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A B S T R A C T

Understanding human mobility is significant in many fields, such as geography, transportation, and sociology.
Due to the wide spatiotemporal coverage and low operational cost, mobile phone data have been recognized as a
major resource for human mobility research. However, due to conflicts between the data sparsity problem of
mobile phone data and the requirement of fine-scale solutions, trajectory reconstruction is of considerable im-
portance. Although there have been initial studies on this problem, existing methods rarely consider the effect of
similarities among individuals and the patterns of missing data. To address this issue, we propose a multi-criteria
data partitioning trajectory reconstruction (MDP-TR) method for large-scale mobile phone data. In the proposed
method, a multi-criteria data partitioning (MDP) technique is used to measure the similarity among individuals
in near real-time and investigate the spatiotemporal patterns of missing data. With this technique, the trajectory
reconstruction from mobile phone data is then conducted with machine learning models. We verified the method
using a real mobile phone dataset in a large city. Results indicate that the MDP-TR method outperforms com-
peting methods in both accuracy and robustness. We argue that the MDP-TR method can be effectively utilized
for grasping highly dynamic human movement status and improving the spatiotemporal resolution of human
mobility research.

1. Introduction

Human movement is a major dynamic in various spatial and tem-
poral phenomena, such as urban commuting, goods transportation, the
spread of infectious diseases, and automobile pollutant diffusion (Gao,
2015; González, Hidalgo, & Barabási, 2008; Kang, Ma, Tong, & Liu,
2012; Xu, Belyi, Bojic, & Ratti, 2018; Yao et al., 2018). Thus, studies on
human mobility are crucial in numerous domains including urban
planning, intelligent traffic management, and ecology (K. Liu, Gao, &
Lu, 2019; Yue, Lan, Yeh, & Li, 2014). With the development of in-
formation and communications technologies (ICTs), positioning tech-
nologies, and the popularization of intelligent terminals, massive
quantities of trajectory data are quickly accumulated (Cao et al., 2015;
Li, Lu, Zhang, & Chen, 2018; Liu, Gong, Gong, & Liu, 2015; Zheng,
2015). The availability of such data brings new opportunities to un-
cover the human mobility and the complex interplay between the urban

environment and human activity (Giannotti et al., 2011; Sui & Shaw,
2018; Wan et al., 2018).
Due to its wide spatiotemporal coverage and low operational cost,

mobile phone data have been recognized as a major data source for
many mobility related studies and applications (Gurumurthy &
Kockelman, 2018; Shin et al., 2015; Xu et al., 2018; Pei et al., 2014).
Call detail record data (CDR) is one of the most accessible and popular
types of mobile phone data. It records human movement when a mobile
phone interacts with a phone tower (Ahas, Aasa, Silm, & Tiru, 2010;
Gao et al., 2017; Gao, Liu, Wang, & Ma, 2013; Yuan, Raubal, & Liu,
2012). To reduce the cost of data transmission and storage space im-
posed by the massive mobile communication systems, records are col-
lected only at each occurrence of a phone communication activity (i.e.,
phone calls or text messages) (Deville et al., 2014; Song, Qu, Blumm, &
Barabási, 2010). This inevitably results in the problem of trajectory
discontinuity (Ranjan, Zang, Zhang, & Bolot, 2012; Zhao et al., 2016),
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which brings about inaccurate and even unreasonable analyses and
inferences (Cheng & Lu, 2017; Deng, Fan, Liu, & Gong, 2016). Thus, the
trajectory reconstruction of CDR data is a key preprocessing step in
many applications.
Although previous studies have attempted to resolve the trajectory

reconstruction problem (G. Chen, Viana, & Sarraute, 2017; Fan et al.,
2016; Liu et al., 2018), two limitations remain. First, understanding the
similarities between individuals can enhance reconstruction perfor-
mance. However, since only a few methods have been developed for
spatiotemporal proximity analysis of large-scale low-frequency move-
ment data in near real-time (Yuan, Chen, Li, Shaw, & Lam, 2018), most
methods use only individual trajectories or single trajectory segment to
reconstruct the missing data. Reconstruction based on individual pat-
terns tends to suffer from the data-hungry problem when an individual
only has a small number of historical trajectories available. This in-
dicates that meaningful movement patterns are unable to be mined and
limit method versatility. Second, trajectory reconstruction methods are
challenged by the variations in the temporal patterns of missing data.
That is, the reconstructions of locations are quite different for missing
data with different time spans. Moreover, missing data at different
times may lead to different inferences with respect to various move-
ment behaviors. Ignoring the differences in temporal patterns of
missing data may reduce the precision and reliability of the trajectory
reconstruction methods.
To overcome the limitations discussed above, we propose a new

multi-criteria data partitioning trajectory reconstruction method,
known as the MDP-TR method, to reconstruct missing points in large-
scale mobile phone datasets. The contributions of this study can be
summarized as follows:

(1) We propose an anchor-point-based clustering algorithm applied to
the trajectory reconstruction area. This helps in understanding the
similarities between large-scale low-frequency trajectory datasets in
near real-time and helps lessen the data-hungry problem, which can
significantly improve the performance and reliability of trajectory
reconstruction.

