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A B S T R A C T

The development of mobile positioning technologies makes massive individual trajectory data easily accessible,
which facilitates the revisit of spatial interaction issue in recent years. Researchers have proposed many methods
to investigate the spatial interactions derived from human movements, such as the gravity model and radiation
model. However, these studies have mainly focused on the interactions among areal units at an aggregated level,
neglecting that in most cases, human movements are carried by vehicles and constrained by the underlying road
network, which causes the interactions among roads. To fill this gap, we propose a novel approach to identify
spatial interaction patterns of vehicle movements on urban road network. As the topic model originating from
the domain of natural language processing has powerful advantages in extracting semantic relations of words
from corpus, we utilize it to extract interaction relations of urban roads from massive vehicle trajectories. First,
"strokes" (i.e., natural streets) are chosen as geographical units to represent the vehicle moving paths. Then, an
analogy between geographical elements (i.e., stroke, moving path) and textual elements (i.e., word, document) is
established, and a topic model is applied to the moving paths to identify the spatial interaction patterns on road
network. From a mass of trajectory data collected by GNSS-equipped taxis in Beijing, the "topic patterns", which
can be viewed as clusters of spatially interacted strokes, are identified, visualized and verified. It is argued that
our proposed approach is effective in identifying spatial interaction patterns, which provides a new perspective
for spatial interaction modelling and enriches the current spatial interaction studies.

1. Introduction

Spatial interaction is a traditional issue in geographical research.
Modelling spatial interactions between geographical units based on
population immigration, commodity flow, or information communica-
tion can help us understand spatial structure of a region and plan an
efficient spatial configuration for cities and regions (Fotheringham &
O'Kelly, 1989; Gao, Liu, Wang, & Ma, 2013; Liu, Sui, Kang, & Gao,
2014; Wan et al., 2018; Wilson, 1967).

In recent years, with the development of ICT (Information and
Communications Technology), especially mobile positioning tech-
nology, massive individual trajectory data are becoming easily acces-
sible. Mobility information gathered at the individual level can be ag-
gregated to study the human movements from one region to another.

Hence it facilitates emerging studies on spatial interactions collected
from ICT big data, which get much attention from the fields of trans-
portation, physics, epidemiology, urban planning, and so on (Balcan
et al., 2009; Lenormand, Huet, Gargiulo, & Deffuant, 2012; Tizzoni
et al., 2014; Yan, Zhao, Fan, Di, & Wang, 2014).

Many researchers have devoted to predicting human moving fluxes
between any two locations using a limited set of “static” attributes of
the locations using various spatial interaction models (Barbosa et al.,
2018). The differences of those models are mainly in the choice of at-
tributes, and the specific functional forms. There are two related but
diverging school of thoughts in classical studies. The gravity models
initially introduced by George K. Zipf in 1946 assume that the number
of trips between two locations is a decreasing function of their distance
(Zipf, 1946). Instead of highlighting the importance of the distance, the
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intervening opportunities models derive from Stouffer's conceptual
framework assume that the number (or cumulative number) of inter-
vening opportunities between the origin and the destination plays a key
role in determining migration (Stouffer, 1940). In recent years, with the
support of massive geo-locating data, and on the basis of the classical
thoughts, some new models have been proposed, including the radia-
tion model (Simini, González, Maritan, & Barabási, 2012), rank-dis-
tance model (Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012),
single-parameter model (Lenormand et al., 2012), population-weighted
opportunity model (Yan et al., 2014), etc. Compared to previous
models, they can predict the actual human movements among sub-re-
gions more accurately with fewer parameters. Differing from the
abovementioned mainstream models, Zhu, Huang, Shi, Wu, and Liu
(2018) recently proposed to infer the spatial interaction patterns from
sequential snapshots of spatial distributions, which provides a new
viewpoint and a new framework to model spatial interactions.

In addition, with the rise of complex network science, some geo-
graphers have regarded the interactions among different regions as a
spatially embedded graph, where the areal units are represented as
nodes, and the interacting flows are represented as weighted edges (Gao
et al., 2013; Hawelka et al., 2014; Liu et al., 2014; Liu, Gong, Gong, &
Liu, 2015; Peng et al., 2018). Based on such transformation, the com-
munity detection algorithms, which can divide a network into sub-
networks that have stronger inner connectivity, are applied to discover
hidden patterns in the spatial interaction network. For instance, by
partitioning both the network of call interaction and the network of
movements extracted from mobile phone data, Gao et al. (2013) found
that people tend to communicate within a spatially-proximate com-
munity, and the phone-users' movements in physical space and the
phone-call interaction in cyberspace are highly correlated. Liu et al.
(2014) found that the detected communities are spatially cohesive and
roughly consistent with province boundaries when they investigated
the inter-city trips and spatial interactions using social media check-in
data.

