (FN). The following
metrics including the overall accuracy, precision and
recall, F1-score are used to evaluate the parking legality
classification models.

Precision ¼ TP
TP þ FP

(3)

Recall ¼ TP
TP þ FN

(4)

Accuracy ¼ TP þ TN
TP þ TNþ FPþ FN

(5)

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

(6)

5. Results

5.1. Relationship between parking violation and
POIs and visit patterns

For POI-based and mobility-based analyses, the POIs
mentioned in Section 3 are aggregated to the census
tracts level and the 1 km grid level, respectively, to
conduct analysis. After the aggregation, for each analysis
unit (a census tract or a grid cell) there is a sum of
parking tickets and 24 categories of POIs in each unit.

The multi-linear regression is conducted first to
obtain an overall relationship between the parking vio-
lation and its surrounding environments. Then, the cor-
relation analysis and the importance ranking using the
random forest regression method are also implemented
to identify critical factors for the parking violation.

5.1.1. Census tracts level
In the census tracts level, when using all 24 categories of
POIs to fit the number of parking tickets in the linear
regression, an adjust R2 around 0.59 is obtained. To
select the most important variables, an exhaustive
search for the best subsets of variables for predicting is
implemented and the result is shown in Figure 5. The
figure shows the selected variables and their

Figure 5. The result of selected variables vs. R-squared at the census tracts level and at the 1 km grid level.
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corresponding R2. The total number of variables changes
from 2 to 8. It is clear that some variables are always
selected for predicting by the model. These categories of
POIs should be more related to the existence of parking
violation, including Retail Trade, Transportation and
Warehousing, Educational Services, Health Care and
Social Assistance, Accommodation and Food Services,
and Parking Lots.

The results of the correlation analysis and the impor-
tance ranking from the random forest regression are
presented in Figures 6 and 7. The results of the two
methods are not very similar but there are some over-
lapping in top variables such as Accommodation and
Food Services, Health Care and Social Assistance,
Finance Insurance and Retail Trade. The existence of
parking lots actually contributes to the increase of park-
ing violation, which may not be intuitive. This might
indicate that the current parking lots are still not enough
for the parking needs of citizens in New York.

5.1.2. 1 km grid level
At the 1 km grid level, the result of multiple linear
regression using all 24 variables is around 0.87, which

indicates a good estimation. Figure 5 shows the best
subsets of variables for prediction. The frequently
selected variables are a little different from the result of
the census tracts level, which are Retail Trade,
Educational Services, Accommodation and Food
Services, and Parking Lots. However, by examining the
multicollinearity of different combinations of variables,
there always exists high colinearity with the Variance
Inflation Factor of over four among variables.

In this case, the results from correlation analysis
(Figure 6) and the importance ranking from random
forest regression (Figure 7) may be more reliable. The
results of the correlation analysis at the 1km grid level
are very similar to that of the census tracts level (except
for the ParkingLots) where Accommodation and Food
Services, Retail Trade and Other Services are the top
three most correlated variables to parking ticket num-
bers. These three factors are also the top three important
factors in the importance ranking.

In general, most categories of the POIs will lead to an
increase in parking violation, especially when there are
accommodation, food, and retail stores. Also, the exis-
tence of parking lots cannot prevent the parking

Figure 6. The correlation analysis at the census tract level and the 1 km grid level.

Figure 7. The importance ranking at the census tract level and the 1 km grid level.
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violation, which shows that the need for parking lots is
still not satisfied at the current stage.

5.2. Results for prediction of parking ticket counts

As shown in Tables 2 and 3, the prediction RMSE substan-
tially changed across the four different spatial analysis units,

which confirmed the existence of the scale effect. With the
decrease of the spatial resolution (i.e. from point to street,
from census tract to 1 km grids), the model performance
also decreases and the RMSE increases across all models.
During the model training, we took the cross-validation
approach with 80% training data and 20% testing data.
Figure 8 shows the MLR learning curves for predicting the
number of parking violation tickets at different spatial
scales. It shows that the model has the smallest bias at the
point level and the bias is largest at the 1 km grid level.
However, the generalization capability of themodel is good
given the convergence of the training curve and the valida-
tion curve except for the census tract level, which has
a small gap. The results also show that the random forest
model works the best with the minimum RMSE and out-
performs other competitors by a largemargin across all the
spatial scales. Note that for the support-vector regression
(SVR), we tried different kernel types (e.g. linear, second-
degree polynomial, Gaussian RBF) and reported the best
model result. The decision tree model built with recursive
greedy algorithms ended up with a very complex structure
with 36,797 and 13,459 leaf nodes at the census tract level
andat thegrid level, respectively. XGBoost andDNNare just
as good as or better than simple MLR by a small margin at
different spatial scales.