(2) We introduce an incremental-sliding-window-based data construc-
tion algorithm. This can generate trajectory segments with different
time spans and at different times, which allows our model to learn
the relevant movement characteristics with different temporal
patterns of missing data.

(3) We evaluate the proposed method using a large-scale continuous
mobile phone dataset collected from 1,000,000 individuals over a
period of 15 workdays, where the number of location points ex-
ceeded one billion. The results demonstrate significant improve-
ments in reconstruction performance over competing solutions.

The remaining parts of this study are organized as follows. Section 2
provides a literature review and Section 3 states the problem. Section 4
describes the details of the proposed multi-criteria data partitioning
trajectory reconstruction (MDP-TR) method. The experimental results
and a performance analysis are presented in Section 5. The final section
concludes this study and discusses future research.

2. Literature review

2.1. Trajectory reconstruction for mobile phone data

In the literature, previous studies have proposed several trajectory
reconstruction methods. These related studies can be roughly divided
into three categories: map-matching-based methods, interpolation-
based methods, and pattern-learning-based methods. The basic as-
sumption of map-matching-based methods is that individual movement
behaviors follow the road networks. Thus, a sequence of trajectory
points can be aligned to a sequence of road segments to form a complete
path (Algizawy, Ogawa, & El-Mahdy, 2017; Chen & Bierlaire, 2015;

Jagadeesh & Srikanthan, 2015). Jagadeesh and Srikanthan (2017) used
a hidden Markov model to generate partial map-matched paths and
then used a pre-training route choice model to identify the most likely
path. Xiao, Wen, Markham, and Trigoni (2014) used contextual re-
lationships between trajectory points as features of the CDR trajectories
in a conditional random field model to reconstruct individual trajec-
tories. However, the basic assumption that underlies the map-matching
method is questionable. That is, individuals in urban space can travel by
subway or on foot, which limits the performance of such methods. In
addition, these methods mainly concern the spatial complement and
seldom attempts to estimate the time required for an individual to reach
the road segments. These factors may limit the applicability of such
methods.
Interpolation-based methods mainly use spatial-temporal correla-

tions among data to interpolate missing points. The main assumption
when using this type of methods is that missing points can be ap-
proximated by a simple function (e.g., nearest-neighbor function, linear
function, or Gaussian function). During interpolation, each trajectory
point is assumed to be independent of the others and weights are cal-
culated based on the distances and time spans between each missing
point and its contextual points (Ficek & Kencl, 2012; Hoteit, Secci,
Sobolevsky, Pujolle, & Ratti, 2013; Hoteit, Secci, Sobolevsky, Ratti, &
Pujolle, 2014; Yu, Russell, Mulholland, & Huang, 2018). However, the
movement patterns of individuals are complex. Especially when the
time span between two given points is long (which is quite common in
CDRs), the individual is likely to either have traveled to several loca-
tions or to have stayed in the same location. Thus, in such cases, re-
construction is ineffective.
With recent advances in artificial intelligence, pattern-learning-

based reconstruction methods have become mainstream in this dis-
cipline. They can be used to improve the models by exploring the in-
dividual behavioral characteristics from historical trajectories and
performing trajectory reconstruction using trained models, such as the
Markov models, topic models, and neural network models (Chen et al.,
2017; Fan et al., 2016; Liu et al., 2018). For example, Fan et al. (2016)
proposed a collaborative filtering method for CDR reconstruction. They
inferred individual movement patterns using a topic model and then
estimated the location sequence with a hidden Markov model using the
topic distributions. Liu et al. (2018) divided individuals into three types
based on an indicator of the radius of gyration and used a back pro-
pagation neural network to reconstruct the respective positions of
mobile phone users. Whereas, the accuracies of these methods were not
satisfactory and required further improvement.

2.2. Anchor point detection

Anchor points represent the locations of key activities in people's
daily lives, which can provide theoretical support for commuting be-
havior research and human mobility research (Hägerstraand, 1970;
Kung, Greco, Sobolevsky, & Ratti, 2014; Miller, 1991; Palma, Bogorny,
Kuijpers, & Alvares, 2008). Traditional techniques to obtain anchor
points mainly rely on surveys (Cascetta, 1984) or modeling methods
(Han, Hao, Wang, & Zhou, 2011; Yan, Han, Zhou, & Wang, 2011).
However, problems, such as high cost, poor timeliness, and extended
update periods, limit performance. With the development of ICT tech-
nology, massive trajectories provide two ways for anchor point: se-
mantic rule-based and moving state derivation-based methods.
The basic idea of semantic rule-based methods is to refer to urban