In sum, existing studies have mainly focused on the spatial inter-
actions among areal units, such as countries (Hawelka et al., 2014),
cities (Liu et al., 2014; Noulas et al., 2012), and parcels inside a city
(e.g., administrative districts, traffic analysis zones, grid cells, and
Voronoi cells) (Gao et al., 2013; Liu et al., 2015; Yan et al., 2014),
neglecting that the majority of human movements are constrained by
the underlying road network, causing spatial interactions among the
linear elements, i.e., roads. Recent studies also indicated that road unit
is a promising data assembly and analysis unit for quantitative urban
studies (Zhu, Wang, Wu, & Liu, 2017). Investigating spatial interactions
on road network at geographical unit of road is meaningful as more
detailed human moving processes can be revealed.

Therefore, in this paper, we propose an innovative approach to
extracting the spatial interaction patterns on urban road networks using
a topic model borrowed from natural language processing (NLP) do-
main.

Topic models can discover the abstract “topics” and hidden se-
mantic structures from vast textual documents, hence they are widely
used in document clustering, information retrieval, and feature selec-
tion in NLP (Blei, Ng, & Jordan, 2003). In recent years, topic models are
also introduced to geographical and urban studies. For instance, Gao,
Janowicz, and Couclelis (2017) and Yuan, Zheng, and Xie (2012) used
topic models to identify urban functional regions from POIs (Points of
Interests). Liu and Cheng (2018) as well as Mohamed, Côme,
Oukhellou, and Verleysen (2017) applied topic models using smart card
data to identify passengers' travel behavior according to their boarding/
alighting time in public transit. Hu et al. (2017) extracted and analyzed
the semantic relatedness between cities with the help of topic model
and news articles. To improve the targeted outdoor advertising, Lai,
Cheng, and Lansley (2017) applied a topic model to geotagged Tweets
to identify the popular interests around given places (e.g., London
Underground stations). Chu et al. (2014) and Zhang et al. (2016)

applied topic models to vehicle trajectory data, but their approaches are
different in both analogy ways and research purposes compared to our
current study. Regarding named roads as words and taxi trips as
documents, Chu et al. (2014) visualized the hidden themes of taxi
movements in a city. While with each taxi's trip destinations (each of
which is attached to a road segment ID) in a time period (e.g., a specific
day) being analogous to the words in a document, Zhang et al. (2016)
analyzed urban human mobility patterns by exploring the hot spots of
taxis' trip destinations.

In this study, taking the topic model's advantage in extracting se-
mantic relations of words from corpus, we utilize it to extract the in-
teraction relations of urban roads from massive vehicle movement data,
i.e., identify spatial interaction patterns of vehicle movements on urban
road networks. Firstly, in order to better reflect human driving behavior
in the real world, we choose “stroke” as geographic unit to express
urban road, and represent each vehicle moving path as a series of
strokes. Secondly, we establish an analogy between geographical ele-
ments (i.e., stroke, moving path) and textual elements (i.e., word,
document), and then apply a topic model to a mass of moving paths to
identify the spatial interaction patterns of vehicle movements on road
network. This study can help traffic managers and urban planners
better understand the traffic patterns and spatial structures of the city in
the road network space, and plan an efficient traffic control or spatial
configuration for the city.

The following of this paper is structured as follows: Section 2 in-
troduces the methodology of this paper, including the representation of
vehicle moving paths and the identification of spatial interaction pat-
terns. Section 3 conducts a case study using massive taxi trajectory data
collected in Beijing. Section 4 is devoted to discussions, and Section 5
concludes this work.

2. Methodology

Essentially, spatial interactions among roads originate from nu-
merous vehicle movements, which are constrained and influenced by
the underlying road networks (Hillier & Iida, 2005; Jiang, 2009; Jiang
& Jia, 2011). Based on this fact, first, we choose "stroke" as geographical
unit to express road, and propose to represent vehicle moving path by
strokes, in order to better reflect human driving behavior. Then, we
creatively propose to apply a topic model borrowed from NLP domain
to the vehicle moving paths, in order to identify spatial interaction
patterns on road network.

