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EDITORIAL

GeoAI: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond

1. Introduction to GeoAI

Recent progress in Artificial Intelligence (AI) techniques, the large-scale availability of
high-quality data, as well as advances in both hardware and software to efficiently process
these data, are transforming a range of fields from computer vision and natural language
processing to autonomous driving and healthcare. For instance, the availability of high-
resolution geographic data and high-performance computing techniques together with
deep learning fuel progress in fast and accurate object detection. Recent examples of
GeoAI work include the detections of terrain features (Li and Hsu in this issue) and
densely-distributed building footprints (Xie et al. in this issue), information extraction
from scanned historical maps (Duan et al. in this issue), semantic classification (e.g. LiDAR
point clouds) (Guo and Feng in this issue), novel methods for spatial interpolation (Zhu et
al. in this issue), and advances in traffic forecasting (Polson and Sokolov 2017, Ren et al. in
this issue). Similarly, machine learning and natural language processing are facilitating the
extraction of geographic information from unstructured (textual) data, such as news
articles and Wikipedia (Hu 2018) as well as the matching of natural features in multiple
gazetteers (Acheson et al. in this issue).

At the same time, Semantic Web technologies, ontologies, and Linked Data are being
employed to improve geographic information retrieval and to construct advanced geo-
graphic knowledge graphs for geo-enrichment (Ballatore et al. 2013, Regalia et al. 2019,
Yan et al. 2019, Mai et al. 2019a) as well as semantically enabled services for spatial data
infrastructures (Jones et al. 2014). A combination of multiple techniques aids in integrat-
ing autonomous vehicles with intelligent transport systems by incorporating real-time
information gathered by traffic cameras and other sensors (Seif and Hu 2016, Zang et al.
2017). As these examples demonstrate, rapid progress is not isolated to specific down-
stream tasks or data types. Instead, we are observing how artificial intelligence techniques
penetrate many aspects and activities across the sciences.

The use of AI techniques in geography and the earth sciences as such is not new.
Openshaws’ 1997 book on Artificial Intelligence in Geography serves as a prominent
example (Openshaw and Openshaw 1997). Even before, Couclelis (Couclelis 1986) and
Smith (Smith 1984) discussed the potential role of AI for geographic problem-solving in
the 80s. What has changed since those early days cannot merely be attributed to novel
computing architectures and advancedmethods such as Generative Adversarial Networks
(Goodfellow et al. 2014).

The current success of AI techniques is equally caused by a new culture of data creation
and sharing. The exponential growth of data collected and curated over the past decade is
not restricted to any specific type or medium but multi-modal and highly heterogeneous.
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Social sensing, for instance, as the usage of data traces actively or passively emitted by
humans via their near-body devices such as smartphones, would have been unthinkable
in the 80s both due to technical limitations as well as for privacy concerns. While fields
such as remote sensing have been (big) data-intensive since their early days, very high-
resolution instruments do not merely provide more data, they dramatically grow the
number of classes that can be distinguished, e.g. individual cars and debris. Similarly, the
(open) availability of millions of near real-time car trajectories, images, reviews, recom-
mendations, news, academic literature, and all kinds of sensor observations is a game-
changer for those AI techniques that rely on large amounts of (high-quality) labeled data.

However, there may be something even more important than the pure availability of
data and advanced methods combined, namely a change in culture. (I) As with open-
source before, open-content makes data available to the masses. Individuals, institutions,
and companies begin to realize that protecting their data in silos may be less beneficial
than giving access to them. While data is rarely made available as a bulk download,
companies now regularly share their (expensively acquired) data via APIs. This was simply
unthinkable just two decades ago. ProgrammableWeb, for instance, reports more than
22,000 Web-APIs as of 2019 up from about 100 APIs in 2005. Put differently, the industry
perceives the risk of somebody stealing their data as less impactful than their data
remaining disconnected from the new data economy.

