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RESEARCH ARTICLE

Exploring the uncertainty of activity zone detection using
digital footprints with multi-scaled DBSCAN
Xinyi Liu , Qunying Huang and Song Gao

Department of Geography, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT
The density-based spatial clustering of applications with noise
(DBSCAN) method is often used to identify individual activity
clusters (i.e., zones) using digital footprints captured from social
networks. However, DBSCAN is sensitive to the two parameters,
eps and minpts. This paper introduces an improved density-based
clustering algorithm, Multi-Scaled DBSCAN (M-DBSCAN), to miti-
gate the detection uncertainty of clusters produced by DBSCAN at
different scales of density and cluster size. M-DBSCAN iteratively
calibrates suitable local eps and minpts values instead of using one
global parameter setting as DBSCAN for detecting clusters of
varying densities, and proves to be effective for detecting poten-
tial activity zones. Besides, M-DBSCAN can significantly reduce the
noise ratio by identifying all points capturing the activities per-
formed in each zone. Using the historic geo-tagged tweets of
users in Washington, D.C. and in Madison, Wisconsin, the results
reveal that: 1) M-DBSCAN can capture dispersed clusters with low
density of points, and therefore detecting more activity zones for
each user; 2) A value of 40 m or higher should be used for eps to
reduce the possibility of collapsing distinctive activity zones; and
3) A value between 200 and 300 m is recommended for eps while
using DBSCAN for detecting activity zones.
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1. Introduction

Human mobility study is a significant research thrust in GIScience by contributing to
various applications, such as examining human behaviors and mobility patterns, reveal-
ing underlying urban spatial structure and dynamics, or understanding the evolution of
epidemics and spatial spread of diseases (Kang et al. 2012, Noulas et al. 2012a, Kwan
2013, Richardson et al. 2013, Gao 2015, Xu et al. 2016, Huang 2017). While surveys, GPS
data, and mobile phone records have been primarily used to explore human movement
behaviors and patterns, social media now is widely used as a new source that captures
human regular activity patterns (e.g. commuting time) and population dynamics (Gao
et al. 2014, Huang and Wong 2015, Steiger et al. 2015, Luo et al. 2016). However, digital
footprints recorded by social media and represented as a series of spatiotemporal (ST)
points are highly sparse and irregular in both spatial and temporal dimensions, and thus
various spatial data processing and data mining methods have to be applied before

CONTACT Qunying Huang qhuang46@wisc.edu

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
2019, VOL. 33, NO. 6, 1196–1223
https://doi.org/10.1080/13658816.2018.1563301

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-1431-8816
http://orcid.org/0000-0003-3499-7294
http://orcid.org/0000-0003-4359-6302
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2018.1563301&domain=pdf


meaningful mobility patterns can be discovered. Herein, spatial clustering is one of the
important methods to make sense of digital footprints by grouping the sparse and
irregular ST points to clusters (Mennis and Guo 2009). During the work of modeling,
visualizing and mining individual digital footprints captured through social media, it is
a paramount preprocessing component for various data mining algorithms and models,
such as home location reference and user future location prediction models (Mahmud
et al. 2012, Mathew et al. 2012, Lin and Cromley 2018), to discover the regular activity
zones and points of interest (POIs) that an individual or a group of users with similar
movement behaviors regularly visit or stay.

Among all spatial clustering algorithms, the density-based spatial clustering of appli-
cations with noise (DBSCAN; Ester et al. 1996) is very popular with the capability of
detecting clusters of arbitrary shape with noise, and only needs to supply two input
parameters: minpts, and eps; where eps is the search radius of a point, i.e. the neighbor-
hood of a point, and minpts is the minimum number of points that the neighborhood
should include to form a cluster (Moreira et al. 2013). In DBSCAN, points with
a neighborhood more than minpts are categorized as core points, and points reachable
by a core point are border points of the cluster. Points not within the eps search radius
of any core point are treated as noise. Both core points and border points are considered
as the clustered points.

At present, a few studies have provided some general guidelines on setting up aminpts
and an eps value for various datasets (Ester et al. 1996, Zhou et al. 2004). For example, Ester
et al. (1996) reveal that using a minpts value <4 may capture noisy points (outliers) in
clusters and the clustering results most likely are similar with a minpts value ≥4. While
clustering dense GPS trajectories, Zhou et al. (2004) use an eps value of 20 meters (m),
approximating to the uncertainty in GPS positioning. With regard to geo-tagged social
media data clustering analysis, Hu et al. (2015) compare the DBSCAN results with 25
different parameter combinations and demonstrate that eps = 200 m search radius can
help identify the well-known urban areas of interest neighborhoods in cities using geo-
tagged Flickr photos. However, the activity zone and trajectory detection is highly
uncertain and sensitive to the DBSCAN parameter values with sparse trajectory points
collected from social networks: while the clustering results produced by smaller minpts
and/or eps values likely collapse footprint points in one activity zone into smaller clusters
and capture clusters of random activities, the derived trajectories are likely more precise in
space; the results generated by larger minpts and/or eps values include fewer but larger
clusters, more likely merging footprint points in different activity zones as one cluster.
Correspondingly, the resulting trajectories are likely less precise in space.

In addition, while DBSCAN is able to identify clusters of arbitrary shapes, it is
insufficient to deal with data with clusters of different densities (or neighborhoods) as
it fails to detect the core points of varying density clusters with a single eps value (Ertöz
et al. 2003). For example, the points in the bottom left cluster (Figure 1) are more
compacted or denser in space and with 25 as eps value, these points are grouped within
one cluster. However, the points in the right-side cluster are sparser and the eps value
should be increased to 76 to ensure these points are all included in the cluster. Further,
if we increase the eps value to 90, the two distinct clusters will be merged as one cluster.
At the same time, people’s travel trajectory densities captured through social media over
different places differ based on the size of a place and the nature of their activities in the
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place. For example, people may have a relatively compact digital footprints at their work
place such as their office, and dispersed footprints in a large shopping mall. What is
more, the two locations (office building and shopping mall) could be very close to each
other as the example (Figure 1). Therefore, an ideal clustering algorithm for digital
footprints should not only be able to detect, but also separate different clusters with
varying densities.

