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ABSTRACT
Location uncertainty plays a key role in location-based services
and applications. This research mainly focuses on the problem
of location uncertainty when users are using the ride-hailing
applications from the perspective of geographical contexts. The
distance gap between the ride-hailing identified search location
and the actual pick-up location was calculated and used as the
measurement of location uncertainty. It may come from GPS noise
or the gap between the current location of a passenger (e.g., inside
a building or a university campus) and the actual pick-up location
along the streets for a ride. For the geographical contexts, this
study considers factors including population density, road density,
various kinds of Points Of Interests (POIs), and also the frequency
of ride-hailing requests given a region. By using regression analysis
techniques to find the relation between the geographical contexts
and the distance gap, this study identifies potential factors (e.g.,
enterprise buildings, dense roads, and highly populated areas) that
affect the location uncertainty the most.
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1 INTRODUCTION
The study of positioning accuracy and location uncertainty is a
crucial yet challenging problem for ride-hailing applications (e.g.,
Uber, Lyft, and DiDi) and many other location-based services
(LBS) [6, 7]. The positioning component determines the current
location of a user. For outdoor LBS applications, assisted-GPS is
often used for positioning on mobile devices with multiple sensors
(e.g., GPS, cellular receiver, and WiFi). Zandbergen (2009) reported
that assisted-GPS positioning obtains an average median error of
8m outdoors, while WiFi positioning gets 74m of that and cellular
positioning is the least accurate with about 600m median error
[20]. For indoors, GPS positioning doesn’t work well because of
the signal obstructions and attenuation. Thus, Wireless Area Local
Networks (WLAN), Radio-Frequency Identification systems (RFID),
and low-energy Bluetooth sensor networks are often used as indoor
positioning infrastructures [5, 13]. Besides, researchers have made
great efforts to improve the GPS positioning accuracy and trip
distance estimations. Examples include lessening signal multipath
propagation in urban canyons and tracing multiple candidate
positions [14], using an improved positioning architecture without
hardware-level modification [19], or taking the patterns of GPS
noise levels [15] and sampling rates [11] into consideration .

The locations of ride-hailing users are important but often
inaccurate especially when users are inside buildings, underground
parking lots, elevators or even on the street that is surrounded by
skyscrapers [9]. As a result, the ride-hailing applications sometimes
cannot identify the correct location of the user or the location is not
accessible by vehicles due to transportation regulation (e.g., inside
an enterprise park or a university campus). In such cases, most
of the users would type in a pick-up location around their actual
locations in order to get the ride or the ride-hailing application
may recommend a more accessible pick-up location instead. The
gap between the users’ actual location and the location identified
by the ride-hailing applications might contains useful information
reflecting the reasons why such inaccuracy appears. Therefore, by
computing the distance gap between the location identified by the
rider-hailing application and the user’s actual pick-up location and
analyzing potential geographical factors that are related to this gap,
this research provides insights into further improvement of the
location accuracy in the ride-hailing applications.
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2 DATA AND METHODS
2.1 Study area and Data
The study area is in Chengdu, a major city in the southwestern
part of China. The dataset is from the GAIA Initiative provided by
DiDi Chuxing, a well-known ride-hailing transportation company
in China [1]. The data includes large-scale location search requests
in May, 2018 and has the information of the identified ride-hailing
location as well as the pick-up location. There are over 650,000
records in total.

Given the research interest, this study only looks at the requests
that are for trip origins and there are 1732 records in total used in
the analysis.

Figure 1: The gaps between ride-hailing identified locations
and pick-up locations. Lines in white represent the distance
gaps within 1.5 km.

2.2 Data processing
The location data from DiDi is first filtered to obtain all ride-hailing
requests for the origins. The data is transformed from the original
GCJ-02 coordinate system to theWGS84 system for associating with
other geospatial datasets such as the OpenStreetMap data. Then
the great-circle distances are computed for each pair of locations
(e.g., the search location identified by the ride-hailing application
and the pick-up location inputed by the user or recommended by
the App). Figure 1 shows the connection of each pair of location
on the map.