resident living habits and identify the locations where the resident stays
the longest during working hours (e.g., 08:00 to 18:00) and rest hours
(e.g., 22:00 to 06:00) as the workplace and residence, respectively
(Calabrese, Diao, Di Lorenzo, Ferreira Jr, & Ratti, 2013; Kung et al.,
2014). These methods exhibit significant performance in specific cate-
gories. However, these methods rely on prior knowledge and can only
determine anchor points of limited categories, which restricts the ap-
plicability of such methods. The moving state derivation-based method
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typically selects activity range, dwell time, trajectory point density or
moving speed as a threshold parameter. When an individual stays
within a certain range during a period of time (Capela et al., 2016) or
the trajectory points have obvious agglomeration pattern in space
(Huang, Cao, & Wang, 2014; Palma et al., 2008), the cluster of those
points is identified as an anchor point. These methods can extract the
activity sequence patterns from individual trajectories, which is crucial
for individual behavior understanding and personalized recommenda-
tion. However, how to make the anchor points semantic is a key chal-
lenge.

2.3. Trajectory similarity measurement

When clustering trajectories, we need to calculate the similarity
among trajectories. The traditional techniques to measure trajectory
similarity mainly concerned on the spatial proximity. These methods
measured the similarity using the distances between entire trajectories
via algorithms such as Closet-Pair distance, Dynamic Time Wrapping
(DTW) distance, and Longest Common Sub-Sequence (LCSS) distance
(Chen, Özsu, & Oria, 2005; Chen, Shen, Zhou, Zheng, & Xie, 2010;
Toohey & Duckham, 2015) or the distance between the trajectory
segments (Lee, Han, & Whang, 2007; Mao, Zhong, Qi, Ping, & Li, 2017).
However, the trajectories are with time attribute, and only considering
the spatial similarity will lead to misidentification of the spatiotemporal
neighbor relationship.
To the best of our knowledge, few methods focus on the spatio-

temporal proximity analysis of trajectory data. Several studies used
brute force approaches (Zheng, 2015), space-time separated approaches
(Long & Nelson, 2013; Miller, 2005), or space-time buffering ap-
proaches (Yuan et al., 2018) for similarity measurement. However,
these methods are typically computationally intensive, which are not
applicable to datasets with millions of trajectories in near real-time.
Therefore, new less time-consuming methods are required for spatio-
temporal proximity analysis.

3. Problem statement

As discussed previously, the problem of interest is to reconstruct the
points of the individual trajectories that are missing in a large-scale
CDR dataset. Suppose that Trajfull = 〈pt1,pt2, … ,ptn〉 represents the full
trajectory of an individual and Trajrecord= 〈pt1,pt2, … ,ptm〉 represents
the recorded trajectory of that same individual, where pti represents a
trajectory point that includes latitude, longitude, and timestamp in-
formation (xi, yi, ti); ∀i∈ [1, n], ti < ti+1. If there exists {ptj ∣ ptj ∈ Trajfull
and ptj ∉ Trajrecord}, it indicates that ptj is a missing point in Trajrecord.
To solve this problem, the frequent movement patterns and the spa-
tiotemporal characteristics of the historical trajectories and the most
likely locations are estimated based on prior knowledge.

Understanding the similarity among individuals can enhance tra-
jectory reconstruction performance. However, due to the large-scale
characteristics and inconsistent recording times in mobile phone data,
most methods only use individual trajectories or single trajectory seg-
ment to reconstruct missing data. Limited amounts of data lead to the
data-hungry problem, which makes the model overfitting and limits the
effectiveness of the method. Anchor points represent the locations of
key activities in people's everyday lives (Hägerstraand, 1970; Miller,
2005; Xu et al., 2015). As individuals in urban space tend to spend most
of their time in a few specific locations, the trajectory can be roughly
represented as stops and moves through a set of interesting places (Long
& Thill, 2015; Moreno, Pineda, Fileto, & Bogorny, 2014; Song et al.,
2010). These places denote the locations of an individual's major ac-
tivities, such as the home, workplace, and transfer stations, which
significantly reflect the characteristics of that individual's movements.
This provides an effective way to measure the similarity among large-
scale low-frequency trajectories using anchor points. For example, the
individuals with similar workplace and home locations are more likely
to select the same path for their commute and leave home at similar
times given their spatiotemporal coupling constraints. Therefore, in-
dividuals with similar movement patterns will be clustered into a group
whose trajectories will be used to provide a more adequate dataset for
the model training.
The temporal pattern of the missing data affects trajectory re-

construction results. For example, suppose that we want to reconstruct
the trajectory between two locations that are 3 km apart. If the time
span between the two records is approximately 5min, the missing point
is most likely to occur along the shortest path between the two loca-
tions. If the time span is approximately 5 h, there will be more dis-
tributions possible for the missing data. To consider these impacts on
trajectory reconstruction, we define the temporal patterns of the
missing data as TM_Patternptj={timeptj, timespanptj}, where timeptj re-
presents the time of day of the missing data and timespanptj represents
the time interval between the previous record and the next record of the
missing data.

