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Abstract: The spatiotemporal variability in air pollutant concentrations raises challenges in linking air
pollution exposure to individual health outcomes. Thus, understanding the spatiotemporal patterns
of human mobility plays an important role in air pollution epidemiology and health studies. With the
advantages of massive users, wide spatial coverage and passive acquisition capability, mobile phone
data have become an emerging data source for compiling exposure estimates. However, compared
with air pollution monitoring data, the temporal granularity of mobile phone data is not high enough,
which limits the performance of individual exposure estimation. To mitigate this problem, we present
a novel method of estimating dynamic individual air pollution exposure levels using trajectories
reconstructed from mobile phone data. Using the city of Shanghai as a case study, we compared
three different types of exposure estimates using (1) reconstructed mobile phone trajectories, (2)
recorded mobile phone trajectories, and (3) residential locations. The results demonstrate the necessity
of trajectory reconstruction in exposure and health risk assessment. Additionally, we measure
the potential health effects of air pollution from both individual and geographical perspectives.
This helped reveal the temporal variations in individual exposures and the spatial distribution of
residential areas with high exposure levels. The proposed method allows us to perform large-area and
long-term exposure estimations for a large number of residents at a high spatiotemporal resolution,
which helps support policy-driven environmental actions and reduce potential health risks.

Keywords: individual exposure estimation; air pollution; trajectory reconstruction; human mobility;
mobile phone sensor

1. Introduction

With the acceleration of urbanization and industrialization in the past few years, ubiquitous and
unavoidable air pollution has become a widespread health problem in many developing countries [1,2].
Air pollution has been proven to be associated with higher health risk of respiratory infection, chronic
obstructive pulmonary disease, stroke, heart disease, and lung cancer, among others [3–5]. According
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to the European Society of Cardiology, 8.8 million extra deaths can be linked to air pollution worldwide
each year [6]. To solve this problem, a better understanding of the negative health effects of air pollution
is a prerequisite, which leads to an increased demand of accurate individual air pollution exposure
estimates in public health studies [7–9].

In the field of human exposure estimation, the importance of human mobility has long been
recognized [7,10–12]. To address this problem, more detailed spatiotemporal human movement
information is required. Although existing literatures have applied survey data [10,13–16], social media
data [9,17–20] and mobile phone data [21–25] to record human movement behaviors, several limitations
remain. As for the survey data-based methods, the cost of personal monitoring and sampling processes
limits the number of samples, thereby reducing the persuasiveness of the estimation results [12,26].
In terms of social media data-based methods, representativeness is still problematic, as the data
collected only reflects the individual movement characteristics of people who used the application at a
specific time.

With the development of information and communication technology (ICT) and the ubiquity of
mobile phones, mobile phone data have become an emerging dataset to measure human mobility.
It has the advantages of massive users, wide spatial coverage and passive acquisition capability, which
has the potential for long-term and well-represented exposure estimation. However, limited by the
cost of data transmission and storage, most mobile phone data are only collected when the individual
made a phone call or sent a message [27]. This inevitably limits the temporal granularity and regularity
of mobile phone data, which introduces errors in exposure estimation [28,29]. As shown in Figure 1,
the difference between real trajectory and recorded trajectory of an individual’s movement locations
will inevitably result in incorrect estimation of the duration to which individuals are actually exposed
to the areas with different air pollution concentrations. Therefore, improving the temporal granularity
of mobile phone data is important for the exposure estimation.
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In this paper, a novel method is proposed to estimate individuals’ air pollution spatiotemporal
exposure levels using trajectories reconstructed from mobile phone data. The contributions of this
paper are outlined as follows:

(1) We present a novel individual air pollution exposure estimate method. Our method mitigates the
gap of spatiotemporal resolution between air pollution monitoring data and mobile phone data,
which helps improve the accuracy and reliability of fine-scale air pollution exposure estimation.

(2) By comparing the three different types of exposure estimates using reconstructed mobile phone
trajectories, recorded mobile phone trajectories, and residential locations, we demonstrate the
necessity of trajectory reconstruction in exposure estimation.

(3) Using the city of Shanghai as a case study, we quantitatively analyzed the temporal variations in
individual exposures and the spatial distribution of residential areas with high exposure levels
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using large-scale mobile phone data. It provides a more accurate and comprehensively scientific
basis for policy-driven environmental actions and potential health risk reduction.

The rest of this paper is organized as follows. In Section 2, we review the research progress in
related fields. The details of the proposed dynamic individual exposure estimation method are then
presented in Section 3. The analysis of the case study and results are presented in Section 4; and finally,
the conclusions and discussion on this study are presented in the final section.