In addition, as expected, thesemachine learningmodels
using all available features (Table 3) achieve a better per-
formance comparedwith the samemodel but fedwith only

Table 2. Prediction of parking violation ticket counts using
location and time features with different machine learning
models.

Model RMSE RMSE RMSE RMSE
(Point) (Street) (Census Tract) (Grid)

MLR 6.88 17.18 135.39 386.28
SVR 6.81 17.20 139.38 395.68
Decision Tree 5.52 12.46 52.91 134.36
Random Forest 2.82 4.91 55.85 129.31
Gradient Boosting 6.64 17.21 113.17 292.41
XGBoost 6.64 17.28 114.68 291.76
DNN 6.87 17.04 127.26 370.64

Table 3. Prediction of parking violation ticket counts using all
features with different machine learning models.

Model RMSE RMSE RMSE RMSE
(Point) (Street) (Census Tract) (Grid)

MLR 6.88 17.53 117.80 291.03
SVR 6.81 17.35 136.29 297.37
Decision Tree 5.52 6.81 57.03 115.98
Random Forest 2.82 4.67 41.48 88.42
Gradient Boosting 6.64 16.79 103.60 190.42
XGBoost 6.64 17.20 99.67 190.97
DNN 6.87 17.10 121.49 292.27

Figure 8. The learning curves for predicting the number of parking violation tickets with cross-validation at different spatial scales.
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the location and the time features (Table 2). The perfor-
mance improvement is significant for the census tract level
and the 1 km grid level. For instance, the RMSE of MLR
reduced about 12% and 25% while the RMSE of random
forest reduced over 25% and 31% at the census tract level
and at the 1 km grid level, respectively. It confirmed our
hypothesis that using the surrounding POI context and
dynamic human mobility patterns can help improve the
accuracy of machine learning for parking legality predic-
tion. The predication error for a given location point and
a time is less than three tickets using the random forest
model, which is a promising result for decision-making
support. After getting the predicted ticket number for
a given location and time, we can then map it into descrip-
tive terms (e.g. safe, low probability, high probability, and
extremely dangerous) using the classification scheme as
mentioned in Section 3.

5.3. Results for prediction of parking legality

Regarding the classification results, as shown in Table 4,
random forest outperforms all other models and achieved
both high accuracy scores (0.82, 0.85, 0.86, and 0.88) and
high F1-scores (0.82, 0.72, 0.90, and 0.88) across all four
spatial scales. The KNN and the DNN also perform well
and fall behind the random forest by a small margin. Note
that we chose k = 3 as the number of nearest neighbours in
feature space with regard to the temporal autocorrelation
patterns of parking legality over time and its impact on

model performance). The autocorrelation coefficient for
parking legality with a temporal lag of 3 hours is 0.28,
0.40, 0.38, and 0.55 at the point, street, census tract, and
grid levels, respectively. Although the Naive Bayes model
gets a good accuracy and F1 scores at the point level (0.73
and 0.75) and at the street level (0.66 and 0.72), it doesn't
performwell at the aggregation levels with lower F1-scores
at the census tract level (0.33) and at the 1 km grid level
(0.54) due to the multicollinearity issue discussed in the
Section 5.1.

Another important issue requiring attention is the
presence of imbalanced training data in practice. In
our case, there is a class imbalance between the
positive class and the negative class for parking
legality. The imbalanced training data can cause
the accuracy paradox such that we get excellent
accuracy but the accuracy is only reflecting the dom-
inating class distribution. Taking the no-resampling
street-level data as an example, as shown in Figure
9, all the models got a high overall accuracy (over
0.7) but relatively low F1-scores, and some of the
models (e.g. logistic regression, SVM and SGD) even
got close to 0. That is mainly because of the imbal-
anced training samples between positive (29.7%)
and negative (70.3%) classes. Therefore, we
resampled the training data with a more balanced
distribution for both positives (50%) and negatives
(50%). The F1-score increased significantly since we
get a better precision and recall performance.