For the geographical contextual features (as shown in Figure
2), we consider factors including population density, road density,
POIs, and the frequency of ride-hailing requests given a region.
Each of them is considered as a map layer to be spatially overlaid
on the top of the Didi location data. Then, all the geographical
features are aggregated to the 1km x1km grid level respectively
and the sum of each feature is calculated to be used as the derived
feature value of each grid. For the POI features, we get 17 categories
of POIs from the Baidu Maps, including beauty, business, car
service, education, enterprise, entertainment, fitness gyms, food,
government, hospital, hotel, house, life services, media, shopping,
tourism and transportation. Each POI category is considered as a
single feature layer. After aggregating each feature to the grids, the

Figure 2: The analytical framework of the distance gaps
between pickup locations and search locations using
geographical contexts.

features are joined to each pick-up location so that further analysis
will be between the distance gap and the geographical features at
the location point level.

2.3 Regression Analysis
Two types of regression analysis methods are used in this study,
namely the multi-linear regression (MLR) and the least absolute
shrinkage and selection operator (Lasso). Those two methods are
aimed to examine the potential relationships between variables at
the initial stage. The relationship between the dependent variable
and the independent variables may be more complex and more
complicated methods such as non-linear models will also be applied
to help further analyze the data in the future,.

The MLR is one of the most widely used regression techniques
for modeling and predicting. It is able to predict the linear outcome
of a dependent variable based on multiple independent variables
[3]. The goal of MLR is to minimize the sum of squares of errors
(SSE). In this study, the distance between each pick-up location
and the search location identified by the ride-hailing applications is
used as the dependent variable. The aforementioned four types
of geographic features (in total 20 features) are used as the
independent variables. The formula is listed below:

Distance = β0+β1∗Pop+β2∗Road+β3∗Request+
20∑
i=4

βi ∗POIi (1)

where β0 is the intercept term and the remaining βi are
coefficients for each independent variable calculated from the
regression model.

The Lasso function applies a L1 penalty term to control the
coefficient of each independent variable. Given observations xi ∈
Rp and the responses yi ∈ R, i = 1, ...,N , the objective function of
Lasso is to minimize the following formula for each pair of (β0, β)
in Rp+1:

1/2N
N∑
i=1

(yi − β0 − xTi β)
2 + λ | |β | |1 (2)

where λ >= 0 is a complexity parameter [2, 4]. Here β0 is also the
intercept while β is a coefficient parameter for the independent
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variable.With a higher coefficient, the penalty will be bigger and the
final magnitude of coefficients will be smaller [18]. By shrinking the
parameters, the Lasso regression is able to control multicollinearity.
It tends to pick one from a few very correlated predictors and set
the coefficients of the others to zero [2, 4]. Therefore, the Lasso
regression is very helpful when there are many intercorrelated
features and feature selection is necessary [18] .

In addition, the importance ranking of each feature in explaining
the variance of the distance gap is generated using the Random
Forest method. The reason of not directly using the coefficient
values from MLR for ranking is that MLR cannot prevent the
multicollinearity among independent variables and makes the
coefficients may not be very reliable. For Lasso, the parameters
are standardized in the model training process but are not returned,
so the coefficients cannot be compared directly [2]. The variable
importance refers to how much the error would drop for a variable
at each split point in decision-tree methods [8]. We chose the
decrease in mean-squared-error (MSE) for a variable at each split
point and then averaged over all trees [17]. In the process of building
a regression tree, the independent variables space is divided into a
few subregions and the goal is to find region divisions R1,R2, ...,R J
that minimize the SSE:

J∑
j=1

∑
i ∈Rj

(yi − ŷRj )
2 (3)

where ŷRj is the mean response for the training observations within
the jth region [17].

3 RESULTS
3.1 Location Data Analysis
In the training data which has over 650,000 records, the search
requests for trip origins only account for around 0.2% of the total
data. One possibility is that the ride-hailing applications may
automatically locate the users accurately in most cases so there is
no need to search for a pick-up location but only for a destination
location. However, in the 1,732 requests for origins, the distance
gaps have a very large range and show a relatively high average
value around 4km, which is far beyond the normal GPS error. It
indicates that most of these ride-hailing search locations were not
identified correctly or not accessible. The histogram and cumulative
distribution function of the distance gaps are shown in Figure 3.

Figure 3: The cumulative distribution function and the
histrogram of the distance for all origin requests.

3.2 Distance Gap Analysis
Therefore, our analysis only focuses on the data which has a
distance gap that is relatively smaller and can be considered as

location mismatch related to the particular location environment
rather than some uncontrolled reasons. A few distance thresholds
are selected to compare the results. The minimum distance
threshold is set to be 500 meters, which has been used as a
reasonably accepted walking distance for most of the people
[10, 12, 16]. We then increase the threshold incrementally to see
how the results may change.

