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Abstract

Human movement and interaction across space and through time is full of economic and social

opportunities. Access to information through location-based technologies offers potential for

people to make better decisions about social activity participation needs and travel behavior

preferences. Identifying an optimal trajectory (route) connecting desired activity locations for

multiple attendees with space–time constraints is a challenging endeavor. This spatial organization

task is formulated mathematically as a sequential, multi-objective optimization model. A frame-

work consisting of context knowledge, geographic information systems, and spatial optimization

is structured to solve this model, allowing for the integration of geographical and social net-

working considerations. The proposed approach offers a way to balance the tradeoffs of many

participants, enabling explicit consideration of travel cost, personal preference, quality rating, etc.
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in activity planning and decision making. A case study is detailed involving the organization of

multiple activities and multiple individuals. The application results highlight the utility and insight

of the proposed model and associated solution approaches.

Keywords

Route planning, network analysis, sequential spatial optimization

Introduction

Human movement and interaction in space and time play an important role in daily life.

People crave interaction with others on a regular basis. They seek to build connections in

order to acquire information, materials, goods, or satisfy emotional needs. Work, school,

and other duties require movement through a region within a specific time window, also
known as the “coupling constraints” in time geography (H€agerstrand, 1970). These inter-

actions are often spread throughout the day in a sequential manner. Society functions based

on such movements and meetups. Further, each individual has unique needs and associated
travel behavior. In order to organize multiple activities, people implicitly or explicitly opti-

mize meetup locations, travel costs, and preferences. Greater efficiency and organization can

enhance the utility associated with activities at different meetup locations and at various
times throughout the day.

Ever increasing location-based technologies enable people to gain access to rich infor-

mation to support decision making about social activity participation. For example, Google

Maps has the ability to check possible routes and landmarks for faster travel times based on
trips by car, bike, foot, or public transportation. There have been many studies that develop

analytical foundations and insights about human activities, interactions, transportation,

path choice, etc. (Kim and Kwan, 2003; Miller, 1991, 2005; Shaw and Yu, 2009).
However, research on efficient sequencing of multiple individual movements given space–

time constraints is limited. Consider the following situation: a group of friends would like to

organize a series of activities in order to celebrate a noteworthy event, such as an anniver-
sary, birthday, or graduation. They expect to have lunch together, go for a walk, and

enjoy evening entertainment. The questions raised here are twofold: assuming flexibility,

how can we organize these sequential activities in order to minimize travel costs; and, what

activities will maximize the overall preferences of participants. The travel of individuals can
be viewed as the movement of objects across space and time. Accordingly, what is sought

is to optimize meetup locations for these sequential activities to minimize travel cost,

enhance preferences, and increase group participation. The determination of the activity
locations must be done simultaneously rather than independently, one at a time. Individuals

may have different trip chains based on their own constraints but will share several common

activities.
Although minimizing travel cost is important, knowing the individual preferences of the

attendees is also essential. Budget conscious individuals may prefer to go to a lower cost

restaurant while others may prefer more upscale dining options. Some people may prefer a

walk over steep and challenging terrain while others may opt for less strenuous hiking. For
evening entertainment, some may prefer a bar within walking distance, while others are fine

taking a taxi/Uber. The best individual selection of activities may look quite different among

participants as they have different preferences, yet acceptable or desirable alternatives no
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doubt exist when all preferences are considered. Balancing travel cost along with individual
preferences is therefore a challenging question worth exploring.

In this research, we propose a multi-objective spatial optimization model to structure and
solve the problem of finding sequential activity locations for many people, each with dif-
ferent origins and destinations. Specifically, this problem includes two interrelated parts,
selecting meetup locations and specifying the trajectories of travel through them. The con-
tributions of our research are threefold. First, we mathematically formalize and solve this
location-routing problem along road networks. Second, a framework consisting of context
knowledge, geographic information systems (GIS), and spatial optimization is detailed. The
framework allows the integration of geographical contexts (e.g. traffic congestion) and other
geospatial information (e.g. points of interest (POI) database, individual preference, statis-
tical rating data, etc.) to be considered in the decision-making process. Third, a multi-
objective approach is introduced, accounting for travel cost as well as attendee preference
in the trajectory optimization process. Finally, a heuristic algorithm is developed and
applied in order to improve computational efficiency of the proposed approach for big
data environments.