To mitigate the uncertainty of the clustering results produced by DBSCAN for digital
footprints of human movements, this paper develops an improved density-based algo-
rithm based on DBSCAN, named as Multi-scaled DBSCAN (M-DBSCAN) to detected
activity clusters at different scales of density and cluster size. Given the historic geo-
tagged tweets of an individual, M-DBSCAN can automatically produce a set of clusters
and detect appropriate local eps and minpts values, instead of using one global para-
meter setting (i.e. the same eps and minpts value) for each cluster indicating the activity
location (zone) the individual visits frequently. The experimental studies demonstrate
that the proposed M-DBSCAN algorithm outperforms the classic DBSCAN method and its
improved variation, varying DBSCAN (VDBSCA; Liu et al. 2007), for activity zone detection
from individual geo-tagged tweets with varying-density distributions. Especially, while
DBSCAN with inappropriate eps and minpt values may treat some points (i.e. tweets) in
the same activity zone as noise (e.g. tweets posted at the parking lot or pool area of an
apartment; Figure 4), our algorithm can significantly reduce the noise ratio (the propor-
tion of tweets not included in any cluster) by identifying all points capturing the
activities performed in each zone. Finally, using the proposed M-DBSCAN algorithm on
different geo-tagged tweets produced by a large number of users in Washington, DC
(DC), this paper explores the range and distribution patterns of appropriate parameter
(eps and minpts) settings for activity zone detection of individuals.

In the next section, we introduce relevant work of using social media data for human
mobility studies and state-of-the-art work on DBSCAN for spatial data clustering. Section 3
discusses the uncertainty during the process of regular activity zone detection. Section 4
introduces the datasets and Section 5 presents the M-DBSCAN algorithm and demonstrates
how the proposed algorithm can effectively detect activity zones of varying densities.
Section 5 compares the results of M-DBSCAN and DBSCAN to develop a general guideline

Figure 1. Randomly generated two clusters with different densities.
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to select the values of DBSCAN parameters for highly varying densities of digital footprints.
In the conclusion, we summarize and provide insights about the effectiveness of
the M-DBSCAN, and a recommendation of selecting eps value for DBSCAN.

2. Related work

Social media recently emerges as a new data source for examining human movement
behaviors and mobility patterns. This new trend is driven by the fact that social media
data have several unique advantages (Huang and Wong 2016, p. 1) a large number of
study subjects. For example, Twitter data have recorded surprising snapshots of human
daily movements at a large scale (e.g. 500 million registered users publishing 400 million
tweets per day at the year of 2013; Morstatter et al. 2013, p. 2) publicly accessible. Using
the Twitter application programming interfaces (APIs), we are allowed to retrieve up to
1% of Twitter data (Morstatter et al. 2013); and 3) long-term trajectories are available.
These data are generated continuously, reflecting the on-going societal situations. They
cover extensive temporal scales and provide near real-time information.

As a result, social media is largely used in various human mobility studies (Huang and
Wong 2015, Steiger et al. 2015, Luo et al. 2016, Shaw et al. 2016). However, the nature of
social media imbues its data with certain blind spots. For example, such data rarely offer
much information on the background (e.g. socioeconomic status, demographic informa-
tion, or home location) of users. This triggers another research line focusing on social
media data mining that intends to infer the background of social media users. In those
studies, an important step is detecting the regular activity regions using spatial cluster-
ing method that a social media user frequently visits. Among various spatial clustering
algorithms, DBSCAN (Ester et al. 1996) is often used to detect clusters from digital
footprints. However, while we do not need to supply the number of clusters before
clustering begins like the K-means method, DBSCAN still requires minpts and eps values
to be provided. While previous studies use a value of 4 and 20 for minpts and eps
respectively (Ester et al. 1996, Zhou et al. 2004, Hu et al. 2015), whether they are optimal
for sparse digital footprints are unknown.

In addition, onefold DBSCAN fails to identify clusters from datasets of varying density.
To overcome such a limitation, Liu et al. (2007) introduced a new algorithm named
VDBSCAN to detect clusters with varied densities using the following steps:

(1) Given a k value, compute the distance of each point to its kth nearest neighbor
(k-dist), and generate a k-dist plot for all points based on their k-dist value sorted
ascendingly (Figure 3).

(2) Determine the number of densities intuitively based on the k-dist plot.
(3) Select parameter eps for each density.
(4) Scan all the points and cluster points of varied densities with corresponding eps

using DBSCAN.
(5) Finally, display the valid clusters corresponding with varied densities.

However, the value of parameter k has to be manually supplied and no logical
procedure or principle is used for determining its appropriate value. As a result,
Chowdhury et al. (2010) developed a new method to detect the value of parameter
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k automatically based on the characteristics of the datasets. Specifically, given a set of
points (Pi), six steps are used to calculate the parameter k:

(1) For each point Pi, calculate average distance d(Pi) from Pi to all other points.
(2) Compute the average of all d(Pi) as avg(d).
(3) For each Pi in the datasets, draw a circle with Pi as the center and avg(d) as the

radius.
(4) For every circle, find the point nearest to the circumference of each circle, and tag

this point as Ti.
(5) Identify the position of Ti as Ti(Pos) relative to the Pi for that particular circle.
(6) Determine the mode of Ti(Pos) and use this value as the value of parameter k in

the k-dist plot.

While the method works well on a small number of points that are relatively close
with each other (e.g. Figure 1), our experiment results indicate that it cannot identify
a reasonable k value for digital footprints. On one hand, such data could be geographi-
cally distributed in a large area, resulting in a large average distance d(Pi) and overall
average distance avg(d) at the first and second steps, respectively. As a result, a very
large k would be detected. On the other hand, trajectory data could be generated at
several places with each place including a set of points very close or even overlapping
with each other, and accordingly a very small k value may be identified. However, the
number of points (cluster size) in each activity zone are highly different. In fact, it is
observed that most of the users have a primary cluster including a large number of the
digital footprint points (46.4% of clustered points on average), and several relatively
smaller clusters (Section 6.1). While a large k is expected for detecting the primary
cluster, relatively small k values should be used for the remaining clusters. Therefore,
we argue that different local k values instead of a global value should be used for
detecting clusters with points of varying densities and multiple scales, and heteroge-
neous spatial distribution. In addition, many existing methods (Liu et al. 2007,
Chowdhury et al. 2010) manually identify eps value from the k-dist plot, which decreases
eps accuracy and clustering efficiency (Parvez 2012).

A few multi-level or hierarchical methods have been proposed to produce clusters
with varying densities. To represent the density-based hierarchical clustering structure of
a data set, OPTICS (Ankerst et al. 1999) constructs a plot of reachability distance, which
in turn can be used to extract clusters of different density accordingly. However, OPTICS
does not explicitly produce clusters. Wang et al. (2016) generated two different minpts
values by analyzing an adjacency list graph and found more meaningful clusters of
varied densities on the sample data set. However, this algorithm still needs to supply eps
value. Karami and Johansson (2014) combined Binary Differential Evolution and DBSCAN
algorithm to automatically tune the best combinations of eps and minpts for varying
data distributions. Campello et al. (2013) pointed out the interrelationship between
outliers and clusters, and proposed a hierarchical density estimation method for outlier
score calculation, which unified the detection process of both local and global outliers.
The hierarchical clustering method first computes a hierarchy of mutual reachability
distances to represent the distance between a pair of objects, and detects connected
components and noise objects at each hierarchical level. Next, an improved hierarchical
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clustering method was further proposed to simplify the representation of clustering
hierarchy for detecting the most significant clusters with different densities by maximiz-
ing their overall stability (Campello et al. 2015). These three studies were evaluated and
achieved good classification results with general datasets. However, these algorithms are
very complicated to generate density estimates and structure (e.g. hierarchy), and their
performance and applicability on large-scale and complex datasets is unknown.