4. Methodology

4.1. Framework

The method developed in this study (MDP-TR) consists of two parts:
the multi-criteria data partitioning (MDP) technique and the MDP-TR
modeling. As shown in Fig. 1, the method begins with an anchor point-
based clustering algorithm. With this algorithm, individuals are divided
into a series of groups in which each group represents several in-
dividuals whose movement patterns are similar, which enhances re-
construction performance by solving the data-hungry problem. Then,
an incremental-sliding-window-based data construction algorithm is

Anchor-points 
based Clustering

MDP Technique

Anchor-points 
based Clustering

MDP Technique

Incremental Slide 
Window based Data 

Construc!on

Model Training

MDP-TR Modeling

Model Training

MDP-TR Modeling

Feature Selec!on

Sparse
Trajectories

Reconstructed
Trajectories

Fig. 1. The reconstruction process for the multi-criteria data partitioning trajectory reconstruction (MDP-TR) method.
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proposed. This algorithm extracts the individual's trajectories in each
group separately, and divides the trajectories into trajectory segments
with varying time spans at different times to take into account different
temporal patterns of the missing data. Finally, we select the features of
trajectory segments in each group for model training and construct the
MDP-TR model by importing the MDP technique into classic machine
learning models. As a consequence of the previous operator, a series of
MDP-TR models are trained to reconstruct the individual trajectories of
each group.

4.2. Anchor-point-based clustering algorithm

Considering the complexity of individuals' movement patterns and
the high computational cost for calculating the similarities between
large-scale movement data, most methods only use one individual's
historical trajectory or single trajectory to reconstruct the missing data.
This can lead to data-hungry problems and limit method versatility.
Since anchor points can represent the locations of key activities in
people's daily lives, in this subsection, we propose an anchor-point-
based clustering algorithm into the area of trajectory reconstruction to
gain an understanding the similarities among massive populations at a
low computational cost in near real-time.

4.2.1. Anchor point detection
Due to the challenge that an individual's CDR locations may switch

among adjacent cell phone towers caused by signal strength variation,
we define an anchor point as a set of adjacent cell phone towers where
the individual spends a certain minimum amount of time (Huang et al.,
2010; Xu, Shaw, Fang, & Yin, 2016). To detect the anchor points, we
first calculate the number of records associated with each cell phone
tower in an individual's trajectories. Then, the most frequently visited
tower is selected as the core and all neighboring towers, within a dis-
tance threshold of β, are grouped as a candidate. After that, the next
most frequently visited tower is selected, and the same process is
iteratively performed until all the individual's records are processed.
Finally, the visit frequency of each candidate is calculated, and each
candidate whose visit frequency exceeds 20% of an individual's total
visits recorded in CDRs is defined as an anchor point of the individual.
The most frequently visited tower in each anchor point is defined as the
representation location. An example of anchor point identification for
an individual is shown in Fig. 2, where the green lines represent an
individual's spatiotemporal trajectory (also known as the space-time
path (Hägerstraand, 1970; Miller, 1991; Shaw, Yu, & Bombom, 2008))
in 3-D space, the blue circles represent the anchor points in the 2-D
plane, the red circle represents a random point set that contains less
frequently visited locations, and the representation location of the in-
dividual's anchor points are the locations of cell phone towers 1, 2, and
3. Notice that we used circular regions rather than points in this figure
to acknowledge the location uncertainty around each cell tower.
It is worth noting that the distance threshold, β, is crucial when

detecting anchor points. On the one hand, choosing a small value will
not help lessen the cell phone tower switching problem caused by signal
strength changes. On the other hand, a large value will fail to capture
the individual's movements through space because most of the points
would be aggregated into a single large cluster. In this study, con-
sidering that the average distance between nearest neighbor cell phone
towers is approximately 0.24 km, we selected a 0.5 km as the distance
threshold to achieve a compromise between the signal switching pro-
blem and the objective of movement identification in urban space. This
threshold was also applied in the existing literature to cluster anchor
points for the identification of individuals' home and job locations
(Long & Thill, 2015).