2. Literature Review

2.1. Air Pollution Exposure Estimates

In the existing studies, researchers have attempted to measure air pollution exposure using various
methods. According to the human mobility data that researchers have used, the related studies can be
grouped into three categories: fixed-location-based methods, survey data-based methods, and mobile
phone data-based methods. The fixed-location-based methods assume that individuals remain at a
particular location and thus individual exposure can be calculated by measuring the air pollution
concentration at their residence or workplace [30–33]. However, the spatiotemporal variability in air
pollutant concentrations makes the human movement pattern a key factor in air pollution exposure
estimation. That is, individual pollutant exposure estimates must be determined based on where the
individual stays and how long the individual remains at each location. As neither an individual’s
residence nor their workplace fully represents their daily movement pattern, the accuracies of these
methods are not satisfactory.

To tackle this problem, researchers began to use survey data to record human movement behavior.
The two most common techniques were manual sampling surveys [14,34] and Global Navigation
Satellite System (GNSS)-enabled personal monitors [8,10,15,16]. For example, Yoo et al. (2015) used
GNSS-equipped monitor data of 43 participants to demonstrate how an individual’s mobility affects
personal exposure estimates. Similarly, Park and Kwan (2017) used 80 simulated daily movement
trajectories to support the argument that ignoring human mobility patterns may lead to misleading
results in exposure assessments. Although these techniques can provide fine-scale human movement
data and additional personal information for further research, they have two limitations. First, the time
requirements of the sampling process may cause the participants to become bored and result in recall
bias [35]. Second, although the sampling method could be well designed, the cost of personal monitors
and sampling processes limits the sample size and time period, making the results less persuasive.

The popularization of social media applications and location-based services provided a different
way to track individual spatiotemporal activities. Compared with the survey data, the social media
data enable us to collect human movement data with larger scale, longer term and broader spatial
coverage [36]. Therefore, several researchers used social media data to estimate individual human
exposure [9,17–20]. For instance, Song et al. (2019) combined sparse Weibo (a popular social media
application in China) geotagged messages and remote sensing derived PM2.5 concentrations to perform
monthly exposure estimations for 13 major cities in China. Yu et al. (2019) demonstrated the potential
to estimate individual exposure with Google Maps location data on a minute level. However, the social
media data-based method suffered from poor representativeness [37]. That is, the individual exposure
inferred from these methods presents the exposure characteristics of active social media users rather
than the whole population. The exposure risks of some demographic composition such as elderly and
poor people tend to be misestimated since these people use the social media applications less often [38].

With recent advances in positioning techniques and the ubiquity of smart phones, mobile phone
data, which can be collected without additional procedure and have wide stratified coverage, have
been widely used for air pollution exposure estimation [9,21,23,25]. For example, Dewulf et al. (2016)
proposed a method to estimate daily NO2 exposure using the mobility data collected from 5 million
mobile phone users in Belgium. Yu et al. (2018) used mobile phone data to measure the influence of
human movements on air pollutant exposure estimates. The use of mobile phone data enables us to
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measure individual exposure for a fairly high proportion of the entire human population over large
areas and long periods. However, compared with the air pollution monitoring data, the temporal
granularity of mobile phone data is not high enough, which limits the performance of individual
exposure estimation [28,29]. Therefore, ways to improve the temporal granularity of mobile phone
data has become a potential research hotspot in individual exposure estimation.

2.2. Trajectory Reconstruction from Mobile Phone Data

Trajectory reconstruction aims to approximate the locations of an individual that are missing in a
mobile phone dataset. The basic methods of approximation rely on spatiotemporal interpolation [39–41].
It is assumed that an individual’s trajectory between two recorded points can be reconstructed using
interpolation functions, such as the nearest function or a linear function. Therefore, the missing
points can be approximated by the time intervals and distances between their contextual recorded
points. These methods have been widely used for the reconstruction of intensive and continuous
trajectories. However, the limited resolution of time intervals of mobile phone data and the complex
individual movement patterns make these methods unsuitable for reconstructing trajectories from
mobile phone data.

As vehicles are the main means of transport in the city [42], researchers have attempted to
reconstruct missing points in low-frequency trajectories using map-matching-based methods. These
methods assume that individuals’ trajectories are strictly dependent on road networks. Therefore,
trajectory points can be snapped to road networks and missing points can be approximated based
on movement characteristics along transportation networks such as velocity, acceleration, or travel
time [43–46]. However, the precondition of these methods is questionable, as it ignores the fact that
human movement behaviors in urban spaces can occur via the metro or on foot. Thus, the result of
these methods is doubtful.