2.1. Representation of vehicle moving paths by strokes

2.1.1. Why choose "stroke" as geographical unit to express road?
A "stroke" (also in terms of "natural street") is defined as naturally

merged road segments (each of which is a section between two adjacent
intersections) following the principle of good continuity (Jiang, Zhao, &
Yin, 2008; Thomson & Richardson, 1999; Yang, Luan, & Li, 2011), e.g.,
minor direction change of two adjacent road segments. Fig. 1(a) illus-
trates several strokes, where nodes are intersections, edges between
nodes are road segments, and the chains rendered with same colors and
letter are strokes generated from the road segments. Fig. 1(b) illustrates
the spatial interactions among strokes, where nodes represent strokes,
edges represent the associations between strokes, and widths of the
edges reflect the moving flows between strokes. The target of this paper
is to identify spatial interaction patterns where we can know which
strokes are spatially interacted with each other in a strong way.

The concept of "stroke" originates from the fields of space syntax,
spatial cognition, and the emerging network science, which emphasize
on examining the relationship between human cognition and urban
space (Jiang & Liu, 2009; Thomson & Richardson, 1999). Strokes can
reflect two important aspects of human cognition on road network
space (i.e., human driving behavior), that is, visual perception and
hierarchical cognition.
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Visual perception is a concept at small-scale space that can be
perceivable from a single vantage point. Studies indicate that people
tend to follow the longest line of sight that approximates their heading
in order to reduce the complexity of environment, hence reduce the
cognition burden in way-finding process (Conroy, 2001; Dalton, 2003;
Golledge, 1995). In space syntax, such perceptive unit is represented by
the longest visibility line, which is called axial line. In recent years,
strokes are often used to replace axial lines for road network analysis
(Thomson, 2004).

Hierarchical cognition is a concept at large-scale space (i.e., con-
tinuous open space). It refers to that anchors, particularly salient fea-
tures in urban space, shape people's memory of a city, around which
subjective knowledge is hierarchically organized (Couclelis, Golledge,
Gale, & Tobler, 1987; Golledge & Spector, 1978; Passini, 1984). Actu-
ally, the road network itself is hierarchically organized at the granu-
larity of stroke. Strokes demonstrate a scaling law (Zipf, 1946) that a
majority of strokes are less connected, while a minority of strokes are
well connected (Jiang, 2007). Whereas the minority of strokes accounts
for a majority of traffic flow (Jiang, 2009), as they are salient features
in individuals' spatial cognition, and chosen more frequently by the
drivers in their way-finding process. Precisely due to their hierarchical
nature, strokes have been widely used in map generalization, road se-
lection, and road network analysis (Jiang et al., 2008; Thomson, 2004;
Yang et al., 2011).

Based on the specific properties of strokes described above, we use
"stroke" as geographical unit to express road in our spatial interaction
study.

2.1.2. Representation of vehicle moving paths
Choosing strokes as geographical units, we further present a novel

method to represent vehicle moving paths along road network in a
meaningful way.

First, a moving path is represented by a series of consecutive road
segments as follows:

route road segment road segment ro d segment[ , , , a ],N1 2= …

where N is the number of road segments included in the path.
Second, the road segment IDs are replaced by the stroke IDs they

belonging to, and the moving path is finally represented as:

route stroke stroke stroke[ , , , ].N1 2= …

Fig. 2 shows a representation example of a moving path. If we re-
present the path by road segments, then the path is formed as:

[23, 14, 7, 4, 15, 46, 117];

while if we represent the path by strokes, then the path is formed as:

[44, 12, 12, 7, 7, 7, 7].

Such representation implies the drivers' moving behavior by the
frequency of stroke IDs appearing in a moving path, denoting which
stroke(s) is (are) preferred in the trip. Take Fig. 2(2) for instance,
"stroke 7" occurs frequently in the path, implying that the linear ele-
ment is consistent with the driver's visual perception, and salient in the
her/his hierarchical cognition along the road network.