4.2.2. Clustering with anchor points
As a consequence of the previous identification operator, each in-

dividual's trajectory is roughly represented as a set of anchor points. In
this step, we aim to cluster individuals into a series of groups, where
each group represents certain individuals who have similar movement
patterns. First, we project the location of each individual's anchor
points to traffic analysis zones (Martínez, Viegas, & Silva, 2009; Yuan
et al., 2015) using its representation location, as shown in Fig. 3. Then,
we calculate the similarity of each pair of individuals using the Jaccard
index (Jaccard, 1912), which can be implemented with the following
equation:

=Sim
Z Z
Z ZI I

a b

a b
( , )a b (1)

where Sim(Ia,Ib) denotes the similarity between the two individuals Ia and
Ib, Za and Zb denote the traffic analysis zone ID sets of the individuals,
respectively, |Za ⋂ Zb| denotes the size of the intersection of the two
sets, and |Za ⋃ Zb| denotes the size of the union of the two sets. After
acquiring the similarity matrix for all individuals, we apply the ag-
glomerative hierarchical clustering method (Gil-Garcia, Badia-
Contelles, & Pons-Porrata, 2006) to generate the clusters. This method
treats each individual as a cluster initially and then combines the
clusters according to the nearest distance principle.
Note that there are three reasons that we project the anchor points

into traffic analysis zones. First, we consider traffic analysis zones as
basic spatial units in urban studies because people perform socio-
economic activities inside these zones and this is the fundamental cause
of human movement. Second, since each individual's anchor point lo-
cations are different, projecting the anchor points into traffic analysis
zones allows us to convert the spatial distance calculation into a one-
dimensional matching calculation. This significantly reduces compu-
tational costs, which allows the possibility of measuring the similarity
among massive quantities of trajectories in near real-time. Last but not
least, data with a spatial resolution that is finer than zonal data, such as
census blocks, are not available in our study area.
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Fig. 2. An illustration of anchor point detection.
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Fig. 3. The projections from the anchor points to the traffic analysis zones.
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4.3. Incremental-sliding-window-based data construction algorithm

As previously mentioned, the missing data points at different times
and with varying time spans may lead to different inferences with re-
spect to human movement behaviors. Hence, it is necessary to take this
issue into account when reconstructing an individual's trajectory.
To address this problem, we propose an incremental-sliding-

window-based data construction algorithm for the temporal pattern of
the missing data. The core idea of the proposed algorithm is to design a
series of sliding windows to partition the individuals' trajectories. The
size of the sliding window is designed to gradually increment by one
time step for each iteration to take into account the influence of the
missing data with varying time spans. After dividing the trajectories
into segments, the points within the sliding window are treated as label
points in turn and a series of tuples are formed for each segment as
Seqj={pts,ptj,pte} to consider the influence of data missing at different
times. In the tuples, pts and pte represent the start point and end point of
each segment and ptj represents one of the missing points in the seg-
ment, ∀j∈ (s,e). Fig. 4 shows an illustration of the algorithm with one
fixed start point, where the constructed segments have varying time
spans and the label data occur at different times. With the incremental
sliding window algorithm, we can construct the training data with
different patterns of missing data, which helps us model the human
movements more comprehensively and precisely.
Algorithm 1: Incremental-sliding-window-based data construction

algorithm.

Algorithm 1 is introduced to construct the training dataset with
respect to the temporal pattern of the missing data. The proposed al-
gorithm first initializes the training dataset Dataset as null and the in-
itial time interval T_interval as the referencing time step. Subsequently,
we verify if the time interval is less than the maximum time interval ε. If
so, we traverse each point in the trajectory in turn as the start point pts
and search for the point whose recording time is closest to the refer-
encing interval after the start point, which we set as the corresponding
end point pte. For each pair (start point and end point), we traverse each
point ptj in the trajectory segment as label point and form a triple Seqj
with the start point, the end point, as well as the ID of the individual as
one training datum. After all points in the trajectory have been tra-
versed as the start point, we increment the referencing time interval by
one temporal unit. The above process is iterated until the time interval
T_interval is greater than the maximum time interval threshold ε, and

the training data Dataset are returned as the output of the algorithm. As
a consequence of prior operators, there are trajectory segments in the
training data Datasetwith varying time spans and at different times. The
parameter settings are calibrated with real-world data in experiments.

4.4. MDP-TR modeling

To implement the trajectory reconstruction method based on the
MDP technique, four classic machine learning models were used to
reconstruct individual trajectories. As described above, the training
dataset are formed as 4-tuples, each of which includes the recorded
points ptj−1 and ptj+1, the label point ptj, and the ID of the individual.
To estimate the location of the missing point, several selected features
are used to describe movement behavior. For trajectory segments, the
following features were chosen: the location of ptj−1 (xj−1, yj−1), the
times of three points (tj−1, tj, and tj+1), and the location of ptj+1
(xj+1,yj+1). The radius of gyration ROG, and the trajectory entropy Ent
were selected to characterize each individual's movement patterns,
where ROG reflects the range of activity space (typically near the center
of the home and work locations for commuters) and Ent measures the

Input: = { , , … , }, maximum time interval , time step , individual ID k

Output: Training dataset 

1 _ = , =

2 While _ <

3     For each point  in 

4         = _ ( , _ )

5         =
6         For each point  between  and 

7             = , , ,

8             . ( )