With the development of machine learning and information and communications technology,
researchers have focused on pattern mining methods. In these methods, the individual movement
patterns are explored using historical trajectories and missing points are approximated by trained
machine learning models [47–49]. However, limited by the high computational cost and the lack of
efficient spatiotemporal proximity analysis methods [50], most pattern mining methods only use one
individual’s trajectories or a single trajectory segment to approximate missing points. This leaves
only a few amounts of data that can be used for model training, which leads to model overfitting and
poor generalization issues. Thus, using trajectories of individuals with similar movement patterns as
training data has become an efficient way to enhance reconstruction performance [51].

3. Methodology

The workflow of our method is presented in Figure 2, which includes three parts. First, we introduce
a trajectory reconstruction algorithm to mitigate the gap of spatiotemporal resolution between air
pollution monitoring data and mobile phone data. Then, we explain our algorithm to estimate air
pollution concentrations on a fine scale. Finally, we show how dynamic individual exposure levels
are calculated by combining the results of fine-scale air pollution concentration measurements and
reconstructed trajectories.
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3.1. Anchor-Point Based Trajectory Reconstruction Algorithm

Due to the characteristic of low acquisition cost and wide spatiotemporal coverage, mobile
phone data have been widely used in air pollution exposure estimation. However, due to the
gap of spatiotemporal resolution between air pollution monitoring data and mobile phone data,
trajectory reconstruction is important. Thus, an anchor-point-based trajectory reconstruction
algorithm is presented in this subsection to grasp highly dynamic human movement trajectories with
corresponding time.

3.1.1. Anchor-Point-Based Clustering

As discussed above, using trajectories of individuals with similar movement patterns as training
data has become an efficient way to enhance reconstruction performance. Since anchor points can
summarize the key locations of individuals’ movement behaviors well, it becomes an efficient means
of understanding the similarities among massive numbers of individuals.

In our research, the anchor point is defined as an area where an individual visit more frequently
than a specified number of times [52]. In this process, the number of records on each location in a
personal dataset is first calculated. Then, the location with the highest record number is selected and
merged with all adjacent locations within a distance threshold α as an examinee [53]. Next, the location
with the second highest record number is selected and the same process was repeated until all locations
in the personal mobile phone data had been traversed. Finally, the total record number is calculated for
each examinee, and the examinees with record number exceeding frequency threshold β of their total
record number are detected as anchor points and projected onto a subdistrict. Thus, an individual’s
trajectories can be generalized as a collection of anchor points.

After that, based on the respective anchor point collections of individuals, the similarity matrix
between the individuals could be calculated with the Jaccard index [54]. Then, the hierarchical
clustering method [55] is used to divide the individuals into a series of groups. With this process, the
movement patterns of the individuals in each group are similar. Therefore, the model can be trained
with all the trajectories in each group rather than using an individual’s trajectories, which helps solve
the overfitting problem. The flowchart of the anchor-point-based clustering method is presented in
Figure 3.

Note that the choices of distance threshold and frequency threshold affect the clustering result.
In terms of the distance threshold, we choose 500 m as the distance threshold for two reasons. First, in
our case study area, the average distance between two adjacent locations in the mobile phone datasets
is about 240 m. The threshold of 500 m could help reduce signal oscillation problem. Moreover,
this threshold has been widely applied in existing studies of anchor point detection and human
mobility [53,56]. As for the frequency threshold, it mainly refers to the proportion of the total number
of records recorded at key activity locations such as residences and workplaces. Choosing a large
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threshold will result in the number of user identification anchor points being too small, which makes
the user movement characteristics not fully summarized. On the contrary, a small threshold will
recognize the unimportant locations as anchor points, which results in additional computational costs.
For the data we used in the case study, we found that most of the users have about 20% of their
recorded locations at residence or workplace (i.e., the anchor points with the most records during
nighttime or daytime hours, respectively), therefore the frequency threshold is set to 20%. It is worth
noting that such thresholds might vary in different cities.Int. J. Environ. Res. Public Health 2019, 16, x 6 of 20 
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Therefore, each training vector record can be represented as [xn−1, yn−1, tn−1, tn, xn+1, yn+1, tn+1,
ROGk, Entk] and the label data can be represented as [xn, yn]. The architecture of the trajectory
reconstruction algorithm is shown in Figure 4. More technical details of the proposed trajectory
reconstruction algorithm can be found in the paper [51]. All the mobile phone trajectories were
reconstructed with one-hour intervals using the trained model (i.e., 00:00, 01:00, . . . , 23:00, UTC + 8) to
conform with the frequency of air pollution monitoring.
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where i and t denote the corresponding location ID and time, PMi,t denotes the PM2.5 concentration
(µg/m3), VISi,t denotes the horizontal visibility (m), WSi,t denotes the wind speed (m/s), TEMi,t
denotes the air temperature (◦C), and β0,i,t, β1,i,t, β2,i,t, and β3,i,t denote the regression coefficients of the
corresponding features. In this study, as the temporal granularities of air pollution monitoring data
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and meteorological observation data are 1 hour, in total, 168 GWR models were trained to approximate
the air pollution concentration distribution of each hour during one week. Finally, the finalized GWR
models are ascertained based on model performance denoted by fitting the highest coefficient of
determination (R2) and the lowest Akaike information criterion (AIC) value. With the finalized modes,
the optimal coefficients are used to approximate the air pollution concentration distribution in the
study area with a spatial granularity of 1 km.