2.2. Identification of spatial interaction patterns by topic modelling

Topic models in Natural Language Processing (NLP) domain are
very popular and widely used in extracting implicit semantic relations
of words from corpus. Therefore, in this section, we take advantage of
the model to extract the associations of urban roads (i.e., identify the
spatial interaction patterns) from massive vehicle moving paths.

2.2.1. Topic models and LDA
Topic models are unsupervised machine learning models, which are

widely used in NLP for discovering the abstract "topics" and hidden
semantic structures from vast textual documents. Intuitively, given that
a document is about a particular topic, for instance, football, then some
particular words such as "football", "team" and "league" would co-occur
in the document more frequently. Topic models can automatically
analyze the documents in the corpus and extract potential topics ac-
cording to the co-occurrence of words in documents. As the Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) model is the most popular
and classical one in the topic model family, we will utilize it in our
study.

LDA introduces sparse Dirichlet prior distributions over document-
topic and topic-word distributions, encoding the intuition that each
document covers a small number of topics and each topic can be de-
scribed by a small number of semantically related words. The graphical
representation of latent Dirichlet allocation is shown in Fig. 3. The la-
tent variables in the generative process are represented as single-circle
nodes, while the observed variable is represented as a double-circle
node. The rectangles are “plate” notation that denotes replication. K is
the number of topics; N is the total number of words in the vocabulary;
M is the number of documents in the corpus. and are the prior
parameters for the Dirichlet document-topic and topic-word distribu-
tion, respectively. m represents the topic distribution for document m,
which is a K-dimension vector; while k represents the word distribu-
tion for topic k, which is a N-dimension vector. zm, n is the topic of the n-
th word in document m, while wm, n represents the specific word.

As shown in Fig. 3, the generative process of the LDA model can be
described as follows.

for topic k ∈ [1,K]:

draw ~Dirichlet( )k
for document m ∈ [1,M]:

draw ~Dirichlet( )m
for word n ∈ [1,Nm]:

draw the topic of the nth word: z ~Multinomial( )m m,n

draw the nth word w ~Multinomial( )m zm,n ,n

The variational Bayes (VB) algorithm is used in our study for
parameter estimation, and more details along with the parameter in-
itialization can be found in Hoffman, Bach, & Blei, 2010. After finishing

Fig. 1. Illustration of strokes and the spatial interactions among strokes.

K. Liu et al. Computers, Environment and Urban Systems 74 (2019) 50–61

52



the inference, and associated with topic proportions and assign-
ments are generated. Then each topic can be represented as a N-di-
mension vector, and words with high probabilities are semantically
related or similar, which can well describe the topic; while each
document can be represented as a K-dimension vector, and topics with
high probabilities indicate the themes that the document talks about.

2.2.2. Combination of topic model with massive moving paths
Taking the advantage of topic models in extracting implicit relations

of words, we propose to apply the LDA model to massive vehicle
moving paths - by regarding each stroke as a word and each moving
path as a document - in order to extract the interaction relations of
strokes and identify the spatial interaction patterns on road network.

Here we explain why the combination of LDA model and moving
paths is meaningful. According to the principle of LDA model, words
with high probabilities in the topic-word distribution are semantically
related or similar with each other (e.g., "pop" and "rock"), as they co-
occur frequently in a considerable number of documents. Similarly,
strokes with high probabilities in the topic-stroke distribution (an ex-
ample is shown in Table 1) co-occur frequently in a considerable

number of moving paths, which means that in the physical world,
massive vehicles passed through these strokes from one (directly or
indirectly) to another, making these strokes spatially interacted with
each other. Therefore, we can extract the interaction relations of strokes
and identify the spatial interaction patterns on road network by the
probabilities of strokes to each topic.

3. Case study

3.1. Data

We conduct a case study using the data of downtown Beijing, China.
The road network of the city contains 26,621 road segments, in-

cluding expressways, arterial streets, side streets and collector streets,

Fig. 2. Representation of a moving path.

Fig. 3. The graphical representation of latent Dirichlet allocation (Blei et al.,
2003).