To address the limitations of existing work of using a density-based approach for
digital footprints, and fully automate the clustering process, we develop an M-DBSCAN
algorithm (Algorithm 1 and Algorithm 2 in Section 5). It can aggregate spatial points
derived from geo-tagged social media data, into clusters of varying spatial distribution
and densities with minimal user inputs.

3. Uncertainty of detecting activity zones using digital footprints

In this work, we define an activity zone as the activity region or area that an individual
frequently appears or visits. In other words, activity zones should reflect actual human
activity space and include frequent (or regular) activities. This section discusses the
potential sources of uncertainty introduced in the process of detecting regular activities
from four aspects, including 1) data sources, 2) methods for identifying activity zones, 3)
representation of the activity zones, and 4) inference of activity zone type. While this
paper focuses on addressing the uncertainty posed by methods for detecting activity
zones, we elaborate each source as below.

3.1. Uncertainty from data sources

The digital footprints are sparse in nature and include a relatively small number of
points. Footprint points are captured only when users post a message on the social
media platform, and also enable the location-tagging service. As such, compared to
spatial trajectory data collected through GPS devices or travel diary establishing the
movement trajectories with great detail, using social media data needs to handle ‘hit or
miss’ situations (Huang and Wong 2016). For example, ‘check-in’ data captured from
social media (e.g. Foursquare) may not reveal individual’s regular movements and
trajectories of individuals. This is because many users are less likely to check in at the
regular activity locations (e.g. work), but more likely to check in the places for random
activities, such as dining and entertainment (Noulas et al. 2012b, Liu et al. 2015).

Other social media platforms for people sharing personal experiences and thoughts,
such as Twitter and Facebook, can automatically include location to each message as
a geo-tag once precise location service is enabled. Accordingly, digital footprints
recorded by these platforms have potential to capture human daily movements more
comprehensively (Liu et al. 2015). Still, people use such platforms more likely in certain
places (e.g. metro/bus stations) and time periods (e.g. non-working time during lunch or
in the evening), contributing to the spatial and temporal biases of the data (Huang and
Wong 2016). In other words, digital footprints might not capture daily regular activity
zones (e.g. work), and include irregular activities (e.g. dinning at certain places) instead,
introducing noise or uncertainty.
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Additionally, location position accuracy and uncertainty are always a part of the
conversion when leveraging digital footprints for activity pattern studies. To attach
additional location context to a message, users can add a general location (e.g.
‘Madison, Wisconsin’), a specific business, landmark, or other POI, or precise location of
the mobile device while posting the message. A general location (e.g. city’s location), or
a specific POI near to a user’s activity can mask the true location of the message – as
a proxy of user’s activity location. Additionally, the precise locations of social media
messages (e.g. geo-tagged tweets) are primarily acquired through three methods: GPS,
cell tower triangulation, and WiFi hotspots. Different devices with varying positioning
methods have its own levels of precision. For example, Zandbergen (2009)’s work reveals
that the location of an iPhone 3 achieved an average accuracy of 8 m with GPS,
74 m with WiFi and 600 m with cell tower positioning. As such, location accuracy
could be varying across messages, and the detected activity zones may not accurately
reflect the areas the user frequently visits.

3.2. Uncertainty from activity zone detection method

Digital footprints are recorded as a series of ST points that represent the varying
locations of an individual has visited. The locations are resulted from both the regular
and random visits. To detect the regular activity zones of an individual, spatial clustering
analysis is applied to detect the places that an individual’s regular activities take place,
and identify outliers (noise) associated with irregular activities. Three major uncertainties
could be introduced in this process, whereas the first uncertainty is influenced by the
choice of clustering algorithm. Using different clustering algorithms, the number and the
shape of clusters are highly varying. Additionally, clustering algorithms usually need to
provide one or more input parameters greatly impacting the clustering process and
produced results (Moreira et al. 2013). Therefore, even using the same clustering algo-
rithm, the results are most likely different depending on the parameterizations of the
algorithm (e.g. different eps and minpts values for the DBSCAN; Figure 4).

The second uncertainty results from the determination of the membership of foot-
print points while grouping them into different clusters, which are far less than straight-
forward and objective. For example, points A-F (Figure 4(f)) would be normally and
ideally classified as outliers since they are relatively far away from other points in the
cluster. However, based on the geographic environment interpreted from the Google
Earth map, these activities captured through the online platform are performed in
neighborhood of an apartment: points B-D are located at the pool associated with the
apartment community, F is recorded at the parking lot, and finally A and E probably are
on the entry to the apartment. Therefore, we can reasonably argue that these points are
part of the activity zone of the individual, and a spatial clustering algorithm should
capture these points instead of treating them as noise. Especially, many users only have
a small amount of ST points recorded, the portion of noisy points should be kept
minimal to discover meaningful human mobility patterns. On the contrary, while some-
times it is ideal to aggregate ‘outlier’ (or noise) points into a cluster, we may also need to
collapse distinctive clusters capturing different types of activities and assign different
clustering memberships to each point. For example, activities performed within two
spatially close buildings but with different functions (e.g. work and eating) should be
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ideally separated into two zones to examine an individual’s mobility patterns. As such,
the evaluation of a spatial clustering method is rather complex, and it should depend on
how we define the noise and how we define the membership of a point in clusters
among the trajectory points.

The third uncertainty is introduced during the process of discriminating a regular
activity cluster from a random one among the clusters with a wide range of point sizes
detected in each cluster. A common approach defines the minimal number of points
(mpts) as a threshold to identify regular activity places and remove random activity
places (Huang and Wong 2016). Specially, a cluster with the number of points < mpts are
treated as noise and thus discarded. It is worth noting that mpts is different from minpts
in the DBSCAN algorithm. While minpts is used during the clustering process to differ-
entiate core points, boarder points, and noise of clusters, mpts removes random activity
zones after clustering. A lower mpts value captures more clusters as the regular activity
zones, and therefore may provide more detailed information to describe the daily
movements of an individual and to perform more advanced human mobility analysis
(e.g. daily trajectory analysis). However, it could include noisy clusters indicating random
activities. A more complex solution should consider both the number of points and the
temporal information of the points in a cluster. While the total point size in a cluster is
larger than mpts, they could be generated just in one day. Therefore, this cluster should
not be considered as a regular activity place as well. As such, we can define another
temporal threshold as the minimum number of days (mday) to further control the
selection of regular activity zones. Similar to the cluster size threshold (mpts), the choice
of this temporal threshold value impacts the activity zone identification, therefore
introducing uncertainty.