It is worth noting that there are two reasons for our choice of a spatial granularity of 1 km. First,
since air pollution exposure estimation is a typical study of the environmental influences on individual
behaviors, its spatiotemporal resolution is limited by the lower resolution data of the human movement
data and the air pollution concentration data. Considering that the positioning errors of the mobile
phone data in urban spaces range from 100 m to 1000 m [65,66], we chose a 1-km grid to divide the
space. Second, this spatial granularity has also been widely used in previous studies to estimate
pollutant concentrations and individual exposures to them [10].

3.3. Dynamic Individual Exposure Calculation

Since individuals’ locations and corresponding air pollution concentrations vary in both space
and time, we propose an algorithm to incorporate dynamic individual locations, the spatiotemporal
variation in air pollution concentrations, and the microenvironment effect to estimate the dynamic
individual exposure as follows:

Exp j =
∑T

t=1

∑N

n=1
APi,t ∗MEi,n,t ∗ TPi,n,t (3)

where Exp j denotes the dynamic exposure of individual j, i and t denote the corresponding location
ID and time, N denotes the total number of microenvironments experienced by individual j within a
specified temporal window (e.g., an hour) and n denotes the nth microenvironment, APi,t denotes the
outdoor air pollution concentration, MEi,n,t denotes the ratio of the air pollution concentration in the
nth microenvironment to the outdoor air pollution concentration, and TPi,n,t denotes the percentage of
time that the individual stayed in the nth microenvironment.

However, research on the impact of air pollution concentrations on the microenvironment has
remained at the stage of qualitative analysis of small sample data [10,14]. The temporal resolution
requirements and costly monitors make it impossible to acquire accurate observations on a large
scale. Moreover, many factors, such as ventilation, air conditioning, smoking, and cooking, are
independent of the outdoor environment, but can influence an individual’s microenvironment [67–69].
That is, individual exposure can be quite different at the same time and in the same area [35]. Thus,
we define air pollution exposure as the outdoor exposure level in this study and simplify the ideal
algorithm in Equation (3) to suit the estimation of large-scale dynamic individual exposure using the
following equation:

Exp′j =
∑T

t=1

∑N

n=1
APi,t (4)

where Exp′j denotes the cumulative individual exposure from the simplified algorithm by only
considering outdoor air pollution concentration and individual exposure duration.

4. Case Study

4.1. Data

4.1.1. Mobile Phone Data

The mobile phone data we used were provided anonymously by a mobile network operator
through a joint research cooperation. It records the location trajectories of over a million individuals for
seven consecutive days in the city of Shanghai, China. A map of case study area is shown in Figure 6.
According to the Shanghai Statistical Yearbook 2018, the operator accounts for about 56% of the city’s
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residents and is widely distributed among all strata of society (Shanghai municipal statistics bureau
2019). The dataset contained call detail records (CDRs, i.e., phone calls and text message) and actively
generated records (i.e., regular updates, periodic updates, and cellular handovers). To decrease the
signal oscillation problem, a repetition suppression algorithm [70] was used for data preprocessing.
Table 1 shows an instance of one individual’s trajectory data. It is worth noting that none of the
personal identifiable information (i.e., name, gender, phone number) were provided to protect the
individuals’ privacy. In addition, the locations of the trajectory points were projected to the locations
of ambient cell phone towers. In other words, there is still a gap between the user’s actual location and
the projected trajectory points, which is about 100 m–1000 m on average in the dataset dependent on
the specific area (e.g., downtown vs. suburbs). The distribution of time intervals between two adjacent
call detail records is shown in Figure 7.
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function (CDF) of time intervals between two adjacent call detail records in the recorded mobile
phone data.
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Table 1. Instance of one individual’s trajectory data.