Table 1
Example of topic-stroke distribution.

stroke ID

28 51 211 79 466 267 1217 358 …

Topic 1 0.03 0.01 0.03 0.14 0.03 0.39 0.01 0.01 …
Topic 2 0.25 0.02 0.24 0.01 0.15 0.05 0.01 0.01 …
Topic 3 0.01 0.39 0.01 0.01 0.17 0.01 0.12 0.01 …
… … … … … … … … … …

Fig. 4. The road network of downtown Beijing.
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as shown in Fig. 4.
As strokes are chosen as geographical units in our study, we gen-

erate strokes from the road segments by the restriction of both their
deflection angles and road names, which are two main elements used
for generating strokes according to the continuity principle of percep-
tual grouping into networks (Yang et al., 2011). Finally, we derive 2762
strokes from the 26,621 road segments.

The moving paths are derived from the floating car data (FCD)
collected by the GNSS (Global Navigation Satellite System) equipped
taxis operating in Beijing during May 2012, with a sampling frequency
of about 50 s. As shown in Table 2, a GNSS record consists of taxi's
identification, coordinates (longitude and latitude), timestamp, velo-
city, and occupancy state (i.e., loading passengers or not), etc. As the
taxi drivers are experienced drivers who are familiar with the city, they
can be regarded as the samples of one type of local citizens living in the
city.

To generate the moving paths, we first map the GNSS trajectories
between passengers' pick-up and drop-off locations to the road network
using a map matching algorithm called ST-CRF, which can process low-
frequency (i.e., sparse) FCD (Liu, Liu, Li, & Lu, 2017). Then we proceed
as follows:

• if more than one consecutive GNSS points are mapped into the same
road segment, then the road segment is only counted once in the
moving path;
• if two consecutive GNSS points are mapped onto different road
segments that are not topologically adjacent in a road network, then
we use the shortest path between the two road segments to fill in the
moving path.

After the above processing, we obtain moving paths represented by
sequential road segments, and then transform them into the format
represented by sequential strokes introduced in Section 2.1.

By analyzing the frequencies of strokes in the moving-path datasets,
we find that the rank-frequency distribution shows a long tail (Fig. 5),
indicating that a minority of strokes are used highly frequently, while a
majority of other strokes are much less used. This statistic is consistent

with that of words in natural language texts, where a small number of
words are used highly frequently while most other words are only used
once a while (Manning & Schütze, 1999). This indicates that the geo-
graphical units, i.e., strokes, can hold the underlying statistical as-
sumption in NLP, proving the rationality of representing vehicle
moving paths by strokes, and applying the topic model to moving-path
datasets.

Furthermore, considering the dynamic characteristic of human
moving behavior, we divide the moving paths into five datasets ac-
cording to the departure time of the routes: workday morning rush
hours (7:00–9:00), workday evening rush hours (17:00–19:00),
workday non-rush hours (0:00–7:00; 9:00–17:00; 19:00–24:00), week-
ends and holidays.

3.2. Topic number selection

Setting an appropriate number of topics is important but still a
challenging problem in LDA modelling. Several metrics have been de-
veloped to find optimal topic numbers, including perplexity (Blei et al.,
2003), logP(w|T) (Griffiths & Steyvers, 2004), topic coherence (Mimno,
Wallach, Talley, Leenders, & McCallum, 2011), topic correlation (Cao,
Xia, Li, Zhang, & Tang, 2009), etc. In this paper, we use both the topic
correlation and topic coherence to assess topic quality and determine an
appropriate topic number.

(1) Topic correlation

Cao et al. (2009) studied the connection between LDA performance
and topic correlation, and demonstrated that the LDA model performs
best when the average cosine similarity of topics reaches the minimum.
The calculating process of topic correlation is as follows.

Mark the topic-word distribution of topic i in N-dimension space as
vector zi where N is the number of words in the vocabulary; while the
value of its tth dimension is zit. The correlation between topic i and j is
measured by cosine similarity:

cor i j
z z

z z
( , )

( ) ( )
t
V

i
t
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2
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where smaller value indicates that topic i and j are more independent.
The topic correlation of K topics is calculated as:

cor
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K
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K
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K

i j
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1

1
1

2

=
×

= = +

(2)

where a smaller value indicates a better performance of the topic
model.

(2) Topic coherence

Topic coherence is a metric based on the co-occurrence of words
that word pairs belonging to the same topic should co-occur more
frequently in documents.

Letting D(v) be the document frequency of word v (i.e., the number
of documents containing at least one v) and D(v,v′) be co-document
frequency of word v and v′ (i.e., the number of documents containing at
least one v and at least one v′), the topic coherence of topic t is defined

Table 2
Data schema of taxi GNSS records.