3.3. Uncertainty from representation of the activity zone

3.3.1. Activity zone boundary
The next step of examining the activities with digital footprints typically moves to the
delineation of the activity boundary of each place detected from spatial clustering as an
activity zone, which identifies the potential region and measures the size and trend of
the area an individual moves at the place. However, the detected regions are influenced
by the choice of the boundary reconstruction algorithms, such as convex hull, non-
convex (concave) polygon, minimum boundary box, circumscribed circle, and standard
deviational ellipse, resulting in highly varying polygon shapes and sizes (Figure 2). For
example, while only one convex hull can be detected for a set of points, varying non-
convex boundaries can be produced depending on different algorithms and associated
input parameterizations. The chi-shape algorithm, a widely used algorithm for generat-
ing the concave hull, requires to provide the maximum length of border edges (l) as the
input parameter (Duckham et al. 2008), making the produced boundaries sensitive to
the choice of l values. Smaller l values may generate a boundary better characterizing
and generalizing the activity regions where most of the points are concentrated.
However, it could underestimate the area of an activity zones which an individual visits
comparing with the shapes delineated by other methods (e.g. convex hull; Figure 2).
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3.3.2. Representative location
To construct a two-dimensional (2D) or three-dimensional (3D) space-time (s-t) path
displaying movement trajectory, a representative location should be selected for
each activity zone. By connecting consequent locations representing the activities
occurred in different time period, s-t paths can be established. As such, the derived
s-t paths depend on the selection of representative locations, and inappropriate
representative locations could result in inaccurate depiction of regular daily move-
ments. While the centroid (blue stars in Figure 2) of all points within a cluster is
commonly used to as the representative point of the cluster (Huang and Wong
2015), it is not real trajectory point generated by an individual through online
platforms. In some cases, centroids could be very close to a real point (green points
in Figure 2(a)). However, they could be located far away from any real trajectory
point (Figure 2(b)), and therefore resulting s-t paths may be less precise while

Figure 2. Boundaries and representative locations of two clusters using digital footprints.

Figure 3. Generation of eps value based on k-dist plot.
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representing the individual’s daily movement trajectory. To cope with this issue,
geometric median, the point with minimal total distance to other points in
a cluster, is used to represent the cluster (red triangles in Figure 2; Jurgens 2013).
Geometric medians ensure that the selected representative locations are meaningful
to the individual. Nevertheless, they still cannot guarantee that its location represents
the exact spot where an individual stays most in an activity zone (e.g. the room
where the individual lives in an apartment, works in an office or has lunch in
a restaurant), resulting uncertainty while representing the movement trajectory of
the individual using these locations.

Figure 4. Detection of the first activity zone using DBSCAN with different eps values, VDBSCAN
and M-DBSCAN for one selected Twitter user.
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3.4. Activity zone type inference

Through spatial clustering, a set of clusters are derived from an individual’s daily
footprints recorded by social media platforms with each cluster covering a region (i.e.
activity zone) which this individual regularly visits. To identify the activity zone types,
many scholars rely on land-use data as functionality of the activity zone (i.e. land-use
type) which is correlated with people’s activity there (Huang et al. 2014, Huang and
Wong 2016). For example, people usually live in residential area and work in industrial or
commercial area. Besides, the spatial distributions of POIs within or near the activity
zone can indicate different types of people’s activities or urban functional zones (Yuan
et al. 2012, Jiang et al. 2015, Gao et al. 2017, Cai et al. 2018). For example, the inclusion of
several restaurants within the activity zone might indicate an eating activity there.

However, the inference of the actual activities performed in activity zone is quite
challenging and the accuracy of the inference based on land use and/or POIs cannot be
guaranteed. For example, a building in a mix urban area may be used as both residential
and commercial usage with upstairs associated with home activities, and downstairs
primarily used for eating, shopping, entertainment or other activities. Given an activity
zone (e.g. shopping mall), many different types of POIs could be returned. However,
normally the primary POI type with the largest count (e.g. shopping store) is used to
infer the activity type for an individual’ activities on this zone, while other potential
types (e.g. restaurant) are often ignored. As such, the results of activity zone type
inference are highly uncertain and depend on the inference methods and underlying
landscape and surrounding environment where the zones are located.

4. Datasets

This study uses Twitter data, publicly accessible digital footprints, to evaluate M-
DBSCAN, and examine the sensitivity of the eps and minpts values to identify an
individual’s regular activity zones. Specifically, users in Madison, Wisconsin (Madison),
and Washington DC (DC) were chosen, and Twitter’s streaming API was used to archive
geo-tagged tweets posted within Madison, and DC for a 3-month period. 13,922 unique
users were identified within the boundary box of Madison. For DC, 14,066 unique users
were identified with each user including ‘Washington, DC’ as their location information
while signing up the Twitter account. For these users, we then re-harvested their historic
tweets with the Twitter’s search API, which allows to retrieve a maximum of 3,200 most
recent tweets for each user.

We used the datasets generated by Madison users to demonstrate and
evaluate M-DBSCAN. To make sure each user has sufficient trajectories for clustering
discovery, we only selected the users who posted more than 200 geo-tagged tweets,
resulting in only 49 eligible users. Since DC has a large number of social media users, we
select DC users to examine the activity patterns based on digital footprints. We discard
users with geo-tagged tweets less than 50 as these users may have inadequate trajec-
tory points to unfold their activity patterns. Additionally, some users may have highly
spare and diversified trajectories, and therefore no spatial cluster can be discovered from
their data based on the DBSCAN algorithm. These users were removed from our future
analysis. Finally, 3,351 DC users are used for our designed experiments in Section 6.
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5. M-DBSCAN

In the following, we introduce the M-DBSCAN algorithm, and then validate how the
proposed algorithm can effectively detect activity zones of varying densities subjectively
and objectively.

5.1. M-DBSCAN algorithm

Given a set of digital footprint points, M-DBSCAN includes three steps to iteratively
detect different local k and eps values for different clusters:

Step 1. Calculate the optimal k value with Algorithm 1.
Step 2. Calculate an eps value by partitioning and analyzing the k-dist plot based on

the optimal k value (Figure 3).
Step 3. Generate clusters by executing DBSCAN using the k value generated in Step 1

as minpts and the eps value in Step 2 as eps.