The paper is structured as follows. The next section reviews relevant literature. Then, a
framework for analysis is detailed, incorporating context information, GIS, and spatial
optimization components. A case study involving travel within the Phoenix, Arizona, met-
ropolitan region is then introduced. Results are presented associated with selecting sequen-
tial activity locations for a group of individuals. The paper ends with discussion and
concluding comments.

Background

Research related to issues of activity space coordination has spanned a number of fields, and
includes time geography, location modeling, path optimization, social media, etc. In the field
of time geography, related advances have focused on evaluating spatial accessibility, feasible
opportunity set, and possible activity duration (Kim and Kwan, 2003). Miller (1991, 2005)
advocated space–time prism concepts within GIS to describe human activities and interac-
tion with spatiotemporal constraints. Even though space–time prisms capture locations for
moving objects, it does not account for inherent flexibility of movements. Kuijpers and
Othman (2009) and Kuijpers et al. (2010) were among the first to address this issue by
modeling uncertainty in moving objects along a road network. Their concept of “anchor
regions” has been widely used in the field of transportation, especially in urban public
transportation planning (Song et al., 2017). Research associated with space–time prisms
has answered important questions about whether and/or where people are able to
meet. However, these studies have limited capacity to identify the best meetup locations.
A significant question, therefore, is how to distinguish between meetup locations within
accessible areas.

Location modeling has often been used to optimize goods and services by identifying a
specific location for a specific activity. Optimizing one’s activity location could be most
simply reflected in the Weber problem, where a facility location is sought such that the
total weighted travel distance or transportation cost is minimized (see Church and Murray,
2009). The facility and demands in the Weber problem correspond to the activity (or
meetup) location and attendees, respectively. The multi-Weber and the p-median are
location-allocation problems that have been widely applied in location modeling (Church
and Murray, 2009). The multi-Weber problem, proposed initially by Cooper (1963), con-
cerns siting multiple facilities simultaneously to serve regional demands. While accounting
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for activity location selection, there are major limitations in routing and coordination with
such an approach. A key issue is enabling attendees to participate in more than one activity,
as the multi-Weber problem does not account for multiple-destination routing in location
selection. A new model is therefore needed to site multiple activity locations and optimize
attendee trajectories (routes) to go to all activities.

In order to optimize the selection of multiple activity locations along road networks, we
need to include shortest path routing. Dijkstra’s (1959) algorithm is frequently used to find
the shortest path from one origin to one or more destinations in a network. The algorithm
implicitly considers all possible routes, though this may be time consuming for large net-
works. Several algorithms, including convex-hull-based (De Berg et al., 2008), diameter-
point-based (Aingworth et al., 1999), R* tree-based spatial indexing (Beckmann et al.,
1990), among others, have been used to speed up shortest path computation by reducing
the search space of possible routes (Wagner and Willhalm, 2007; Wang et al., 2018). The
gateway shortest path model proposed by Lombard and Church (1993) seeks the shortest
path that is constrained to travel through one specified node. The multi-gateway shortest
path model (Scaparra et al., 2014) has the potential to optimize trajectory for each attendee
in the multiple activities location problem. A weakness is that the models focus only on how
to route attendees, not sequentially site activity locations. Therefore, coordinating the loca-
tion of multiple activities along with efficient individual travel routes in a specific order is
essential.

Individual preference of potential activity locations makes location selection and travel
cost derivation challenging. For example, people who are not in a hurry may be willing to
travel further to go to a location that gives them greater satisfaction. Social media could aid
related description/measurement of preferences. With the development of location-based
social networks (e.g. Foursquare, Yelp, etc.), people are able to share tips and experiences
from visits to POIs (e.g. restaurants, coffee shops, bars, etc.) with their friends or other
users. Properties of location-based social networks, such as user-item ratings, user check-in
data, parking, wheelchair accessibility, price range, kid friendliness, WiFi access, etc. have
been considered using various approaches. Accounting for these properties, recommender
systems have been widely used and studied (e.g. Wang et al., 2013; Ye et al., 2011). However,
what remains a challenge is recommending a series of ordered activity locations, not only
considering attendee preferences but also travel costs. The research goal is to integrate
preference with travel cost since tradeoffs may exist when accounting for both at the
same time. Spatial optimization provides the capacity to balance them, which is precisely
the intent of this paper.