Taxi identification Data Time Longitude Latitude Velocity
(km/h)

Occupancy state

300,984 20,120,503 09:25:45 116.392 39.929 29 0
300,984 20,120,503 09:25:53 116.381 39.930 46 1
… … … … … … …

Fig. 5. Rank-frequency of strokes in the moving path datasets.
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as:
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where (v1(t),…,vM(t)) is a list of the M most probable words in topic t. A
smoothing count of 1 is included to avoid taking the logarithm of zero.

The topic coherence of K topics is calculated as:

coh
coh t
K

( )t
K

1= =
(4)

where a greater value indicates a higher quality of topics.
In order to choose an appropriate topic number in our case study,

we run the LDA model on our moving path datasets by setting the topic
number from 5 to 200 with an interval of 5, and calculate the corre-
sponding topic coherence and topic correlation metrics. As shown in

Fig. 6, with the increasing of topic number, the topic correlations de-
crease first, and then keep steady at a low level; while the topic co-
herences increase first until reaching the peak at the topic number of
15, and then decrease slowly. Considering both the two metrics, we
choose 15 as the optimal topic number for our datasets, even though the
topic correlations not yet drop to a steady and low level - the topics do
not need to be strictly independent with each other, i.e., some over-
lapping is allowed and one stroke may belong to more than one topic.

3.3. Topic pattern extraction

The LDA model is a statistical model, and the results run in different
rounds are usually slightly different, even if apparent topic patterns did
exist in the dataset. As only stable and reliable topics are expected, in
this section, we use the following steps to identify significant topic
patterns in each of the five datasets of different time periods.

Fig. 6. Selection of appropriate topic number using topic correlation and topic coherence metrics.
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(1) Run the LDA model five times;
(2) For each topic derived from each running round:

• Join the topic-stroke distribution with the shapefile of road network
in ArcMap software through their common attribute - stroke ID;
• Classify the strokes into five classes by their probabilities using the
Jenks natural breaks classification method, which seeks to reduce
the variance within classes and maximize the variance between
classes (Jenks, 1967);
• Render the five clusters of strokes with red, orange, yellow, light
green, and green, reflecting relatively highest, higher, median,
lower and lowest probabilities to the topic respectively.

(3) Based on the visualized maps, we manually select topics that appear
more than three of the five times as the significant topic patterns.

Fig. 7 shows one topic pattern that appears in four of the five run-
ning rounds in the dataset of workday evening rush hours; while
Table 3 shows the cosine similarities of topic-stroke distributions run in
the four rounds. It shows that the topics run in the four different rounds
are very similar, reflected in both the visualized maps and the similarity
measurements, indicating that the topic pattern is meaningful and
significant.

3.4. Result analysis

Using the topic pattern extraction method introduced above, we
identify the topic patterns from the datasets of workday morning rush
hours, workday evening rush hours, workday non-rush hours, weekends
and holidays, respectively, and find that the majority of the topic pat-
terns in different time periods are almost the same, so we focus on these
common patterns only. The topic number is initially set as 15, and we
finally obtain 11 topic patterns after topic pattern extraction.

From Table 3 and Fig. 7, we can see that after topic pattern ex-
traction, the same patterns derived from different runs of the algorithm
are very similar, so we just pick one of them for demonstration. Table 4
shows the cumulative numbers of strokes at different probability levels
in each pattern, and Fig. 8 shows the visualized maps of the patterns,
which distribute at various important positions across the road net-
work. Polylines rendered by red, orange, yellow, and light green in

Fig. 7. Topics of the same pattern run in four different rounds.

Table 3
Cosine similarities of the topic-stroke distributions run in four different rounds.

1 2 3 4

1 1
2 0.889 1
3 0.829 0.809 1
4 0.893 0.809 0.912 1
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Fig. 8 can be regarded as clusters of strongly spatially interacted
strokes, among which a mass of vehicles have passed through fre-
quently.