9         End for

10     End for

11     _  +=

12 End while

13 Return

Trajectory

Time

09:00 09:40 10:0510:50 11:00 11:55 12:15 12:50

Time span
 1 hour

Start Missing

Constructed
Segments

Time span
 2 hour

Time span
 3 hour

Time span
 4 hour

End

Fig. 4. An illustration of the incremental-sliding-window-based data construc-
tion algorithm.
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heterogeneity of movement patterns (Zhao et al., 2016). A larger ROG
value indicates that the individual has a larger activity area and a larger
Ent value indicates that the individual has remained in more places and
has a more complex movement pattern. These two variables are defined
as follows:

=
=

ROG m pt pt1 ( )k
i

l

i
1

cent
(2)

=
=

Ent p i p i( )log ( )k
i

m

1
2

(3)

where m is the number of distinct locations visited by the individual,
pti represents the ith location of the individual, ptcent is the mass
center of all locations the individual visited ( = =pt ptm i

m
icent

1
1 ), and

p(i) is the probability that the ith location was visited. That is, the
training features can be represented as follows:
[xj−1,yj−1, tj−1, tj,xj+1,yj+1, tj+1,ROGk,Entk]. The model is trained with
these training features. When performing reconstruction, given the
adjacent points ptj−1′ and ptj+1′, the time of the missing data tj′ which
can be any time that we want to know during the time period (tj−1′,
tj+1′), and the movement characteristics of the individual, the selected
features will be formed as a vector that has the same dimensionality and
be passed into the trained model. We then obtain the result for the
reconstructed missing point. Fig. 5 shows the architecture of the MDP-
TR model.

5. Case study

5.1. Data and setup

The performance of the proposed MDP-TR method was investigated
using a real-world case study. The data we used was from a mobile
communication signaling dataset provided by a major mobile phone
operator for scientific research from a city with a population of one
million individuals containing 15 million trajectories over a period of
15 workdays. All personally identifiable information was masked.
Unlike a traditional CDR dataset, this dataset contains both CDRs and
actively generated logs including phone communications, regular up-
dates, periodic updates, cellular handovers, power-ons, and power-offs.
Table 1 lists an example of an individual's mobile communication sig-
naling records obtained from the dataset. The coordinate of a cellphone
tower is taken as the location of a trajectory point in either the CDRs or
signaling records. The dataset was processed to reduce oscillation dis-
tortions with a ‘ping-pong’ suppression (PPS) method proposed by

Fiadino, Valerio, Ricciato, and Hummel (2012). For the purpose of
verification, we extracted all the CDRs of every individual and stored
them in a separate dataset. Therefore, each individual's information
appeared in two types of datasets: a CDR dataset and a signaling da-
taset. An illustration of the difference between the CDR dataset and the
signaling dataset is shown in Fig. 6, where the green and red lines in-
dicate the CDR trajectory and the signaling trajectory, respectively, of
one individual for one day. In our case study, the trajectory points in
the CDR dataset were used as “recorded data” for model training and
the trajectory points in the signaling dataset but not in the CDR dataset
were used as the “missing data” to evaluate model performance. Fig. 7
shows the probability density function (PDF) and the cumulative dis-
tribution function (CDF) of the time spans between two adjacent “re-
corded data” among individuals.
The MDP-TR method was coded in the Python programming lan-

guage. The experiments were performed on a desktop computer with an
Intel (R) Core (TM) i7-3770 Processor clocked at 3.40 GHz and having
24 GB main memory, running on the Windows 7 operating system.

Ptj-1

Ptj+1

Ptj

(xj-1,yj-1,
tj-1)

(xj+1,yj+1,
tj+1)

tj

radius
entropy

Random
Forest

Adaboost

GBDT

SVM

Ptj
(xj,yj)

Feature Selec!on Modeling Output

ttjj

Ptj-1

Ptj+1

Fig. 5. The architecture of the MDP-TR model.

Table 1
An example of an individual's mobile phone records in the signaling dataset.

Individual ID Day Time (t) Longitude (x) Latitude (y) Event type

060F3***** 1 03:38:17 121.58** 31.08** Periodic update
060F3***** 1 05:54:09 121.58** 31.06** Periodic update
060F3***** 1 07:38:20 121.58** 31.06** Call (inbound)
060F3***** … … … …
060F3***** 15 23:16:06 121.53** 31.02** Call (outbound)

Legend

Signaling trajectory

Phone tower
CDR trajectory

Fig. 6. An illustration of the differences between the CDR and signaling tra-
jectories.
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5.2. Evaluation metrics

We used the mean absolute error (MAE) to evaluate average per-
formance of the reconstruction models and the standard deviation of
error (StDev) metric to evaluate reconstruction model stability. These
indicators are defined below.
Given a signaling trajectory, Trajk=〈pt1,pt2, … ,ptn〉, and the cor-

responding CDR trajectory which is reconstructed with the same
timestamps, Trajk′ = 〈pt1′,pt2′, … ,ptn′〉, the MAE is defined as follows:

=Error pt pt| |i i i (4)

= =MAE Error oi
o

i1 (5)

where |pti− pti′| is the Euclidean distance between the trajectory lo-
cation pti and the reconstructed location pti′, o represents the amount of
“missing data” which is defined as the trajectory points in the signaling
dataset but not in the CDR dataset. Moreover, given the reconstruction
error results of the reconstruction error,
Results=〈Error1,Error2, … ,Erroro〉, the standard deviation of the error
Stdev is defined as follows:

= =Stdev Error MAE( )
o 1i

o
i1

2
(6)

An example of one individual's reconstruction results was shown in
Fig. 8, where the red circles represent the CDR trajectory points, the
green line represents the signaling trajectory which was used as ground
truth, and the orange line represents the trajectory reconstructed using
the method presented in this study.