Methods

Finding sequential activity locations for multiple moving objects along road networks
requires supporting analytics. This paper focuses on spatial analytics, those methods that
facilitate systematic exploration of geographic data. To this end, a framework is developed
consisting of spatial information, context information, GIS, and spatial optimization
(Figure 1). The framework highlights the interaction among decision making, geographic
information, and a range of spatial analytics.

Input data (top layer in Figure 1) in the analysis process include detailed spatial infor-
mation, like streets, road intersections, travel patterns, locations of POIs, origin and desti-
nation of each participant, etc. If these data do not exist, then they must be created and/or
purchased. Further, the preferences for social interaction are also essential. Satisfaction of
need is difficult to measure yet has significant impacts on decision making. By comparing
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attendee preference and potential location attributes, satisfaction can be derived for each

attendee at any POI location.
An advantage of the proposed framework is integrating geographic context (“Context

information” box in Figure 1), providing capacity to support dynamic exploration and

planning for activity coordination. Context information, such as traffic congestion, tempo-

ral barriers, and other local environmental conditions, has proven to have essential effects

on trajectory siting connecting origins and destinations (Buchin et al., 2012; Dodge et al.,

2016; Siła-Nowicka et al., 2016). Statistical traffic information on road segments enables

context-awareness to be introduced as part of travel cost. For mountainous areas, view shed

analysis using digital elevation models may be employed to facilitate travel cost surface

estimation. Without context information, road availability, road quality as well as traffic

congestion and other road conditions are assumed to be identical for all trips.
Spatial analytics are integral to support this framework. In particular, the combination of

GIS and spatial optimization in Figure 1 is useful and meaningful for developing efficient

and strategic planning insights. GIS is designed to capture, store, manipulate, analyze, and

display all types of spatial/geographical data (Church and Murray, 2009; Clarke, 2011).

These capabilities are important components of the framework in Figure 1 for modeling and

decision making with respect to activities involving human interaction. GIS supports data

creation; in this case, the origin and destination of each participant, the road network, and

possible traffic jam locations. GIS facilitates integration and management of different kinds

of data as well; these aspects include parcels, roads, transit routes/stops, and different cat-

egories of POIs. GIS provides basic spatial analysis capabilities, like measuring the distance

between nodes along a network or the density of certain type of POIs in an area.

Visualization and display of activity locations and their associated trajectory for all attend-

ees is an unambiguous task that GIS supports.

Figure 1. Framework for optimizing sequential activity planning.
GIS: geographic information systems; POI: points of interest.
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In order to move beyond basic analysis and visual examination by GIS, other spatial

analytical tools are necessary. For example, optimization models in Figure 1 provide the
capacity to improve travel efficiency. Wang et al. (2018) identified an optimal solution with

respect to total travel cost for one meetup site location along the road network, examining

POIs within a search radius. Unfortunately, the model focuses only on a single time, single

meeting location, ignoring the possibility of meeting sequentially at different locations.
Optimizing sequential meetup locations is not the simple combination of individual optimal

meetup locations since choices influence other options. Moreover, individual behavior high-

lights that travel cost is not the only consideration to selecting a good meetup location.
Beyond reducing travel cost, accounting for attendee preference is also important in this

research. Integrating cost and preference requires a bi-objective approach to sequential

activity location selections. There may be different and/or conflicting goals for the optimi-

zation task. For example, the caf�e located at an “optimal” location may have low preference
evaluation while a highly regarded caf�e may be too far away.

A multi-objective trajectory optimization (MOTO) model is now introduced. Consider

the following notation:

n¼ number of attendees
i¼ index of attendees (i ¼ 1 . . . n)
oi¼origin of attendee i
ei¼destination of attendee i
T¼ total number of meetup periods
t¼ index of meetup period (t ¼ 1 . . .T)
j¼ index of potential meetup locations (also j0)
Xt¼ set of potential meetup locations for period t
rij¼preference rating of meetup location j for attendee i’s
ut¼ the rating requirement for activity in period t
djj 0 ¼ shortest distance (or cost) for traveling between meetup locations j and j 0

Yjt ¼
1 if location j is selected for activity in period t

0 otherwise

(

Zijj 0t ¼ 1 if attendee i travels from meetup loction j in period t to j 0 in period tþ 1
0 otherwise