(II) Reusing data is the new normal. This may seem like a trivial point from today’s
perspective, but data reuse at scale is a new concept for many scientific domains.
Designing an experiment, developing a conceptual model, deciding on measurement
scales, selecting a sampling strategy, and collecting data are core parts of many scientific
workflows. The opportunistic reuse and synthesis of data implies giving up control over
some or even all of those steps. In contrast to (re)using imagery from long-running, well-
known, quality-optimized, and technically well-understood earth observation satellites
such as the Landsat series, reusing in-situ ecological or social science data is very different.
Individuals have often collected these data with a particular setup and research question
in mind. Typically, the accompanying metadata (if present at all) are not detailed enough
to fully capture the contextual information required to understand whether a dataset is fit
for the new purpose. In essence, all metadata records are incomplete as it is impossible to
foresee future uses. The increase in research on data provenance and smart data work-
flows that automatically capture as much contextual information as possible is a response
to this new reality (Gil et al. 2007, Moreau et al. 2008) in which data from all kinds of
sources and domains are reused at scale.

(III) A new paradigm joins the empirical, theoretical, and computational paradigms that
have characterized research before. This fourth paradigm (Hey et al. 2009) of data-intensive
exploration highlights the increasing role of data synthesis (Janowicz et al. 2015) alongside
analysis. This implies that one data source can be used as a proxy for another, more difficult
to acquire dataset. It also suggests that combining multiple data sources may support a
more holistic understanding of a research question or may help in mitigating problems of
data sparsity or representational bias. To give a concrete example, Jacobs et al. (2009) used
a readily available network of thousands of (low-quality) webcam to determine the onset of
spring leaf growth. Gao et al. (2017) showed how social media from a variety of sources can
be used to detect and delineate vague cognitive regions and how the extracted regions
that resemble those acquired from direct human participants testing.
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While none of these three identified aspects alone is necessarily new, the arising data
culture certainly is. Consider, for instance, the following observation by Mike Goodchild:
Most early research utilizing volunteered geographic information (VGI) did so to confirm
or reproduce findings or theories that have been brought up before.1 It is only in the last
few years that VGI has been used to reveal new insights, question existing theories, or
even propose new theories altogether. In fact, and in line with new research directions
such as Web Science, researchers are beginning to study the ecosystem of geographic
information as such, e.g. via geographic information observatories (Adams et al. 2014,
Janowicz et al. 2014).

Summing up, GeoAI as a subfield of spatial data science utilizes advancements in
techniques and data cultures to support the creation of more intelligent geographic
information as well as methods, systems, and services for a variety of downstream tasks.
These include image classification, object detection, scene segmentation, simulation and
interpolation, link prediction, (natural language based) retrieval and question answering,
on-the-fly data integration, geo-enrichment, and many others.

2. Spatially explicit models

Ideally, the application of techniques from artificial intelligence and data science to spatial
data in the earth and social sciences is not a one-way street. Recent research (Yan et al.
2017, 2018, 2019, Chu et al. 2019, Mac Aodha et al. 2019) has shown that spatially explicit
models substantially outperform more general models when applied to spatial data.
Interestingly, designing neural architectures for spatially explicit models can also be
regarded as introducing an inductive bias (Battaglia et al. 2018). However, what exactly
are spatially explicit models and what do they have in common? How can we integrate
spatial and temporal aspects to various machine learning-based techniques, and how
much spatial data are required for these models to make a difference?

Interestingly, while there is no shortage of spatially explicit models and methods to
address the needs of specific domains or applications, the question of what makes a
model spatially explicit in the first place received less attention. Notable examples include
the work of Goodchild and Janelle (2004) and Kuhn (2012). For instance, a model can be
called spatially explicit if it fulfills the following requirements (Goodchild 2001):

● Invariance test: The results of spatially explicit models are not invariant under
relocation of the studied phenomena.

● Representation test: spatially explicit models contain spatial representations of the
studied phenomena in their implementations (this can be in the form of coordinates,
spatial relations, place names, and so on).

● Formulation test: spatially explicit models make use of spatial concepts in their
formulations, e.g. the notion of a neighborhood.

● Outcome test: The spatial structures/forms of inputs and outcomes of the model
differ.

Spatially explicit models are those that satisfy at least one of these tests (and thereby
any of their combinations). For instance, imagine a simple dataset that contains cities,
their geographic location, as well as their population. A mere population-based ranking of
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those cities is not spatially explicit as their location (representation) is not part of the
analysis. In contrast, answering whether densly populated cities are clustered would
require a spatially explicit perspective. This, in turn, should not be confused with an
analysis that may reveal spatial insights without being spatially explicit itself. Take, for
instance, an alphabetic ordering of the cities (and places more generally) at California’s
coast. Such a list would reveal geographic insights about the origin of expeditions and the
times they visited or established these places.