5.3. Verification of the two algorithms in the MDP technique

As previously mentioned, the MDP technique includes an anchor-
point-based clustering algorithm to enhance reconstruction perfor-
mance by incorporating knowledge of the spatiotemporal similarity
between individuals, and an incremental-sliding-window-based data
construction algorithm for considering different temporal patterns of
missing data. In this subsection, we evaluate the performance of these
two algorithms by comparing four strategies: models with the MDP
technique (abbreviated as MDP-TR), models with the incremental-
sliding-window-based data construction technique only (abbreviated as
DC-TR), models with the anchor-point-based clustering technique only
(abbreviated as CL-TR), and the original models (abbreviated as Ori-
TR). To verify the universality of our method, the trajectories were
converted to vectors with the features that were selected in Section 4.4
and then used as input data for the following four machine learning
models:

• SVM: Support vector machines construct a set of hyperplanes in a
high-dimensionality space. New samples are mapped into the same
space and predicted based on the gaps that they fall into (Cortes &
Vapnik, 1995).
• RandomForest: The random forest method (RF) constructs a multi-
tude of decision trees and outputs the results by computing the mean
of the predictions of each individual tree (Breiman, 2001).
• Adaboost: Adaptive boosting (Ada) is used in conjunction with a set
of base learners to improve performance. The outputs of the base
learners are combined into a weighted sum to represent the final
output (Freund & Schapire, 1997).
• GBDT: The gradient boosting decision tree uses a gradient boosting
method to construct a set of decision trees as base learners and
outputs the result by computing the sum of the base learners
(Friedman, 2001).

Fig. 9 shows the experimental results for MAE and StDev. The re-
sults indicate that the MDP technique significantly reduces error and
make the reconstruction results more robust with all four models.
Furthermore, both the anchor-point-based clustering algorithm and the
incremental-sliding-window-based data construction algorithm were
helpful in achieving better performance. In addition, out of the four
models, we observed that the MDP technique had the best performance
with the GBDT model. Therefore, we adopted the GBDT model as the
basic model in the MDP-TR method for comparison with the other
competing trajectory reconstruction methods.

5.4. Comparison of the MDP-TR method with baselines

To evaluate the advantages of our proposed MDP-TR method over
the existing trajectory reconstruction methods, we selected the latest
reconstruction method ANN-TR (Z. Liu et al., 2018), and the two most
popular methods, linear interpolation and nearest interpolation (Hoteit
et al., 2014), as baselines.

• ANN-TR: This method first divides individuals into three groups
based on the indicator of the radius of gyration and then feeds
movement features of each group into an artificial neural network
(ANN).
• Linear interpolation: The results are obtained by joining each pair of
consecutive samples of trajectory points with a straight interpola-
tion line. Individuals are assumed to move in a constant direction
and at a constant speed during the corresponding time.
• Nearest interpolation: This method consists of using the value of the
nearest sampling position in time. Individuals without data are as-
sumed to be stationary.

The performance of the competing methods is shown in Fig. 10. As

Signaling trajectory
MDP-TR trajectory
CDR points

X

Y

Time

Fig. 8. An example of a reconstruction result.
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Fig. 7. The cumulative distribution function (CDF) and probability density
function (PDF) of time spans among individuals.
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shown in the figure, the MAE of MDP-TR was 0.84 km, which was
1.60 km, 1.23 km, 1.27 km, and 1.58 km lower than that for the Ori-TR,
ANN-TR, linear interpolation, and nearest interpolation methods, re-
spectively. Moreover, the results of MDP-TR are more robust (i.e., with
a minimum StDev) than those of the baseline methods. This improved
performance is possibly due to the fact that we accounted for the
temporal patterns of the missing data and the similarity among in-
dividuals. We also found that when the models were prepared, the re-
construction running times were in milliseconds, which was acceptable
for near real-time trajectory reconstruction.
To further demonstrate the advantages of the proposed method, we

evaluated the reconstruction accuracy of the proposed MDP-TR method
with different time spans and radius of gyration values.
As discussed previously, reconstructions for data with different time