�

In each period, the type of activity is known in advance, even though the locations of

activities have not been selected. Xt is the list of POIs of a certain category regarded as

potential meetup locations for period t. rij is the rating value (binary or integer) based on

attributes of POIs, including star level, number of check ins/reviews, price range, ambience,
pet friendliness, parking, kid friendliness, etc. One may notice that the shortest network dis-

tance between any pair of locations (djj 0 ) is used in this model to describe travel cost, but may

reflect any associated measure of spatial interaction. The MOTO is formulated as follows

Min
Xn
i¼1

X
j�X1

Yj1�doij þ
Xn
i¼1

X
j�Xt

X
j0�Xtþ1

XT�1
t¼1

Zijj0t�djj0 þ
Xn
i¼1

X
j�XT

YjT�djei (1)
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Max
Xn
i¼1

XT
t¼1

X
j�Xt

rij�Yjt (2)

Subject to:

X
j�Xt

Yjt ¼ 1 8 t (3)

1þ Zijj0t � Yjt þ Yj0tþ1 8i; j �Xt; j0�Xtþ1; t ¼ 1 . . .T� 1 (4)

Zijj0t ¼ 0;1f g 8 i; t; j; j0 (5)

Yjt ¼ 0;1f g 8t; j�Xt (6)

Objective (1) seeks a minimal total cost/distance/travel time from origin to the first activ-

ity location, then the connection between activity locations and at last to destination for all

attendees. Objective (2) is to maximize the total rating value for all of meetup locations.

Constraints (3) require exactly one POI to be selected for each activity. Constraints (4) track

that each attendee would only travel to the POIs which are selected as meetup locations for

activities. Constraints (5) and (6) impose binary restrictions on decision variables. When T is

equal to 1, the model without objective (2) can be reduced to the single meetup optimization

model detailed in Wang et al. (2018).
Two well-known approaches, the weighting and the constraint methods, are widely

used for solving multi-objective and multi-criteria optimization problems. Using the

weighting method (e.g. Gass and Saaty, 1955; Zadeh, 1963), a weight is introduced for

each objective and subsequently solved as a total weighted sum of the objectives, often

where the sum of weights equals to 1. Limitations of the weighting method include the

need to search across an infinite range of weighting possibilities as well as the fact that

some Pareto optimal solutions cannot be found (see Censor, 1977; Medrano and Church,

2014). An alternative is the constraint method, where only one of the objective functions

is considered with the others converted into constraints (Chankong and Haimes, 1983a,

1983b; Haimes et al., 1971). This method works for both convex and nonconvex prob-

lems. This paper employs the constraint method to handle multiple objectives.
While it is possible to solve some problem instances exactly, heuristic methods are impor-

tant for a variety of reasons. As mentioned in the background session, some heuristic

algorithms have been used to decrease computation time by narrowing down the number

of potential activity locations. In this study, there are cases where the computational cost is

extremely high or even prohibitive with the increasing number of attendees and complexity

of network. An R* tree-based spatial indexing heuristic is utilized for problem solution.

This basic approach has proven effective in the single optimal meetup location case,

as reported in Wang et al. (2018), where the candidate datasets are constructed by

querying the bounding box of sequential activities using the R* tree spatial index

(Beckmann et al., 1990) for POI datasets. Using spatial query with multiple constraints

can reduce the search space for finding the sequential multi-meetup location candidates.

The minimum bounding geometry reduces the search space for activity location query
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because only the POIs within the reduced search space are considered. Pseudo code for the
heuristic is as follows:

Algorithm: sequential activities optimization (assume T 5 3)
Input: attendee origins oi and destinations ei, requirements for activity in different time
periods u1, u2, u3, POI Datasets X ¼ X1 [ X2 [ X3

Output: optimal activity locations

XR�
1 ; XR�

2 ; XR�
3

n o
¼ R* tree index (oi; ei; X)

MinCost  initial big value
for j 2 XR�

1 do
if rij � u1 for all i then

for j0 2 XR�
2 do

if rij0 � u2 for all i then
for j00 2 XR�

3 do
if rij0 0 � u3 for all i then

Cost¼Shortest Path(oi; ei; j; j
0; j00)

if MinCost>Cost then
MinCost¼Cost
optimal_loc1u1¼ j
optimal_loc2u2¼ j0

optimal_loc3u3¼ j00

end if
end if

end for
end if

end for
end if

end for
return MinCost; optimalloc1

u1 ; optimalloc2
u2 , optimal_loc3u3

The algorithm loops through different objective preference weightings in order to con-
sider multiple activity locations. The rating requirement u could be varied for different
activities. Attendee preferences are accounted for with respect to minimum travel cost. It
is computationally infeasible using a personal computer to derive the all-pair shortest path
distance matrix for a large road network for Phoenix. Therefore, the detailed solution
approach derives shortest-path travel costs after activity locations are filtered and selected.
The ShortestPath function used here is a bi-directional Dijkstra algorithm with binary heaps
(see Zhan and Noon, 1998).