As is, however, the tests mentioned above cannot be carried out experimentally, nor
can their degree or relevance be measured. More concretely, what is the tradeoff between
designing a machine learning architecture that explicitly accounts for space versus a more
general setup that would have to learn to value space implicitly? Will these more general
models catch up given enough data without the need to increase the complexity of the
architecture? What portion of a dataset has to be spatial in order to justify spatially explicit
models? Those taking a strong position in favor of general models will have to justify why
progress on neural architectures is required at all, if the availability of data is the only
variable that matters. Similarly, those that favor domain-specific models will have to justify
why developing more complex models is superior to providing more labeled data. Both
these stances and any middle ground between them will have to address the question of
how spatial (and place-based) aspects should be represented in data across domains and
whether our current way of largely thinking in terms of fields and objects is still adequate
at a time where graph data and the power to linking statements across domains are at the
forefront. Finally, geographic identifiers often play a key role as a nexus that connects
actors, events, and objects together across and within data hubs, e.g. on the global Linked
Data cloud. Hence, spatio-temporally scoping data (Silva et al. 2006, Adams et al. 2015)
will only increase this trend and make spatial aspects part of many everyday information
retrieval tasks such as the semantic annotation of news.

Put differently, successful GeoAI research will have to address why (geo-)spatial mat-
ters by making a case for spatially explicit models. It will also have to showcase how graph
data and new methods developed on the symbolic and sub-symbolic levels can easily be
integrated into today’s GIS workflows (Mai et al. 2019a).

3. Question answering and summarization

GeoAI research will also contribute to question answering and smart digital assistants more
generally. This follows from the increasing availability and importance of spatial data such as
place names and spatial relations discussed before, but also from the fact that digital
assistants are quickly becoming part of our everyday lives. This gives these systems access
to a plethora of contextual information and enables them to answer more personalized
questions. For instance, instead of asking about the construction date of the Eiffel Tower or
how long it will take to drive to the airport, future users may ask for vacation locations their
parents would have visited, an audiobook about the region they are currently driving
through, or simply a central but quiet hotel. These and similar questions require an
additional step, namely identifying a user’s location, distances to other features, reasoning
about topological relations, understanding vague cognitive regions, and so on. Hence,
current approaches, e.g. those directly utilizing sentence embedding models (Arora et al.
2017) or other forms of computing text similarity, may fall short.
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While the mode in which questions are asked is relevant for the selection of appro-
priate methods, many higher-level challenges remain the same. For instance, how to
summarize geographic information while answering more open-ended questions such as
for important facts about Los Angeles (Yan et al. 2019). From a knowledge graph
perspective, there are tens of thousands of statements (e.g. triples) about every major
city. So what is special about one city in particular? An answer to this cannot merely be
technical; it has to address the question of what makes a good and fair summary in the
first place. For instance, and inspired by Rodriguez and Egenhofer (2004), one could argue
that a summary has to account for both commonality and variability. This is particularly
important for comparative questions or those that involve heterogeneous regions. To
give a concrete example, an answer to the question about Los Angeles may state that
while it is similar to the nearby city of San Diego in terms of climate, beaches, belonging to
California, and so on, it is unique due to its motion picture industry.

One can also start with the answer and study how to discover and share GIS function-
ality based on the questions they are designed to answer (Scheider et al. 2019). Similarly,
one may rethink the entire interaction with modern GIS and abstract it to a higher level
centered around the scientific questions to be answered instead of the technical steps
involved in doing so (Vahedi et al. 2016). Finally, one can study how to relax questions to
arrive at an approximate (or at least related) answer (Wang et al. 2018, Mai et al. 2019b).
There are many reasons for doing so. For example, when the initial question cannot be
answered due to the sparsity of the knowledge graph or when a user is not sufficiently
familiar with the ontology used to represent data.