Above three stepswill be repeated until no effective k can be found in Step 1 to ensure that
all the clusters are detected properly using corresponding local eps values. Algorithm 1
describes the detection of k value (Step 1; Algorithm 2, line 5). Similar as Chowdhury et al.
(2010), k is determined based on the average mutual distance d(Pi) of every two points to be
clustered (line 1). In order to make sure that we compute a local k for points in each individual
activity zone, rather than deriving a large global k for all points, we only calculate the average
distance of each point to its near neighbors, instead of all other points. Specifically, to calculate
d(Pi) for each point (Pi), any point not within a radius (R) of Pi is considered as irrelevant and
discarded. The larger R, the larger d(Pi) is calculated for each point (Pi), which will produce
a larger avg(d) and thus a larger k. Similarly, the smaller R, the smaller k will be calculated. In
other words, R’s value influences the detection of k value and clusters accordingly.

While there is no existing guideline to select an appropriate R value, previous study
shows that distance from the typical American’s house to the edge of his community is
between 520 and 1060 m (Donaldson 2013). In other words, activities performed within
one zone most likely are within a radius of 1060 m. Therefore, we use 1060 m as the
value of R in our study and two points more than 1060 m away are considered as two
different types of activities. Therefore, mutual distances larger than 1060 m are dis-
carded when calculating d(Pi) and avg(d).

Next, for each Pi, its neighborhood is obtained by collecting all the points within
a radius of avg(d) centered on Pi. The amount of points within the neighborhood of Pi is
recorded as ki. A list [ki] for all points are collected, which can be used to calculate the
frequency (or count) of each ki value. These unique ki values are recorded as [kj] and
their frequencies are [fj] (line 4). Then, we delete kj with small fj value by selecting the
top five kj with the largest fj values (line 5). Next, [kj] are sorted based on their frequency
to find the largest kj, which is selected as k value for the set of points (line 7). Based on
our experiments (Section 5.2), each user has activity clusters of varying size (the number
of points in a cluster) and density. This step iteratively identifies the optimal k to detect
the current largest cluster(s).
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Algorithm 1: Get k and corresponding eps

Input: The amounts of remaining points (RP) and rank
Output: k and corresponding eps based on k-dist plot
1: calculate avg(d) by averaging the average mutual distance of Pi to all other points

within a radius R
2: calculate the amounts of points [ki] within avg(d) of Pi
3: while (t < rank)
4: generate map [(kj, fj)] (fj is the frequency of kj value)
5: sort [(kj, fj)] descending by fj
6: maintain the anterior of [(kj, fj)] where fj-f1 < 5
7: sort [(kj, fj)] descending by kj
8: delete (k1, f1) from [(ki, fi)]
9: t ++
10: end
11: if k cannot be found
12: return −1
13: sort distances ([di]) between Pi and its kth nearest neighbor (k-dist plot)
14: find start points (S1, Sj) of the first two flat parts on k-dist plot
15: find the knee point Sknee with the maximum perpendicular distance to the connect-

ing line of S1 and Sj
16: return the k value and eps value, which is the distance from the Sknee to its kth

nearest neighbor

Step 2 calculates corresponding eps value based on the local optimal k value. Instead
of manually identifying the sharp change of k-dist plot for eps (Liu et al. 2007, Elbatta
and Ashour 2013), we propose a novel method to automatically detect its value
(Algorithm 1, lines 13–15). The distances from each Pi to its kth nearest neighbor are
sorted ascendingly (an example with k = 105 shown in Figure 3). The first two parts
of the point array with relatively flat ascending trend are then detected. The start
points of the two parts are connected to find the farthest point between the two
start points, known as Sknee, which has the maximum perpendicular distance to the
connecting line (Line 15). Sknee indicates the sharpest change of plotted distances
along the connecting line, and thus is selected to derive the eps value (Line 16).

Algorithm 2: M-DBSCAN

Input: a set of points representing geo-tagged tweets
Output: representative clusters signified as lists of tweets (RC)
1: while the amounts of remaining points (RP) are no less than 4
2: if RC remain the same
3: rank = 1
4: else rank ++
5: get K and corresponding eps (Algorithm 2)
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6: if eps < 0

7: break
8: if eps <20
9: continue
10: apply DBSCAN (minpts = K, eps = eps)
11: add newly generated representative clusters to RC
12: delete newly clustered tweet points from RP
13: end

Given a set of points representing an individual’s daily trajectories, Algorithm 2
describes the entire process of M-DBSCAN for detecting his or her activity clusters.
A loop is used to iteratively obtain the optimal eps value representing the radius of
the current most prominent cluster, and k representing the minimum number of the
points in the cluster (Line 5). They are taken as the values of eps and minpts respectively
to conduct DBSCAN on the point set (Line 10). Then clustered points are deleted from
the point list which will be further clustered during the next round (Line 12). The process
is repeated until there are less than four points left since a cluster with three or less
points are not representative enough to be considered as an activity zone, or no more
cluster can be found using each possible k.

5.2. Demonstration of the M-DBSCAN using twitter data

5.2.1. Detection of activity zones of varying densities
A Twitter user is selected to demonstrate and evaluate the effectiveness of the M-DBSCAN
on automatically detecting activity zones with varying eps and minpts values. Figure 4
displays the results of the first activity zone detection using DBSCAN with different eps
values and M-DBSCAN for the selected Twitter user. Based on the surrounding environ-
mental information indicated from the Google Earth map, we can infer that the activity zone
is located within an apartment community and ideally footprint points capturing the
activities within this region should be all considered as one cluster. With a small eps value
(e.g. 20 and 40 m), DBSCAN can detect most of the points distributed in the apartment area
but not those points in the pool, lawn and parking area. By using the eps value of 60 m, all
the activities are captured in the cluster. However, further increasing the eps value to 200 m,
an outlier (point A in Figure 4(d)) located at the street far away from the apartment building
is included in the cluster. Similarly, VDBSCAN detects an eps value as 38 m, which cannot
capture all the activities as well (Figure 4(e)). M-DBSCAN automatically detects the eps value
as 65 m and obtains the ideal clustering results (Figure 4(f)).

The second example of activity regions (Figure 5) is also a residential community but with
single house families. Using DBSCAN with eps value equal to 40 m, four small clusters (A, B,
C and D) are detected (Figure 5(a)). Increasing the eps value, small clusters aremerged as a big
one (cluster A) and an additional small cluster (cluster B) across the transmeridional main
avenue is detected (Figure 5(b)). Next, with 200 m as the eps value (Figure 5(c)), all the activity
points are captured in two detected clusters. Finally, further increasing the eps value to
320 m merges the two clusters (Figure 5(d)), which ideally should be separated as there is
a wide avenue between them. As the DBSCAN with an eps value of 40 m, VDBSCAN detects
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fragmentary activity zones (Figure 5(e)) using multiple eps values from 38 to 48 m, within the
northern area. For the southern area, VDBSCAN is able to detect an additional activity zone
(cluster E). Contrastively, M-DBSCAN identifies two optimal clusters using a local eps values of
206 and 271m, respectively. The detected clusters are similar as DBSCAN using an eps value of
200 m (Figure 5(f)).