Case study

Planning for the identification of a sequential series of activities over space and through time
was carried out for a group of people in Phoenix, Arizona, primarily focusing on optimizing
travel costs and enhancing social preferences. The study area is approximately 9071 square
miles in size. The geographic data layers used for the model included land parcels and roads
acquired from OpenStreetMap. The POI layers used in this study were downloaded from the
Yelp Dataset Challenge.1 Yelp is well known as a local-search service powered by crowd-
sourced reviews. The Yelp Dataset Challenge provides a subset of its business information
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(e.g. hours of operation, service type, attributes, etc.) and review details (e.g. number, rating
star, etc.) to researchers. High-resolution imagery for this area was obtained through
Google Maps, facilitating identification of POIs. This dataset, along with site visits, enabled
verification to enhance positional accuracy, particularly the POI locations and the road
network. The study area contains 217,174 road segments and 156,406 nodes after the
data cleaning process. Three activities, having brunch, going for a walk, and enjoying eve-
ning entertainment in a bar, are considered in the different cases for different groups of
attendees in this paper. The origins and destinations of attendees can be the same (e.g. going
from and back to their homes), though this was not the case in the scenarios considered
here. Figure 2 depicts the distribution of restaurants, parks, and bars, all of which are
regarded as potential activity locations. A variety of attributes are used to characterize
attendee preferences and requirements. Price range (from 1 to 3), suitability for children,
and customer rating scores (from 1 to 5) are used for this study. In Figure 2, the color hue
represents different location types and color lightness indicates the rating star level of the
corresponding activity sites, with lighter (darker) shades representing a lower (higher) value.

The computational processing was carried out on an Intel(R) Core(TM) i7 2.5GHz
computer running Windows 7 with 8 GB of RAM. ArcGIS was utilized for data creation,
management, manipulation, analysis, and display. Xpress, a commercial optimization pack-
age, was employed to solve one and two-person scenarios, giving guaranteed optimal results.
In scenarios involving more than two people, the R* tree-based spatial indexing heuristic
was developed and implemented in Cþþ.

Figure 2. Distribution of potential locations for brunch, hiking, and nighttime entertainment in the
study area.
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Scenario A

In this scenario, a single person is considered, and s/he wishes to have brunch. Two cases are

examined, with and without personal preference for POI amenities. The person’s origin and

destination are fixed, represented as yellow stars in Figure 3. Objective (1) is given priority,

with the optimal trajectory shown in Figure 3(a). Figure 3(b) to (d) depicts the optimal

trajectories when preferences for potential restaurants are taken into account. In this case,

consideration for whether they are good for children, have low prices (price range equal to

1), and are highly rated (equal to 5), are explicitly desired. The four trajectories and selected

restaurants are significantly different. The optimal restaurant, which minimizes travel dis-

tance, is located close to the straight-line connecting the origin and destination, having

rating 2, price range 2, and considered not good for children. Compared with the shortest

Figure 3. Optimal locations for brunch considering different preferences (a) without additional constraints;
(b) good for children; (c) have low price; (d) highly rated.
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distance case (13.27 miles), the traveling cost increases 46.66%, 43.97%, and 29.06% in

other three cases. In order to account for restaurant preferences, an attendee has to sacrifice

travel cost to some extent. Worth exploring as well is attendee preference, which leads to a

tradeoff of sorts between maximizing rating and minimizing travel cost as shown in Figure

4. Along the x-axis is the level of rating star (one option for objective formulation (2)),

ranging from 1 to 5 with an interval of 0.5. The y-axis indicates the minimum travel cost,

corresponding to objective (1). All of the vertexes along the tradeoff curve are optimal

solutions, and depend on the preference given to different objectives. The black diamond

in Figure 4(b) is associated with the pink restaurant in Figure 4(a) (also shown in Figure 3

(a)) located on the shortest path. Preference toward a higher star rating means that travel

cost will increase, ranging from a low of 13.27 miles to a high of 17.13 miles.