4. Social sensing

Machine learning and artificial intelligence methods also have an important role to play in
what is often referred to as social sensing (Aggarwal and Abdelzaher 2013, Liu et al. 2015,
Janowicz et al. 2019). It can be defined as the use of (user-generated) digital content to
better understand human dynamics. Social sensing has been applied to a range of tasks
from identifying human mobility patterns (Li et al. 2019) and exploring structure in social
networks, to urban planning solutions (Zheng et al. 2014, Resch et al. 2015, Zeile and
Resch 2018) with varying degrees of success. The process of social sensing involves the
creation of semantic signatures (Janowicz et al. 2019), multi-dimensional data signatures (i.
e. spatial, temporal, and thematic features) that are extracted from the digital trace that is
left behind as people’s digital lives interact with their physical activities. This digital trace
is increasingly produced and collected through sensor-rich mobile and IoT devices. The
plethora of sensors available on today’s mobile device means that the data being
produced not only includes information pertaining to one’s location, but also attributes
such as the ambient temperature, luminosity, noise level, and so on. The sheer amount of
data collected via these devices, as well as the heterogeneity of the actual content, make
these data particularly well suited to the analysis through novel techniques situated in
GeoAI (Martin et al. 2018). Social sensing and semantic signatures have contributed to
fields such as public health (Chaix 2018), activity prediction (Regalia et al. 2016), and
privacy preservation (Khan et al. 2019), to name a few.

In much of the social sensing research, semantic signatures are often rooted in the
concept of place, using place as the reference system through which to compare different
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activities, dynamics, and social interactions. The digital trace collected through mobile
sensors mentioned previously is often referred to as passive data collection with context
being inferred from passive sensors. User-contributed data such as social media check-ins,
shared photos, or (micro-)blog posts, on the other hand involve users actively choosing to
contribute data pertaining to their social interactions in the physical world. These data
have been analyzed in numerous ways with the goals of predicting human activity
patterns (Scellato et al. 2011), identifying trends of temporal patterns for points of interest
in cities (Sparks et al. in this issue), understanding human emotions from facial expressions
(Svoray et al. 2018, Kang et al. 2019) or human sentiment at different neighborhoods from
textual reviews (Hu et al. 2019), place recommendation systems (Xu et al. 2018), and urban
visualization applications (McKenzie et al. 2015). While still considered part of the social
sensing framework, these data are substantially different, and arguably more biased, than
those contributed passively.

With the advancement of drive-by sensors, computer vision and deep learning tech-
niques, street-level images become a new data source for understanding the physical
environments and social environments. It enables the visual representation and explora-
tion of urban environments using semantically segmented scene elements (Zhang et al.
2018). Spatiotemporal human activity information such as traffic flow (Zhang et al. 2019),
neighborhoods demographic information (Gebru et al. 2017), and human perceived
safety in cities (Li et al. 2015) can be inferred from street view images. In addition, street
view images and 3D building models provide data support in urban design and planning.
For example, a street-frontage-net (SFN) deep learning method has been developed to
classify urban street-level images and evaluate the quality of street frontage from blank to
active levels (Law et al. in this issue).

5. Datasets and reproducibility

Advancing GeoAI research requires high-quality geospatial datasets. Many AI models,
particularly deep neural networks, need to be trained on a large set of well-labeled
training data. It has long been recognized in the machine learning community that the
quality of models follows the ‘garbage in, garbage out’ principle, i.e. a trained model is
only as good as the quality of the training data. From this perspective, data are no longer
merely resources to be mined by computational tools but are becoming part of the tools.
High-quality datasets, such as ImageNet (Deng et al. 2009), have become critical enablers
for the development of new AI methods. The domain of geography is fortunate to have
many datasets of high quality in the public domain, such as the National Land Cover
Dataset (NLCD) from the US Geological Survey and the American Community Survey (ACS)
data from the US Census, not to mention the many available remote sensing images,
global digital elevation models (DEM), and National Hydrography Datasets (NHD). With
the change of data culture, an increasing number of companies are also sharing their
geospatial data, such as the U.S. building footprint data by Microsoft, points of interest
(POI) data by Yelp, and vehicle trajectory data by Uber and Didi. These and other shared
geospatial datasets can become useful resources for developing future GeoAI models.