User ID Date Time (t) Longitude (x) Latitude (y) Event Type

1EF53 ***** 1 02:14:25 121.13 ** 31.06 ** Regular update
1EF53 ***** 1 08:15:11 121.13 ** 31.02 ** Call (inbound)
1EF53 ***** 1 09:17:12 121.12 ** 31.02 ** Cellular handover
1EF53 ***** . . . . . . . . . . . .
1EF53 ***** 7 21:13:06 121.44 ** 31.08 ** Call (outbound)

Note: Accurate coordinate information and user ID were hidden with ** for privacy concern.

4.1.2. Environmental Data

Hourly ground-station PM2.5 concentration data (in µm/m3) were collected from the data center of
the Ministry of Environmental Protection of the People’s Republic of China (http://datacenter.mee.gov.
cn) and the World Air Quality Index project (http://aqicn.org/city/shanghai/). Moreover, ground-station
meteorological variables, including horizontal visibility, air temperature, and surface wind speed were
collected from the National Meteorological Information Center (http://data.cma.cn/). The instances of
ground-station PM2.5 Concentration Data and meteorological Data are shown in Tables 2 and 3.

Table 2. Instance of ground-station PM2.5 Concentration Data.

Station ID Day Time (t) Longitude (x) Latitude (y) PM2.5 Concentration
(µm/m3)

1144A 1 00:00 121.41 ** 31.16 ** 43
1144A 1 01:00 121.41 ** 31.16 ** 49
1144A 1 02:00 121.41 ** 31.16 ** 52
. . . . . . . . . . . . . . .

1150A 7 23:00 121.57 ** 31.20 ** 20

Note: Accurate coordinate information and user ID were hidden with ** for privacy concern.

Table 3. Instance of ground-station meteorological Data.

Station ID Day Time (t) Longitude
(x)

Latitude
(y)

Wind
Speed
(m/s)

Horizontal
Visibility

(m)

Air
Temperature

(◦C)

58012 1 00:00 116.65 ** 34.66 ** 1.5 200 −0.5
58012 1 01:00 116.65 ** 34.66 ** 1.5 300 −0.5
58012 1 02:00 116.65 ** 34.66 ** 1.7 200 −0.4
. . . . . . . . . . . . . . .

58752 7 23:00 120.65 ** 27.78 ** 1.7 4500 8.8

Note: Accurate coordinate information and user ID were hidden with ** for privacy concern.

In line with the mobile phone data, environmental data were modeled during the corresponding
days. To mitigate the estimation biases and improve spatial interpolation accuracy at marginal areas of
the study area, the environmental data from two neighboring provinces, Zhejiang and Jiangsu, were
also adopted for air pollution concentration estimation to add sufficient surrounding information for
the locations at the boundary of study areas. Thus, the data from a total of 178 monitoring stations and
150 meteorological stations were collected for monitoring ambient air quality.

4.2. Spatiotemporal Variability in PM2.5 Concentration

The spatiotemporal PM2.5 concentration variation is an important component of the individual
exposure estimation. Figure 8 shows examples of the extracted data (collected on a workday and a
weekend) on selected hourly maps (e.g., 04:00, 10:00, 16:00, and 22:00) and the temporal variation
curves for PM2.5 concentrations, which were approximated by GWR models mentioned in Section 3.2.
It clearly reveals the spatiotemporal variations in PM2.5 concentrations in the study area, suggesting

http://datacenter.mee.gov.cn
http://datacenter.mee.gov.cn
http://aqicn.org/city/shanghai/
http://data.cma.cn/
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that the results of individual exposure estimates are directly related to individual movement behaviors
across locations and time. Therefore, temporal mismatch between human movement data and PM2.5

concentrations will inevitably introduce errors into the individual exposure estimation. Thus, the
requirement of consistent recording times of human movement data and PM2.5 concentration data makes
trajectory reconstruction a key preprocessing step for more accurate individual exposure estimation.
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Figure 8. Different facets of PM2.5 concentration. (a) Hourly maps of PM2.5 concentration distribution
on a workday and a weekend. (b) Temporal variation of PM2.5 concentration on a workday. (c) Temporal
variation of PM2.5 concentration on a weekend.

The fitting results of the GWR models were evaluated using the metrics of R-squared and root mean
square error (RMSE). The average R-squared between the predicted and observed PM2.5 concentrations
is 0.81, and the average RMSE is 21.18 µg/m3, both of which are acceptable for dynamic air pollution
exposure estimation [9].