5.2.2. Detection of activity zones of low densities
Besides enabling inclusion of more eligible footprint points, M-DBSCAN can detect
clusters of largely diverse densities (Figure 6), some of which are missed by either
DBSCAN or VDBSCAN. When using 60 m as eps, the residential area (blue boundary
in the inset map of Figure 6) demonstrated in Figure 4, can be detected while
a prominent shopping area is missing (Figure 6(a)). When using 500 m as eps, the
shopping area can be detected (cyan boundary) while the residential area is much
enlarged that two noise points are also included (Figure 6(b)). VDBSCAN cannot
detect the shopping area either (Figure 6(c)). However, M-DBSCAN can detect both
the residential area and the shopping area without evident noise (Figure 6(d)).

Figure 5. Detection of the second activity zone using DBSCAN with different eps values, VDBSCAN
and M-DBSCAN for the selected Twitter user.
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The three examples demonstrate that different activity zones include highly diversi-
fied activities. While some activities may occur in a compact space (e.g. apartment)
which can be detected with smaller eps values (Figure 5), an activity zone (e.g. shopping)
may include scattered activities in a large space (e.g. mall), and therefore a large eps
value should be used to capture all of them (Figure 6). The developed M-DBSCAN can
automatically detect varying eps values for digital footprints of varying density and
capture the maximal scope of activities.

5.3. Clustering evaluation with rand index and adjusted rand index

Rand index (RI; Rand 1971) is an evaluation measure for a clustering problem in terms of
agreement or disagreement between object pairs in two partitions (Walde 2006). In this
measurement, if a pair of objects are assigned to the same class or they are assigned to
different classes using two different partition methods, the assignment is considered as
an agreement (A), otherwise it is considered as a disagreement (D). The similarity of two
partitions can thus be evaluated by measuring the overlap of A versus D.

Given a set of objects O ¼ O1; O2; . . . ; Onf g, the RI C;Mð Þ between a clustering result
(C ¼ C1; C2; . . . ; Cxf g) and the manual classification (M ¼ M1; M2; . . . ; My

� �
) is

defined as:

Figure 6. Detecting activity zones of extremely diverse footprint densities using DBSCAN with
different eps values, VDBSCAN and M-DBSCAN for one selected Twitter user; insert maps at the
upper-left show the detection of the residential activity zones for the selected user as Figure 4; main
maps show the activities around the shopping mall area.
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RI C;Mð Þ ¼ �n
i<jγ oi; oj

� �
n
2

� � ;

where n is the number of objects,
n
2

� �
is computed as n(n-1)/2, and

γ oi; oj
� � ¼

1 if there exist CA 2 C;MB 2 M such that objects oi and oj are in CA and MB;
1 if there exist CA 2 C;MB 2 M such that oi is in both CA and MB

while oj is in neither CA or MB;
0 otherwise:

8>><
>>:

Based on above definition, RI C;Mð Þ ranges from 0 to 1. A larger RI C;Mð Þ indicates that
partition C is in higher agreement with partition M, indicating the clustering result is more
similar to the ground truth (manual classification) and thus is better. If C perfectly agrees
withM, RI C;Mð Þ achieves 1. However, the problem with the RI is that its expected value can
vary when C andM are both partitioned randomly, which is expected to be constant when
both partitions are generated with a random classificationmodel. To solve this problem, the
adjusted rand index (ARI; Hubert and Arabie 1985) was therefore developed by introducing
the expected similarity of all pair-wise comparisons between C and M partitioned by
a random model to the calculation. While the ARI has the maximum value 1, it produces
a value of zero for all random partitions. Similarly, a larger ARI means that a clustering result
has more agreement with the manual partitions (i.e. ground truth). Hereby, an ARI between
C and M (Randadj C;Mð Þ) is defined as (Hubert and Arabie 1985):

Randadj C;Mð Þ ¼

�i;j
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� �
;

Where tij denotes the number of objects in common between Ci 2 Cð Þ; and Mj ð2 MÞ,
ti and tj indicates the number of objects in common between Ci and M, and between Mj

and C respectively.
ARI is widely used to validate clustering results by measuring the agreement between

two partitions: one is generated by the clustering algorithm, and the other is produced
by external criteria (e.g. manual classification), especially when the two partitions con-
tain different numbers of clusters (Yeung and Ruzzo 2001, Walde 2006, Santos and
Embrechts 2009). We thus utilize it to evaluate clustering results of different spatial
clustering methods and to validate the effectiveness of the proposed M-DBSCAN model.

Firstly, we sort Twitter users in Madison based on the number of distinct dates
when they posted online messages, and select the top 10 users to manually classify
their geo-tagged tweets (i.e. partition M). Based on the uncertainties of activity zone
detection discussed in Section 3, we follow three principles while manually classifying
the geo-tagged tweets (Figure 7) as an activity zone: 1) tweets intensively (≥4 points;
i.e. frequent tweets) located at a specific place (e.g. mall, restaurant, school, apartment)
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or neighboring places for the same type of activities (e.g. shopping, eating) are
considered as one cluster (i.e. cluster A and B; Note while it looks like only three
points are displayed in the cluster B, there are repeated points overlapping at the
same location as labeled in Figure 7); 2) tweets located outside but near a cluster,
which represent the same activity as these tweets within the cluster (e.g. tweets
located at the parking lot around a shopping mall; i.e. point a in Figure 7), should
also be included in the cluster; 3) infrequent tweets (<4 points) located at a specific
place or spread across multiple neighboring places for the same activity type (i.e. noise
points in Figure 7) and frequent tweets located at distinct places for different activities
(e.g. two tweets located at a restaurant and another two at a post office) are not
clustered.

Next, we calculate RI C;Mð Þ and ARI C;Mð Þ for each selected user and the classification
results (partition C) generated by different clustering methods including M-DBSCAN,
VDBSCAN, and DBSCAN using different eps values. The averaged values of RI and ARI (i.e.

RI C;Mð Þ and ARI C;Mð Þ) for the 10 users are then derived (Table 1). During the calcula-
tion, all noise points are considered as one cluster and assigned to the same cluster

Figure 7. Demonstration of manual classification criterions.

Table 1. Rand index and adjusted Rand index evaluation results using different clustering methods.
Cluster method M-DBSCAN VDBSCAN DBSCAN

eps (m) N/A N/A 40 80 100 200 300

RI C;Mð Þ 0.966 0.927 0.930 0.953 0.945 0.951 0.949
ARI C;Mð Þ 0.964 0.915 0.858 0.940 0.905 0.928 0.923
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number (i.e. 0) as the classification consistency of each pair of points should be
considered to measure the agreement between C and M.