To obtain a reliable result, this study uses a 5-fold cross validation.
The data is split into 5 folds. Each time, 4 folds of data is used as
the training data and the rest 1 fold is used as the testing data.
The R2 is used as the accuracy measurement. Table 1 shows the
average R2 from the cross validation of MLR and Lasso under
different distance thresholds. Generally, the prediction accuracy
drops when we increase the distance threshold. When we only
analyze the data with distance gap smaller than 500 meters, we
obtain a relatively high R2 for the training data (MLR: 0.43 and
Lasso: 0.415). The results from MLR and Lasso are different mainly
because the principles of the algorithms are different. The Lasso
algorithm is able to control multicollinearity and only picks part of
the independent variables. It may lose some information and make
the result from Lasso a little lower than that from theMLR. However,
the result still shows that the proposed geographic factors could
help explain the variability of the distance gaps to certain degree.
For the testing data, the results are not very stable. Therefore,
the average R2 is low. The results might be caused by the small
dataset size (around 200 points). Another potential reason is that
the dimensions of features are relatively large compared with the
small sample size. Therefore, the two regression methods may not
perform well in this case.

Table 1: The regression results of MLR and Lasso under
different distance thresholds (average R2).

500 m 800 m 1000 m 1200 m 1500 m
MLR training 0.430 0.432 0.359 0.296 0.241
Lasso training 0.415 0.361 0.341 0.294 0.224
MLR testing 0.266 0.245 0.183 0.108 0.107
Lasso testing 0.248 0.202 0.114 0.07 0.086

3.3 Variable Importance
The importance ranking for each variable is computed and shown
in Figure 4. When the variable has a higher importance ranking, it
would contribute more to the predicted variable “distance gap”. In
other words, a higher value of this variable will lead to a more
frequent existence of location inaccuracy. The top importance
feature is the number of Enterprise POIs. Since many companies
are located in central areas of the city and often located inside
the high buildings, it may frequently lead to location inaccuracy.
The second and third important features are road density and
population density. This corresponds to our life experience that
the downtown areas always have dense road networks due to
the fact that it needs to be accessed by a great number of people
from other places. The food POIs help contribute to the fact that
usually busier areas are more likely to have location inaccuracy
issue. For the education variable, this can be related to some
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phenomena in China. For instance, one passenger needs to walk
to the main gate of a university campus to get on a ride due to
the university transportation regulation. This situation will also
cause the occurrence of large distance gap. The remaining variables
will also contribute to the location inaccuracy since they all have
positive importance values.

Figure 4: The variable importance ranking result.

3.4 Outlier Analysis
We also looked at the data that has very large distance gap, which
can be identified as ‘outliers’ and tried to find whether there is any
pattern leading to such occurrence. We selected the last quarter
of data that has the greatest distance gaps and conducted the
two regression analysis methods to them. By looking at the data
distribution, the threshold for the last quarter is 5.75 km. The r2
from MLR is 0.272 and the r2 from Lasso Regression is 0.303. The
low r2s reflect the fact that there might be multiple reasons leading
to the existence of ‘outliers’. For example, it is possible that those
requests that not real-time ride-hailing requests for the users. For
example, they might schedule requests for future trips or they are
requesting services for their friends or family who are far away
from them. In addition, there might be complex reasons that cannot
be included and explained in a linear relationship, which needs
further investigation with additional variables or other models in
future work.

4 CONCLUSION
This study analyzes potential reasons why the distance gap caused
by the location inaccuracy in the ride-hailing applications exists
from the perspective of geographical contexts. Factors that are
taken into consideration include population density, road density,
the number POIs in different categories, and the frequency of ride-
hailing requests. By analyzing data that has a distance gap less then
500 meters, this study is able to find some most influential factors
to the location inaccuracy such as existence of enterprises, dense
road network, dense population, education area, etc. However, due
to the small dataset, the result for the testing data is not very stable
and leads to some uncertainty of this study. In the future, this study

can be applied to larger datasets to generate more comprehensive
results. Also, a few more factors such as elevation and land use
types can be incorporated, which may be particularly helpful for
ride-hailing applications in some mountainous areas.
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