4.3. Performance Evaluation of the Trajectory Reconstruction Algorithm

In our proposed method, the accuracy of air pollution exposure estimation directly depends
on the accuracy of trajectory reconstruction. Thus, we compared the performance of our proposed
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trajectory reconstruction algorithm with other existing methods. To verify the performance of the
proposed trajectory reconstruction algorithm, all the CDR data were extracted and used as “recorded
data” (about 34% of the total records) and the actively generated records were used as “missing data”
(about 66% of the total records). Thus, the average performance of reconstruction algorithms could be
evaluated using the mean absolute error (MAE) between the reconstructed locations and the actively
generated record locations, and the stability of the reconstruction algorithms could be evaluated using
the standard deviation of the errors. In addition, one artificial neural network-based reconstruction
algorithm, ANN-TR [49], and two most widely used algorithms, nearest interpolation and linear
interpolation [40], were chosen as baselines. The performance comparison of these algorithms is shown
in Figure 9.

Int. J. Environ. Res. Public Health 2019, 16, x 12 of 20 

Figure 8. Different facets of PM2.5 concentration. (a) Hourly maps of PM2.5 concentration distribution on a 
workday and a weekend. (b) Temporal variation of PM2.5 concentration on a workday. (c) Temporal 
variation of PM2.5 concentration on a weekend. 

The fitting results of the GWR models were evaluated using the metrics of R-squared and root 
mean square error (RMSE). The average R-squared between the predicted and observed PM2.5 

concentrations is 0.81, and the average RMSE is 21.18 μg/m3, both of which are acceptable for dynamic 
air pollution exposure estimation [9]. 

4.3. Performance Evaluation of the Trajectory Reconstruction Algorithm 

In our proposed method, the accuracy of air pollution exposure estimation directly depends on 
the accuracy of trajectory reconstruction. Thus, we compared the performance of our proposed 
trajectory reconstruction algorithm with other existing methods. To verify the performance of the 
proposed trajectory reconstruction algorithm, all the CDR data were extracted and used as “recorded 
data” (about 34% of the total records) and the actively generated records were used as “missing data” 
(about 66% of the total records). Thus, the average performance of reconstruction algorithms could 
be evaluated using the mean absolute error (MAE) between the reconstructed locations and the 
actively generated record locations, and the stability of the reconstruction algorithms could be 
evaluated using the standard deviation of the errors. In addition, one artificial neural network-based 
reconstruction algorithm, ANN-TR [49], and two most widely used algorithms, nearest interpolation 
and linear interpolation [40], were chosen as baselines. The performance comparison of these 
algorithms is shown in Figure 9. 

 
Figure 9. Comparison of the proposed method with baseline approaches using the indicators of mean 
absolute error (MAE) and StDev. 

As shown in Figure 9, our proposed algorithm shows lower reconstruction error and better 
robustness (with lower StDev) than baselines, which proves the superiority of our proposed method 
over these existing ones. More technical details about different trajectory reconstruction evaluation 
results can be found in [51]. 

4.4. Comparison with Existing Exposure Estimate Methods 

To quantitatively analyze how the gap of spatiotemporal resolution between human movement 
data and air pollution monitoring data affects individual exposure estimates, three types of 
individual exposure estimates were obtained by (1) using reconstructed mobile phone trajectories for 
exposure estimation (hereafter, TR-EE); (2) using recorded mobile phone trajectories for exposure 
estimation (hereafter, REC-EE); and (3) using static locations (home location) for exposure estimation 
(hereafter, SL-EE). As the statistical results of individual exposure levels do not conform to a normal 
distribution, the K-S test [71] was applied to access the differences among these three types of 
exposure estimates, which are shown in Table 4. The results show that all the estimated pairs have 
larger K-S statistics than the expected values under null hypothesis and with very low p-values, 

0

1

2

3

4

5

MAE StDev

km

Our ANN-TR Linear Nearest

Figure 9. Comparison of the proposed method with baseline approaches using the indicators of mean
absolute error (MAE) and StDev.

As shown in Figure 9, our proposed algorithm shows lower reconstruction error and better
robustness (with lower StDev) than baselines, which proves the superiority of our proposed method
over these existing ones. More technical details about different trajectory reconstruction evaluation
results can be found in [51].