From a perspective of reproducibility and replicability, sharing the dataset based on
which a GeoAI model was developed is necessary for other researchers to reproduce or
replicate the model described in a research paper. According to Bollen et al. (2015),
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reproducibility refers to the ability of other researchers to duplicate the results of a prior
study using the same data and procedures, while replicability refers to the ability of
duplicating the results of a prior study using the same procedures but new data. As
data are becoming integral to the models, one simply cannot arrive at the same model
without having access to the original dataset used by the authors of said model. Sharing
datasets on publicly accessible repositories, however, puts extra burdens on researchers,
since a cleaned, well-organized, and carefully-documented repository of dataset requires
significant additional effort that is often not rewarded in the current academic evalua-
tions. Besides, there can be policies and privacy concerns that impede the effective
sharing of datasets. Nevertheless, sharing a small sample of anonymized dataset can
already go a long way toward enhancing the reproducibility and replicability of GeoAI
research. The source code of the used architecture can be shared in a similar way, since
the performance of deep neural networks is often affected by implementation details,
such as random seeding and parameter initialization strategies. In this regard, we are glad
to see that the papers in this GeoAI issue also shared a link to their GitHub repository with
annotated data and source code.

Two directions could be explored to promote dataset and code sharing with the goal of
supporting reproducibility and replicability in GeoAI research. First, we may continue
enhancing our spatial data infrastructures (SDI) which serve as central platforms for sharing
geospatial resources. Research efforts could be put on facilitating the search and discovery
of resources on SDI (Hu et al. 2015), providing guidance on the best practices of data
sharing, and designing automatic methods for improving the quality of geospatial data and
metadata. Second, we could encourage the coupling of research articles and datasets in top
journals of our domain. While this can be done by sharing a publicly accessible link of the
repository within an article, an existing journal might offer a dataset track, or a new journal
could be established specifically for publishing descriptions of geospatial datasets. There are
already such dataset journals outside the domain of Geography, such as Scientific Data
published by the Nature Publishing Group. These journal articles can give more credits to
researchers who spent time and efforts to carefully collect, clean, and share datasets. On the
other hand, new challenges need to be addressed on how to effectively review these
dataset-description papers and how to ensure the quality and maintenance of the shared
datasets.

6. Moonshots

Ideally, research around GeoAI and spatial data science more broadly would be focused
around a few grand challenges. Such moonshots play an important role in measuring the
progress of a community, explaining to others how some specific research direction
contributes to a bigger picture, and agreeing on a common set of priorities. Here we
outline one such moonshot.

Can we develop an artificial GIS analyst that passes a domain-specific Turing Test by
2030? Put differently, can we design a software agent that takes a user’s GIS-related
domain question, understands how to gather the required data, how to analyze them,
and how to present the results in a suitable form? Imagine a user asking for available
undeveloped spaces that are most suitable for community-based solar panel installa-
tions. The artificial GIS analyst would find the required data layers using SDI, perform
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operations such as insolation analysis, and return a suitability map, thereby (ideally)
becoming indistinguishable from a human analyst. The key here is to open up GIS to
Siri-like interaction for the masses, not to replace highly-trained GIS analysts performing
complex analysis. Several large-scale projects such as the NSF funded EarthCube and,
more recently, the Open Knowledge Networks track of NSF’s Convergence Accelerator
address the challenge of designing human and machine-readable and reasonable data
repositories. Methods-wise, the above-mentioned research by Scheider et al. (2019) and
other research teams can already be seen as contributions to this moonshot. From the
industry’s side, companies such as Esri have long experimented with automatically
suggesting analysis and visualization options for common datasets and types. Hence,
while ambitious, the envisioned artificial GIS analyst is a realistic goal if GeoAI research
continues at today’s speed.

7. Summary and conclusions

In this editorial, we motivated the need for GeoAI research and reviewed its origins. We
have outlined three significant research directions, namely spatially explicit models,
question answering, and social sensing, discussed the need for high-quality datasets
and improved reproducibility, and presented a GeoAI moonshot as an example of a
shared vision for the next ten years. We also hope that GeoAI and spatial data science
more broadly will bring closer together the multitude of domains that work on or with
spatiotemporal information. Finally, we believe that ethical consideration should be an
essential part of responsible GeoAI research, both on the level of individual researchers as
well as the community as a whole. We believe that the breadth of topics and techniques in
this special issue (Acheson et al. in this issue, Zhu et al. in this issue, Sparks et al. in this
issue, Law et al. in this issue, Li and Hsu in this issue, Duan et al. in this issue, Ren et al. in
this issue, Guo and Feng in this issue, Xie et al. in this issue) is well representative of the
current state-of-the-art in GeoAI.

Note

1. From personal communication in Spring 2017.
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