Table 4. Prediction accuracy (AC) and F1-score of parking legality using all features with different machine learning models.

Model AC and F1 AC and F1 AC and F1 AC and F1
(Point) (Street) (Census Tract) (Grid)

KNN 0.79 and 0.79 0.73 and 0.73 0.78 and 0.85 0.83 and 0.83
Logistic Regression 0.55 and 0.56 0.58 and 0.57 0.66 and 0.73 0.77 and 0.74
Naive Bayes 0.73 and 0.75 0.66 and 0.72 0.42 and 0.33 0.67 and 0.54
SVM 0.53 and 0.53 0.55 and 0.51 0.71 and 0.83 0.56 and 0.69
SGD 0.57 and 0.60 0.59 and 0.60 0.68 and 0.84 0.76 and 0.75
Random Forest 0.82 and 0.82 0.85 and 0.72 0.86 and 0.90 0.88 and 0.88
DNN 0.74 and 0.76 0.75 and 0.74 0.71 and 0.83 0.76 and 0.74

Figure 9. The accuracy and F1-score of different prediction models comparison using imbalanced and balanced samples with
resampling process at the street scale.
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Alternatively, one may want to check the detailed
precision-recall curves with different recall rates as
shown in Figure 10 to compare the model perfor-
mance especially for highly skewed datasets (Davis
and Goadrich 2006). It shows that the random forest
outperforms all other models with the highest pre-
cision value across different recall rates in parking
legality prediction at four spatial scales.

6. Prototype

With regard to the multi-level spatial variation of parking
space availability and parking legality, we also worked to
design and develop a parking legality Web GIS applica-
tion by integrating the NYC parking violation open data
with statistical analysis at different spatial scales. The
machine learning models are encapsulated as web ser-
vice APIs and deployed using the Flask web framework.
As shown in Figure 11, at a large-scale zoom level, it
covers huge amount of data points. Thus, it is better to
use KDE mapping for exploring the overall spatial pat-
terns of parking legality while checking the detailed
parking legality at a specific location with historical park-
ing ticket statistics and violation type information.

7. Conclusion

In this study, we propose a data-driven framework for
understanding and predicting the spatiotemporal legal-
ity of on-street parking by training a set of machine
learning models using the NYC parking violation ticket

open data. The models are tested at four types of spatial
analysis units (i.e. point, street, census tract, and grid)
and the results confirmed the impact of spatial scale in
machine learning predictive models. The more detailed
spatial resolution should provide more related features
and likely produce less error than less detailed spatial
resolutions. The experiment results show that random
forest works the best with the minimum RMSE for pre-
dicting ticket counts and with the highest F1 scores for
spatiotemporal legality classification across all four spa-
tial scales. Given a search location and time for on-street
parking, the mean testing error is less than 3 tickets for
regression and the F1-score is 0.82 for parking legality
prediction, which shows a good potential for street park-
ing applications. Moreover, we also found that several
prominent categories of POIs such as retail stores,
health-care services, accommodation and food services
are positively associated with the number of parking
violation tickets. Last but not least, using the surround-
ing POI context and dynamic human mobility patterns
can help improve the accuracy of legal vs. illegal parking
prediction. However, one limitation of the proposed
method is that the police cruising frequency across
space over time may have potential impact on generat-
ing the parking violation tickets. With better on-street
parking information provided in advance, drivers can
enhance their parking decision-making. Our research
may offer insights into parking management policy
such as parking regulation rules, pricing, and time lim-
itation to balance the parking demand and supply at
different spatial scales using open data.

Figure 10. The precision and recall curves of the parking legality prediction results at different spatial scales.
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Notes

1. https://www.spotangels.com/blog/nyc-parking-tickets-
the-most-ticketed-neighbourhoods-in-nyc/

2. https://data.cityofnewyork.us/
3. https://www.safegraph.com
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