4.4. Comparison with Existing Exposure Estimate Methods

To quantitatively analyze how the gap of spatiotemporal resolution between human movement
data and air pollution monitoring data affects individual exposure estimates, three types of individual
exposure estimates were obtained by (1) using reconstructed mobile phone trajectories for exposure
estimation (hereafter, TR-EE); (2) using recorded mobile phone trajectories for exposure estimation
(hereafter, REC-EE); and (3) using static locations (home location) for exposure estimation (hereafter,
SL-EE). As the statistical results of individual exposure levels do not conform to a normal distribution,
the K-S test [71] was applied to access the differences among these three types of exposure estimates,
which are shown in Table 4. The results show that all the estimated pairs have larger K-S statistics
than the expected values under null hypothesis and with very low p-values, which indicates that the
exposure estimates of TR-EE are significantly different from those of the other two.

Figure 10 shows the difference between TR-EE and the other two types of exposure estimates
with a box plot. The lengths of the interquartile range boxes of the TR-EE & SL-EE cases are larger
than those of the boxes for the TR-EE & REC-EE cases on both weekdays and weekends. This means
that the exposure estimation errors for the both middle half of the individuals and all the individuals
increase when the home locations are used for exposure estimation than when the recorded mobile
phone trajectories are used. In addition, we can see that the median values (the red lines in each box) of
the four cases are approximately zero and the boxes are basically symmetrical around the median line.
This indicates that the results of exposure estimation can be either overestimated or underestimated
when the recorded mobile phone trajectories or static locations are used. It demonstrates that neither
the home location nor the recorded mobile phone data can fully represent individuals’ movement
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behaviors when estimating dynamic individual air pollution exposure. Therefore, the necessity of
trajectory reconstruction when using mobile phone data to estimate individual exposure levels is
clarified. Further, due to varying patterns of individual movement behaviors on weekends (with the
average Shannon entropy of 1.40) compared to that on weekdays (with the average Shannon entropy
of 1.45), the exposure estimation errors on weekends are slightly different from those on workdays.

Table 4. K-S test results.

Day Type Estimate Pairs K-S Statistics p-Value

Workday TR-EE & REC-EE 0.0039 p < 0.0001
TR-EE & SL-EE 0.0214 p < 0.0001

Weekend
TR-EE & REC-EE 0.0036 p = 0.0005
TR-EE & SL-EE 0.0233 p < 0.0001
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4.5. Potential Health Effects

Based on the ambient air quality standards proposed by the Chinese National Environmental
Protection Agency (GB 3095–2012), we classified the PM2.5 concentration into five categories to show
the potential health effects of each category, as shown in Table 5. We measured the potential health
effects of air pollution from two perspectives: the individual-oriented and geographical space–oriented.

Table 5. PM2.5 concentrations and health implications.

Category PM2.5 Health Implications

Excellent <35 Without health implications.
Good 35–70 Outdoor activities normally.

Lightly Polluted 70–115 Slight irritations for healthy people and slightly impact on sensitive
individuals.

Moderately
Polluted 115–150 Serious conditions for sensitive individuals. The hearts and

respiratory systems of healthy people may be affected.

Severely Polluted >150 Significant impact on sensitive individuals. Healthy people will
commonly show symptoms.

For the individual-oriented perspective, we selected two individuals (Ia and Ib), whose mobilities
were considerably different from each other, to show how individual movement behaviors affect
exposure estimates and potential health effects during a day. The space-time paths represent
the individuals’ trajectories in 3D space, and the colors of the trajectory segments represent the
corresponding potential health effects [8]. As shown in Figure 11, both individuals should take
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appropriate precautions when spending their time outdoors. Individual Ib has longer red-colored
and purple-colored segments than does individual Ia, which means that individual Ib experiences
PM2.5 concentrations over moderately polluted levels for longer times. If individual Ib belongs to
the sensitive crowd, the necessary precautions should be taken or avoid outdoor activities. With our
method, we can obtain fine spatiotemporal resolution of exposure-level trajectories for each individual
more accurately, so as to enhance the individuals’ awareness of protection and reduce their risk of
respiratory or heart diseases during trip planning.
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As for the geographical space–oriented perspective, understanding the residences of people with
high air pollution exposures can help government organizations prioritize resources and strengthen
publicity purposefully to reduce the potential health effects. Therefore, we selected individuals with
high exposure levels to air pollutions (whose total exposure levels during the whole week were in
the top 20% of all individuals) and speculated their residential locations using their most frequently
visited location during the nighttime (from 22:00 to 06:00) [72,73]. These possible residential locations
of mobile phone users were aggregated to subdistrict levels, and the results are shown in Figure 12.