Scenario B

In this scenario, a single person is again considered, but in this case, s/he participates in three

activities sequentially. With the location-based service, Yelp, restaurants (brunch), parks

and bars are to be accessed in the first, second and third periods, respectively. The distance

of the shortest path trajectory (depicted in Figure 5) is 13.93 miles without any

constraints on activity preferences. Compared with the situation of only attending brunch

in Figure 3(a), the additional activities now favor a brunch location that is closer to the first

half of the route. Optimizing sequential activities is not merely a combination of each best

meetup location, but rather the activities are balanced simultaneously in order to account

for preferences and travel cost.
Benchmark experiments for scenarios A and B are derived to enable comparison of

running time and solution accuracy using the developed R*Tree search and a brute force

algorithm (i.e. the exhaustive search). Based on 100 sample meetup experiments, the results

Figure 4. Tradeoff relationship between travel cost and rating constraints. (a) Optimal locations for brunch
having different levels of rating star; (b) Tradeoff curve.
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in Table 1 show that the average time of R*Tree search is significantly less than that for the

brute force algorithm without the R*Tree search, but it cannot guarantee finding the opti-

mal solution. The average time in scenario B is more than in scenario A because the number

of constraints in scenario B is larger than in scenario A.

Scenario C

In this scenario, another person joins in the activities, resulting in the three sequential

locations shown in Figure 6. All of the activity locations change. The travel cost increases

17.90% compared to that shown in Figure 5. This route and meetup selection of activities is

Figure 5. Optimal sequential activity locations and travel routes for one attendee.

Table 1. Benchmark experiment results.

Experiment

Average time—brute

force algorithm (s)

Average time—R*

Tree Search (s)

Number of

optimal solutions

Scenario A 62.912 23.508 96

Scenario B 65.709 24.537 94

12 EPB: Urban Analytics and City Science 0(0)



a compromise among participants in order to minimize total travel costs and maximize total

activity preferences. For the two-person case, the computational time for Xpress to opti-

mally solve the associated problem is around 5 s, including problem input, initialization, and

solution.

Scenario D

In this scenario, there are 10 people dispersed throughout the Phoenix metropolitan area

who wish to coordinate three sequential activities. For display purposes, the origin and

destination are the same, without loss of generality. Without any limitation on the charac-

teristics of the POIs, the three activity locations tend to be congregated close to the center of

all the attendee origins/destinations (Figure 7(a)). Figure 7(b) depicts the optimal trajectory

and activity locations when attendees call for all activity locations to have a five-star rating.

With this extra constraint, the optimal locations are updated and the difference between

travel distance for the 10 attendees ranges from –1.2% to 300%, with an average of 82.3%.

Compared to the shortest trajectories, an addition of almost 80% of travel cost will be spent

on average for each attendee when they request locations having the best star rating.
The solution using the R*tree-based spatial indexing heuristics required approximately

30 s of computational effort for the no preference scenario. This reduces the search space to

Figure 6. Optimal sequential activity locations and travel routes for two attendees.
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335 restaurants, 91 parks, and 366 bars as potential activity locations to be selected for three
periods, respectively. When the star rating preference requirement is included, then only
18 restaurants, 8 parks, and 2 bars qualify as activity locations, decreasing the computation
time to 7.1 s.

A more general examination of the changes in the objective value with respect to varia-
tions in star ratings is explained as follows. The analysis begins with a star level set of
constraints using the spatial optimization model. The fluctuation in the travel cost corre-
sponding to different rating requirements may vary based on the distribution of attendees,
while sharing a common trend such that if a high rating is required, a high travel cost is
possible. Figure 8 summarizes 100 samples where 1 to 5 stars (with a 0.5 star interval) are

Figure 7. Optimal activity locations and routes for 10 attendees. (a) without any constraints of POIs; (b)
with preference of five-start rating of POIs.
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required for each activity location. Each sample has 10 attendees randomly located in the
Phoenix Metropolitan area. As the rating requirement increases, the total travel cost grad-
ually increases, especially rises sharply and significantly when rating is higher than 3 stars.
Compared with no rating requirement, the average growths of total travel cost are 15.9%,
33.6%, 60.9%, and 135.6%, when rating is expected to be higher than 3.5, 4, 4.5, and 5 stars,
respectively. The growth is not apparent when rating is less or equal to 3 stars. One reason
could be that large amount of less prominent activity locations are evenly distributed in the
study area (as shown in Figure 2). However, there is less chance that a relatively higher star
activity location is also the optimal location with minimal travel cost.