The evaluation results show that M-DBSCAN is able to detect the activity zone
clusters with the highest agreement with the manually identified activity zones (i.e.
ground truth). Specifically, the evaluation results show that M-DBSCAN generates
a higher RI (C, M) value than any other clustering method, which indicates its effective-

ness of separating regular and random activity points. However, the differences of RI
(C, M) between M-DBSCAN and other methods, especially DBSCAN with eps ≥80m, are

rather small. After the adjustment by a random model, a ARI (C, M) is generated for each

clustering method. These ARI (C, M) values are smaller than their Rand C;Mð Þ in general.

While there is only small decrease over the RI (C, M) for M-DBSCAN, the ARI (C, M) value
decreases more for other methods, such as DBSCAN with eps equal to 40 m and over
100 m. This is because these methods detect a highly varying number of clusters (i.e.
either much larger or smaller) as the number of clusters manually labeled.

6. Explore the uncertainty with M-DBSCAN

6.1. Analysis of activity zones

Given a set of 2D points capturing a user’s historic trajectories, the proposed M-DBSCAN
can automatically detect minpts and eps for grouping all 2D points into different clusters.
Using the data of 3,351 selected DC users, 42,962 clusters are detected in total with each
user having one or more clusters (Table 2). A majority of the users (75%) have a cluster
number less than 16 and half of the users have a cluster number less than 8 with each
cluster having a minimum number of 4 points per cluster (Figure 8). While examining
these users with a large number of clusters detected, many users are found out to be
also users of other social network platforms (such as Foursquare for checking-in places,
and Instagram for sharing photos and videos). These users link Twitter account with
other different platforms and the messages posted from these platforms can be auto-
matically published on the Twitter. In fact, 2,192 out of 3,351 users are Instagram users,
977 users are Foursquare users, and finally 759 users are both Instagram and Foursquare
users. Through these two platforms, users may generate repeated points of the same
location (e.g. check-in the same place repeatedly through Foursquare), resulting
a cluster to be formed at the locations. Besides, users of these platforms more likely
check in at random places (e.g. restaurants) not visiting frequently in a daily basis,
therefore, much diversified movement patterns can be observed.

Table 2. Quantile statistics of the number of activity clusters with
different mpts value.

Percentage of users

mpts value 25% 50% 75% 100%

≥4 4 8 16 133
> 4 3 6 13 88
≥6 3 5 9 63
≥8 2 4 7 52
≥10 2 3 6 41
≥12 2 3 5 30
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Figure 9 shows the relationship between the noise ratio and the cluster number
generated by all users. Given a set of trajectory points of a user, the noise ratio is the
proportion of points not within any cluster, and therefore are considered as noise. For
the users having a small number of activity zones (e.g. less than 5) detected, the
distribution of noise ratio is relatively random ranging from 0 to approximate 1. With
an increasing of activity zone number detected, the noise ratio drops gradually.
Especially, for the users with a number of activity zones larger than 40 detected, the
noise ratio has a clear distribution pattern with a ratio value mostly less than 40%.

Figure 8. Density of activity zone (cluster) numbers of all users with different value of the minimum
number of points (mpts) per cluster as the threshold to remove random activity clusters.

Figure 9. The relationship between the noise ratio and the cluster number of all users with mpts = 4.
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During our experiment, we notice that most of the users have one activity zone,
known as the primary activity zone, including the largest number of points (cluster size)
and many clusters with relatively smaller point numbers, which most likely capture
random activities. This primary cluster captures 46.4% of points that are clustered on
average, and the percentage increases to 63.7% combining with the secondary cluster
(with the cluster size ranked as second). In the proposed M-DBSCAN algorithm, the
minimum number of points (mpts) should be included in a cluster is 4. In fact, if we
remove the clusters with the number of points as 4 for each user, most of the users
(75%) only have less than 13 clusters (second row of Table 2). In other words, each user
will have three small clusters with only 4 points on average. For users with a large
number of trajectory points, those clusters most likely capture some random activities
for users. However, if a user only has a small number of points, these clusters could also
record regular activities. Nevertheless, we can use the value of mpts as a threshold to
remove the potential noisy clusters. If using 12 as mpts value, most of the users (75%)
have less than 5 clusters detected. This is reasonable since people’s regular activity is
performed in five regular zones, including home, work, entertainment, eating, and
shopping. Therefore, the choice of mpts affects the uncertainty of detecting the number
of regular activity zones.

Quite interestingly, the primary activity zones are typically detected with
a relatively small eps value. With an eps value larger than 439 m, we capture
dispersed clusters with low density of points (Figure 10 left). Most of the clusters
(80%) are detected with an eps value smaller than 439 m (Figure 10 left). The value
of minpts detected by M-DBSCAN has a strong positive linear relationship (Pearson’s
correlation coefficient 0.947) with the size of the cluster to be detected (Figure 10
right). This makes sense as points in a larger cluster typically are denser, which
means that each point has more neighbors reachable, and therefore a larger value
of minpts should be used.

Figure 10. The correlation of eps and minpts with the number of points (cluster size) in each cluster.
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6.2. Selection of eps value for DBSCAN

To explore the range and distribution patterns of appropriate parameter (eps andminpts)
values for activity zone detection of individuals using DBSCAN algorithm, we change the
eps value from 20 m approximating to the uncertainty in GPS readings, to 400 m. Using
a value of 20 m, a large number of small clusters are detected (Table 3). The cumulative
distribution of cluster numbers using DBSCAN with an eps of 20 m is very different from
other methods (Figure 11) confirming that with such a small eps value, DBSCAN more
likely groups the points into smaller clusters, running the risk of separating the activities of
the same zone captured by the geo-tagged tweets into different zones. With the increas-
ing of eps value from 20 to 40 m, smaller clusters are merged into larger clusters, resulting
in the decrease of the number of clusters detected for all users in total. However, if we
continue to increase the eps value from 40 to 400 m, an increasing number of clusters are
detected, indicating that dispersed clusters with low density of points are identified.
Herein, M-DBSCAN has the largest number of clusters detected except for using
DBSCAN with an eps value of 20 m. This confirms that the M-DBSCAN can capture

Table 3. Results of M-DBSCAN and DBSCAN with different eps values and a minpts value of 4.
Cluster methods Average number of clusters Average noise ratio Total clusters

DBSCAN (eps = 20) 9.75 69.0% 66,042
DBSCAN (eps = 40) 10.28 54.1% 35,294
DBSCAN (eps = 80) 11.12 49.0% 38,394
DBSCANE (eps = 100) 11.32 47.2% 39,187
DBSCANE (eps = 200) 11.97 43.1% 41,550
DBSCANE (eps = 300) 12.11 40.6% 42,076
DBSCANE (eps = 400) 7.82 38.7% 42,190
M-DBSCAN 12.50 32.7% 42,962

Figure 11. Density of activity zone (cluster) numbers of all users with M-DBSCAN and DBSCAN with
different eps values and a minpts value of 4.
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dispersed clusters with low density of points by automatically using larger eps values to
detect these clusters (Figure 10 left).