We can see that the individuals with high exposure levels mostly lived in the western part of
Shanghai, and further concentrated in the Songjiang District, Jiading District, and Qingpu District.
For more details, we chose the top five subdistricts in which the highest exposure individuals lived
and calculated the percentage of time for which residents were away from their residences and the
corresponding percentage of exposure away from residence, as shown in Figure 13. The results show
that there is a positive linear relationship between the percentage of residents’ time away from their
residence and the corresponding percentage of their exposure, which indicates that people with a large
percentage of movement time (due to a huge potential of movements in polluted areas) tend to have
large air pollution exposures, which are not only restricted to their residential areas. Table 6 shows
that the residents in these areas were exposed to air pollution levels above the lightly polluted level
for more than 50% of the time and were exposed to severely polluted levels for about 5% of the time,
which indicated that these residents may experience irritation and the sensitive individuals among
them may experience serious conditions. These results could help government organizations prioritize
resources in terms of air pollution issues geographically and provided technical and theoretical support
for policy-driven environmental actions.
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Table 6. Details of the exposure risk percentage of residents in the top five subdistricts.

Subdistrict Excellent Good Lightly
Polluted

Moderately
Polluted

Severely
Polluted

Anting County 0.94 46.03 39.43 8.56 5.04
Jiangqiao County 2.45 46.95 38.33 7.30 4.97
Xiayang Subdistrict 12.13 29.72 46.65 6.03 5.46
Huacao County 2.44 46.45 38.75 7.29 5.07
Fangsong Subdistrict 13.15 30.53 45.97 4.76 5.58

5. Conclusions

This study proposed a method for estimating dynamic individual air pollution exposures using
trajectories reconstructed from mobile phone data. This method mitigates the gap of spatiotemporal
resolution between human movement data and air pollution monitoring data, thereby assisting in
the estimation of individuals’ air pollution exposures more accurately and comprehensively at a high
spatiotemporal resolution. Using the city of Shanghai as a case study, we compared three different
types of exposure estimates obtained via (1) reconstructed mobile phone trajectories, (2) recorded
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mobile phone trajectories, and (3) residential locations. The results show that exposure estimates using
reconstructed mobile phone trajectories are significantly different from the other two types of estimates,
and such differences are higher when using recorded mobile phone trajectories than when using
home locations for exposure estimates. This demonstrated the necessity of trajectory reconstruction
in exposure and health risk assessments. Additionally, we measured the potential health effects of
air pollution from both individual and geographical perspectives, which helped reveal the temporal
variations in individual exposure levels and the spatial distribution of residential areas with high
exposure levels.

By using the reconstructed mobile phone trajectories to measure human behaviors, this method
provided a more accurate and comprehensive way of estimating dynamic individual air pollution
exposure levels across space over time, which can help support policy-driven environmental actions
and reduce potential health risks. In addition to the PM2.5 concentrations shown in the case study, the
proposed method can be used to estimate individual exposure to other pollutants, such as NO2, SO2,
and noise. Further, by updating individual mobile phone data and ambient pollution data, our method
can be applied both to near-real-time estimates for individuals who are exposed to poor ambient air
quality and the long-term effects of ambient pollution on human health, which could contribute to
many crucial applications, such as disease surveillance and disaster loss assessment.

However, this study has several limitations and requires further exploration. First, the individual
exposure estimation method suffered from an uncertain geographic context problem (UGCoP). Wherein,
two kinds of contextual factors bring uncertainties to exposure estimates: the spatial configuration
of corresponding spatial units and the timing and duration of exposure to those units [26,74,75].
For example, although we improve the spatiotemporal granularity of human movement data to the
hourly level, an individual may have multiple activities in one hour, which makes the estimation
counter-intuitive. Whereas, the proposed method for air pollution estimation using trajectories
reconstructed from mobile phone data provides an alternative way to mitigate the influence of
UGCoP. More accurate trajectory reconstruction algorithms and human movement data with better
spatiotemporal resolution will be applied in this field to further improve the individual exposure
estimation performance. In addition, the accuracy of air pollutant estimation is another important factor
affecting the accuracy of individual exposure estimates. In the proposed method, we only adopted
a GWR model to estimate air pollution concentrations by incorporating meteorological variables
across space and air pollution values recorded by air quality monitoring stations. Considering the
spatiotemporal coverage and resolution of meteorological observation stations, the satellite-based air
pollutant concentration estimation algorithm might be helpful for improving the exposure estimate
accuracy from another point of view. In addition, as the purpose of this study was to estimate
large-scale dynamic individual exposures and lacking of quantifying methods for determining the
effects on the microenvironment, the influence of the microenvironment (as mentioned in Equation (3))
was ignored in this study. How to consider the microenvironment effect in the proposed method is an
interesting topic. We will focus on these issues in future work.
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