Although the global optimal solution is possible in some cases (two or fewer attendees),
heuristic solution is desirable for many reasons, including faster solution time as well as
eliminating the need for commercial optimization software. Assessment of heuristic solution
performance consisted of evaluating 200 cases involving 10 attendees. Of the 200 cases
evaluated, 197 were found to be optimal using the R* solution heuristic; the average com-
putation time is reduced by more than 85%, from 159.06 to 21.42 s. In the cases where an
optimal solution was not identified using the heuristic, at least one activity location is not
within the bounding box of all origins and destinations of attendees. This likely arises when
strict requirements (higher star level, more reviews, etc.) for activity locations are imposed
since no satisfactory potential POI would be within the search area. A similar test is repeated
with the requirement that star levels of activity locations set to be 5. Only 77.5% of cases
reached the global optimal solution, reducing the average computation time by approxi-
mately 34.33%. The results verify that the decision making for finding a global optimal
solution contains a tradeoff between computation time and accuracy. The significance of
tradeoff relationship decreases with the additional constraints of people’s preference.

Discussion and conclusion

Beyond programming language and computing environment considerations, the number of
decision variables and constraints in the optimization model also influence the computation

Figure 8. Total travel cost tradeoff with rating constraints (100 samples).
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time. For sequential activity selection, if more activities (meetup locations) are needed, the

number of decision variables (and computation time) will increase significantly. For exam-

ple, Zijj0t is the variable determining whether attendee i travels from meetup location j in

period t to j0 in period tþ1. The number of Zijj0t variables is ni�nj�nj0 �T, for which ni, nj (also

nj0 Þ, and T are the number of attendees, potential activity locations, and total meetup

periods, respectively. An interesting issue worth further investigation is how to reduce com-

putation time in activities scheduling with a more expansive regional road network.
External Web services and location-based data streams have the ability to provide geo-

graphic context, which influences the travel cost in the spatial optimization model. In a

practical engineering implementation, this context information may have a great effect on

decision making with respect to activity locations and route planning. The introduction of

traffic delay information on road segments will enable context-awareness for finding sequen-

tial activity locations under different scenarios. In this problem, the travel time for each road

segment, estimated by statistical traffic information, could substitute the shortest distance

(djj0 ) in order to better represent travel cost in the model. In real-world settings, access to

available data and contextual information is necessary. As long as these requirements can be

structured as constraints, they can be added to the multi-objective optimization model.
In summary, identifying optimal interaction locations with space–time constraints on the

road network in order to satisfy human social activity needs is essential, yet there are

concerns about travel cost and attendees’ preference. This study formalizes the problem

of finding sequential activity locations for multiple attendees as a spatial optimization

model. A methodology for siting activities is applied relying on the use of context informa-

tion, GIS, and spatial optimization. Four scenarios were explored for finding optimal activ-

ity locations and routes in the Phoenix metropolitan area in order to demonstrate the

feasibility and capacity of our framework. The findings show that the optimal activity

locations and trajectories change associated with the participation of attendees, the order

of activities, the preference of attendees, etc. Attendees’ requirements are meaningful and

important factors to consider in the decision-making process when preference and context

information is important. The proposed method can be applied in many real-world appli-

cations such as tourism trip planning, carpooling services, and logistics management.
The generalized model proposed in this paper could be extended in future work. The travel

cost objective function in this study accounted for all attendees. However, minimizing the

maximum travel cost of any attendee or minimizing only some attendees would be an interest-

ing direction for future research. In addition, different types of POI attributes could be consid-

ered for attendee preferences. How to balance the different preferences among all attendees will

be another issue that is worth further exploration. Because an attendee may change their mind

at or between activities, optimal trajectories could be updated dynamically during the trip.

Future research therefore would move toward capabilities for real-time activity coordination

and navigation. As computational time increases dramatically with the increase in the size of

road network, a parallel computational framework may be useful to enhance efficiency.
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