spans are quite different. Considering the temporal accuracy of the
mobile phone data, we divided the trajectories into four groups with
thresholds of 1 h, 2 h, and 3 h time spans, whose results were shown in
Fig. 11. We observed that there was a decrease in the average perfor-
mance of the five methods (i.e., the MAE values increased) with an

increase in the time span. This was expected because a greater time
span corresponds to a larger choice of alternative movements and in-
creased reconstruction difficulty. However, since the MDP-TR method
considers the effects of temporal patterns of missing data during the
model training, this method obtained a more robust performance with
different time spans. The MAE of the proposed method varied between
0.80 km and 0.87 km with different time spans, which clearly demon-
strated the advantages of this method.
The ROG is a concentrated reflection of the subjective willingness

and inertial patterns of an individual's mobile activities and reflects the
range of activity space. A larger ROG value indicates a wider range of
movement. In this study, we categorized individuals into three groups
using thresholds of ROG values of 2.75 km and 7.5 km. These thresholds
corresponded to the cumulative distribution function values of 60% and
90% in the ROG statistical distribution, respectively. The threshold
choice also matched the average travel distance patterns reported in
previous studies for intra-urban human mobility, despite a varying peak
ROG value due to impacts from city size and shape (Kang et al., 2010,
2012). Fig. 12 showed the results. The five methods obtained good
results when the movement range was small. However, with increasing
ROG values, the MAE of the proposed method increased from 0.49 km
to 1.61 km. Nevertheless, our method still exhibited the lowest re-
construction error for each category of ROG values.

6. Discussion and conclusions

In this study, we presented a novel trajectory reconstruction method
using a multi-criteria data partitioning technique, called MDP-TR, to
reconstruct the missing records of individuals. For the MDP technique,
we adopted an anchor-point-based clustering algorithm to consider the
similarity among large-scale low-frequency trajectory data in near real-
time and lessen the data hungry problem. We also incorporated an in-
cremental-sliding-window-based data construction algorithm to gen-
erate trajectory segments with different time spans and at different
times, which allowed the method to learn the movement characteristics
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of different temporal patterns of missing data. To evaluate the applic-
ability of the proposed MDP technique, we implemented it using four
machine learning models for trajectory location reconstruction. By
comparing our method with the competing methods using a large-scale
continuous mobile phone dataset of one million individuals over 15
workdays, the advantages of the method in different scenarios were
verified. The proposed MDP-TR method outperformed the baseline
approaches with respect to the mean absolute error and the standard
deviations of error.
By considering the similarity among trajectories and the varieties of

temporal patterns of missing data, this method provides an efficient
technique to reconstruct the missing locations of individuals. With this
more precise reconstruction, future studies could better grasp the status
of highly dynamic human movements, which could contribute sub-
stantial support for many advanced applications, such as real-time po-
pulation mapping, short-term traffic forecasting and disaster manage-
ment. The proposed method could also provide support for sociological
studies, such as the analyses of user behavior characteristics and col-
lective behavior patterns. Moreover, when combined with other urban
data, such as transportation data and point of interest data, this method
could enable the improvement of location-based services (e.g., path
optimization, intelligent traffic management, and personalized re-
commendation) by better understanding of the complex interplay be-
tween the urban environment and human activities.
However, there were still several limitations that require further

discussion. First, in the MDP-TR method presented here, we only used
the Jaccard index and hierarchical clustering to cluster individuals. It is
worth noting that using another similarity measure (e.g., the cosine
similarity) did not cause a significant change in the clustering results.
Therefore, we only used clustering results based on the Jaccard index to
further illustrate our analyses and methods in this study. More clus-
tering algorithms and similarity calculation algorithms will be applied
to the MDP-TR method to improve its reconstruction performance in
future work. Second, considering the frequency of mobile phone used
by individuals, the experimental dataset had an average time interval of
30min. Therefore, fine-grained movement states, such as speed, ac-
celeration, and direction, were not included, which made it nearly
impossible to reconstruct missing locations at the minute level.
Techniques to extend the proposed MDP-TR method to adapt to a fine-
grained trajectory dataset is an interesting but challenging topic for
trajectory reconstruction models. In addition, the proposed MDP-TR
method only considered the characteristics of the historical trajectories,
ignoring the effects of transportation modes, such as traveling by car,
by bus, or on foot. Determining an individual's current transportation
mode may improve reconstruction accuracy (Shin et al., 2015). Fur-
thermore, in this theoretical methodology-focused study, we ignored
the empirical effect of the urban environment. In reality, multiple fac-
tors may affect an individual's movements, such as POI distribution,
traffic accessibility, and special events (Lindsey, Daniel, Gisches, &
Rapoport, 2014; Manley, Orr, & Cheng, 2015). The incorporation of
movement behavior is suggested as an extension of the proposed
method. It is also worth noting that the data service can facilitate the
extension of the concept of calling detail records to cover social net-
working or web surfing. There might be some possibility for such data
becoming available in the future. Our future work should focus on these
issues.
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