• Pattern 1 mainly includes the North 4th Ring freeway, the North 5th
Ring freeway, and some important roads connecting them (e.g., the
Beijing-Tibet freeway) or surrounding them in the north of the city.
• Pattern 2 mainly includes some high-grade roads around Wangjing
(a relatively independent commercial and residential sub-district),
such as Beijing-Chengde freeway, the East of the North 4th Ring
freeway, and the Beijing Capital Airport Expressway, and some main
roads inside Wangjing.
• Pattern 3 mainly includes the West 4th Ring freeway and some main
roads surrounding and crossing it in the west of the city.
• Pattern 4 mainly includes the West 3th Ring freeway, and some
roads surrounding and crossing it, such as the Zizhuyuan Road.
• Pattern 5 mainly includes the North 3th Ring freeway and the sur-
rounding main roads.
• Pattern 6 mainly includes some main roads jointed by Xizhimen
flyover, such as the West 2th Ring freeway, the North 2th Ring
freeway, etc.
• Pattern 7 mainly includes the main roads jointed by Dongzhimen
flyover, such as the Capital Airport Expressway, the North 2th Ring
freeway, the East 2th Ring freeway, etc.
• Pattern 8 mainly includes some main roads surrounding the east-
south of the 2th Ring freeway.
• Pattern 9 mainly includes the East 3th Ring freeway and some main
roads surrounding or crossing it.
• Pattern 10 mainly includes the East 4th Ring freeway, the East 5th
Ring freeway, and some main roads crossing it.
• Pattern 11 mainly includes the South 3th Ring freeway, the South 4th
Ring freeway and some main roads surrounding and crossing them.

The identified topic patterns are almost the same in different time
periods, indicating that the spatial interactions do not change a lot
dynamically even though the movement flows and traffic states usually
vary dramatically over time. This may be because stroke is chosen as
the representation granularity of roads, which is a relatively larger
geographical unit compared to road segment. As is explored in our
previous work (Liu, Gao, et al., 2017), the traffic interactions among
neighboring road segments show prominent dynamic characteristics
that the interactions on workday morning rush hours, workday evening
rush hours and holidays are stronger than that on workday non-rush
hours and weekends.

3.5. Result verification

To verify the effectiveness of our proposed approach, we use the
community detection-based method as a comparison, which is widely
used in recent years to discover the hidden spatial interaction patterns
(Gao et al., 2013; Hawelka et al., 2014; Liu et al., 2014; Liu et al.,
2015). With the areal units being represented as nodes, and the inter-
acting flows being represented as weighted edges, the community de-
tection algorithms can divide the spatially embedded network into sub-

regions, within which the nodes (i.e., areal units) are interacted with
each other more strongly.

In our case, firstly, the strokes are mapped to nodes and the con-
nections between strokes are mapped to edges; while the weight of each
edge is determined by the frequency of vehicles moving between the
two ending nodes (i.e., strokes). Secondly, we apply a classical com-
munity detection algorithm proposed by Clauset, Newman, and Moore
(2004) to the weighted stroke-stroke network. This algorithm merges
individual nodes into communities one by one in a way that greedily
maximizes the modularity score of the network. The algorithm can be
stopped until no merge can increase the current modularity score. The
modularity Q is defined as:

Q
m

A k k
m

c c1
2 2

( , )
vw

vw
v w

v w=
(5)

where m is the number of edges in the network; Avw is 1 if node v and w
are connected and 0 otherwise; kv is the degree of node v which is
defined to be the number of edges incident upon it; δ-function δ(i, j) is 1
if i= j and 0 otherwise.

Fig. 9 shows the results of the community detection-based method.
Fig. 9(1) depicts how Q changes with the number of communities,
based on which, we choose eight as the optimal number of commu-
nities. While Fig. 9(2) shows the eight communities, i.e., the derived
spatial interaction patterns. Strokes within the same communities are
deemed to be interacted with each other more strongly.

In order to compare our proposed approach and the community
detection-based method in a quantitative way, we calculate the average
frequency of vehicle movements between strokes within the same topic
patterns or communities. As shown in Table 5, the average transfer
frequencies between strokes within the same topic patterns are sig-
nificantly higher than that within the same communities, indicating
that our proposed approach performs much better in identifying the
spatial interaction patterns. This may be because in our approach, the
spatial interaction patterns are discovered from the moving paths di-
rectly based on the co-occurrences of the strokes. While in the com-
munity detection-based method, the intrinsic structure of the road
network would affect the results greatly, which may make some weakly
interacted but well-connected strokes being identified into the same
communities. Besides, compared to the community detection-based
method, our approach can discover the spatial interaction patterns in a
hierarchical way, as the topic model can draw topic-stroke distributions
instead of the fixed memberships of strokes to topics.