With an eps value of 20 m used for DBSCAN, a major of points (69%) are detected as
noise and therefore are not appropriate for mobility analysis for users on average (Table 3).
While increasing eps value could reduce the noise ratio on average, the number of
discarded points (noise) is still very high. With the increasing of eps values from 20 to
300m,more clusters are detected, which is reasonable as a large eps value can help capture
clusters of low density. However, if we continue to increase eps value from 300 to 400 m,
only about eight clusters are detected on average indicating small clusters potentially with
different activities being merged into large clusters. In contrast, the proposed M-DBSCAN
has the smallest average noise ratio compared with the results detected by DBSCAN with
different eps values. With an eps value as 300 m, DBSCAN can detect similar number of
clusters as M-DSBCAN on average, though with a higher noise ratio.

To further identify appropriate eps values for DBSCAN, the two-sample Kolmogorov–
Smirnov (KS) statistic (D value in Table 4) is used to test whether two underlying
probability distributions of the number of clusters detected for the selected using
DBSCAN using varying eps values and M-DBSCAN differ. The KS statistics provides
a measure of the distance between the empirical distribution function of two samples
(e.g. n and m). Given the empirical distribution functions of the first and the second
sample F1; n and F2; m, the KS statistic Dn; m is calculated as:

Dn;m ¼ supx F1; n xð Þ � F2; m xð Þ�� ��;

where supx is the supremum function. The smaller the D value, the better the
distribution the two samples fit each other.

The test results in Table 4 show DBSCAN with eps values as 200 and 300 m have
similar distribution of the number of clusters identified for each user as M-DBSCAN with
a small D value. The significance indicated by p-value (0.2953) using 200 m as eps is
greatly larger than a typical significance level (0.05) and thus we cannot reject the null
hypothesis statement that two samples come from the same probability distribution.
Besides, the p-value using 300 m as eps value is also greater than 0.05, which does not
reject the null hypothesis. While increasing the eps value from 300 to 400 m, the KS test
p-value dropped to 0.00869 and D value increased accordingly. In addition, the D value
is larger than the critical value (0.033) at the significance level of 0.05, further confirming
the dissimilarity of the distributions of the number of clusters detected by the two

Table 4. Two-sample Kolmogorov–Smirnov test of the probability distribution of the number
of clusters using M-DBSCAN and DBSCAN with different eps values.
Cluster methods (eps in meters) D value p-value

DBSCAN (eps = 20) 0.148 < 2.2e-16
DBSCAN (eps = 40) 0.101 3.775e-15
DBSCAN (eps = 80) 0.050 0.0003976
DBSCAN (eps = 100) 0.040 0.0102
DBSCAN (eps = 200) 0.024 0.2953
DBSCAN (eps = 300) 0.032 0.06995
DBSCAN (eps = 400) 0.040 0.00869
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methods. From the statistic results (Tables 3 and 4), a value between 200 and 300 m is
recommended for eps while using DBSCAN for detecting activity zones in general.

7. Conclusion and future work

With the advancement of communication and information technologies, social media
platforms emerge as new solutions to record people’s movements in a daily basis. While
exploring mobility patterns, spatial clustering over the digital footprint points is typically
used to detect places where an individual regularly visits. Among all spatial clustering
algorithms, DBSCAN is widely used as it is effective to detect clusters of arbitrary shape
with noise, and only needs to supply minpts and eps as input, the values of which are
relatively easy to determine compared to other algorithms. However, DBSCAN is sensi-
tive to the two input parameters while detecting regular activity clusters from users’
social media points, which are sparsely, irregularly distributed in space, and featured of
varying densities. DBSCAN and existing improved DBSCAN methods (Ester et al. 1996,
Ertöz et al. 2003, Liu et al. 2007, Wang et al. 2016) based on a k-dist plot, where k-dist is
defined as the distance from each point to its k nearest point, often fall short to identify
activity clusters.

This paper develops an improved density-based clustering algorithm based on
DBSCAN, named as M-DBSCAN, which can automatically produce a set of activity
zones (clusters), and select an appropriate eps and minpts value for each activity
zones. In addition, M-DBSCAN can significantly reduce the noise ratio (the proportion
of tweets not included in any cluster) by identifying all points capturing the activities
performed in each zone. Using the historical online geo-tagged tweets of users in
Madison and in DC, the results of M-DBSCAN and DBSCAN with varying eps value
indicate that: 1) M-DBSCAN detects more clusters (activity zones) for each user, and
results in a lower noise ratio (the proportion of tweets not included in any cluster); 2)
A value of 40 m or higher should be used for eps in order to reduce the possibility of
collapsing the activities of the same zone captured by the social media data points into
different zones, and ensure an average noise ratio less than 54% during the clustering
process; 3) A value between 200 and 300m is mostly recommended for eps while using
DBSCAN for detecting activity zones; and finally 4) There is no optimal value for minpts.
The value of minpts detected by M-DBSCAN displays a strong positive linear relationship
(Pearson’s correlation coefficient 0.947) with the size of the cluster to be detected.

The proposed M-DBSCAN was first evaluated subjectively by analyzing a selected
user’s activity zones detected by different clustering methods (Section 5.2). Next, we
manually identify the daily activity zones of 10 users in Madison as ground truth data to
evaluate the effectiveness of M-DBSCAN objectively. While determining the membership
of a point (Section 3.2), it is challenging to evaluate whether it should be considered
a part of an activity zone or as outlier (Figure 4(c) vs (d)). Similarly, it is quite difficult to
identify if one cluster is better to describe an individual’s activity zone than to separate it
into two clusters or to keep some points as outliers (e.g. Figure 5(d) vs (f)). As such,
contextual information derived from the social media contexts (e.g. text messages) and
temporal information could be integrated to further improve the detection of activity
zones. Finally, this paper explores the uncertainty of activity zone detection using
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trajectory data of DC users. In the future, footprints of social media users in different
cities can be explored to identify activity zones and patterns across regions.

The proposed M-DBSCAN can effectively detect user activity zones based on digital
footprints, and has potential to facilitate a wide range of practical applications such as
human mobility study, tourism recommender systems, and business site selection,
where POIs should be discovered using digital footprints from massive users. Besides,
the study results provide general guideline to choose optimal values for eps and minpts
while running the DBSCAN algorithm to detect individual activity zones. In future, we
will integrate multi-sourced data (e.g. OpenStreetMap land use, and Google place
service data) to detect the activity zone types of each cluster, while allows us to further
explore user tweeting behaviors at different types of activity zones and complex
mobility patterns, such as trajectory patterns of different socioeconomic and demo-
graphic groups.
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