In addition, to help understand the derived spatial interaction pat-
terns, we utilize the chord diagram to visualize the actual vehicle
moving flows among strokes in the 11 topic patterns. A chord diagram
is a graphical method of displaying the inter-relationships and flows
between several entities (e.g., topic patterns in our case). As shown in
Fig. 10, when we only consider the strokes at highest probability level
in each topic pattern (i.e., the red strokes in Fig. 8), the majority of
vehicle movements among strokes happen inside the same topic pat-
terns with average percentage of intra-flows of 60.02%, proving again
that our proposed approach can well identify the spatial interaction
patterns.

Table 4
Cumulative numbers of strokes at different probability levels in each topic pattern.

Prabability level Topic pattern

1 2 3 4 5 6 7 8 9 10 11

Highest 5 3 5 4 3 6 3 11 2 2 10
Higher 7 10 15 11 12 20 11 27 7 7 23
Median 17 25 29 31 24 44 31 67 22 14 39
Lower 51 52 58 63 52 85 80 136 47 36 73
Lowest 2762 2762 2762 2762 2762 2762 2762 2762 2762 2762 2762
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4. Discussion

This paper investigated the spatial interactions of vehicle move-
ments on urban road network. The innovation points of this paper can

be summarized as follows.
Firstly, as the existing literatures mainly focused on the spatial in-

teractions among areal units, neglecting that most of human move-
ments are constrained by the underlying road network, in this paper,

Fig. 8. Common spatial interaction patterns in different time periods.
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we investigated the detailed vehicle moving process on road network
and identified the spatial interaction patterns at linear instead of areal
geographical units, which filled the gap of current studies.

Secondly, in order to better identify the spatial interaction patterns,

we revisited human spatial cognition on road network space first. Based
on which, we chose “stroke” as geographical unit to express road, and
proposed an innovative method to represent vehicle moving paths,
which can well reflect human driving behavior.

Fig. 8. (continued)
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Thirdly, we grasped the common nature of "moving path-stroke" and
"document-word", and took the advantage of topic model in extracting
semantic relations of words to extract the interaction relations of
strokes by applying a topic model to a mass of moving paths.

Our identified spatial interaction patterns are proved effective that
vehicles do move much more frequently among strokes within the same
topic patterns than that within the same communities derived by the
comparison method. Actually, as the topics are extracted according to
the co-occurrences of strokes in moving paths, the derived topic pat-
terns can also be interpreted from other perspectives as follows.

(1) They can reveal the hotspots of vehicle movements and human
driving behavior in the city.

(2) They can reflect the traffic patterns of the city, as spatially inter-
acted strokes would also influence each other more easily in traffic
states, such as volumes and velocities.

(3) They can reflect the underlying urban structures of the city in
the road network space, providing a new viewpoint for urban
planning.

5. Conclusion

Most spatial interaction studies have been focused on areal spatial
units such as cities and administrative districts, neglecting that human
movements are usually constricted by the underlying road network,
causing spatial interactions among the linear geographical units, i.e.,
roads. In order to fill the gap of current studies, this paper proposed an
innovative approach to identify the spatial interaction patterns of ve-
hicle movements on road network. Firstly, "strokes" are chosen as
geographical units to represent the vehicle moving paths. Then, an
analogy between stroke-moving path and word-document is estab-
lished, and a topic model is applied to the moving paths to identify the
spatial interaction patterns on road network. It indicates that our ex-
tracted topics can better reflect the spatial interaction patterns com-
pared to the community detection based method. Our proposed ap-
proach provides an innovative viewpoint for spatial interaction
modelling on road network space, and enriches the current spatial in-
teraction studies, which can help the traffic managers and urban
planners better understand the traffic patterns and urban structures of
the city, and plan an efficient traffic control or spatial configuration for
the city. In future work, we would like to extend our proposed method
in other cities with different underlying road network structures and
urban environment.

Fig. 9. Results of the community detection based method as a comparison.

Table 5
Average frequency of vehicle movements between strokes within the same topic
patterns or communities.

Topic patterns Communities

Highest ≥Higher ≥Median ≥Lower

Frequency 29,681.7 11,017.1 4484.5 1783.5 72.5

Fig. 10. Vehicle moving flows among strokes with highest probability level in
the 11 spatial interaction patterns.
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