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Abstract
The Huff model has been widely used in location-based 
business analysis to delineate a trade area containing a 
store’s potential customers. Calibrating the Huff model and 
its extensions requires empirical location visit data. Many 
studies rely on labor-intensive surveys. With the increas-
ing availability of mobile devices, users in location-based 
platforms share rich multimedia information about their 
locations at a fine spatio-temporal resolution, which offers 
opportunities for business intelligence. In this research, we 
present a time-aware dynamic Huff model (T-Huff) for lo-
cation-based market share analysis and calibrate this model 
using large-scale store visit patterns based on mobile phone 
location data across the 10 most populated US cities. By 
comparing the hourly visit patterns of two types of stores, 
we demonstrate that the calibrated T-Huff model is more 
accurate than the original Huff model in predicting the mar-
ket share of different types of business (e.g., supermarkets 
versus department stores) over time. We also identify the 
regional variability where people in large metropolitan areas 
with a well-developed transit system show less sensitivity to 
long-distance visits. In addition, several socioeconomic and 
demographic factors (e.g., median household income) that 
potentially affect people’s visit decisions are examined and 
summarized.
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1  | INTRODUC TION

“Location, location, and location!” Location information is a key component in business intelligence and imple-
mentation of crucial, revenue-generating marketing strategies, such as location-based advertisement and services 
(Fan, Lau, & Zhao, 2015; Gao & Mai, 2017; Huang, Gartner, Krisp, Raubal, & Van de Weghe, 2018; Negash & 
Gray, 2008). With the increasing use of social media, smart devices, and mobile apps, users share rich multimedia 
information about their locations and associated activities, such as working, shopping, or dining, in a granular 
spatio-temporal resolution with unprecedented breadth, depth, and scale. Such location-based profiles provide 
invaluable sources of information for various business analytics and recommendation systems.

While the original Huff model (Huff, 1964) and its subsequent extensions have been used to understand a 
brand’s trade area, they are largely static. The availability of granular spatio-temporal mobility data has permitted 
the examination of the dynamics of customer mobility patterns at the individual level. For instance, several studies 
have examined the effects of sampling locations on calibrating the original Huff model to delineate trade areas using 
mobile phone data (Lu, Shaw, Fang, Zhang, & Yin, 2017) and social media data (Wang, Jiang, Liu, Ye, & Wang, 2016). 
In addition, at the aggregated level, there are shifts in the dynamic of stores’ trade areas, driven by various potential 
factors such as seasonality, marketing strategies, geo-socioeconomic changes surrounding the stores, and individu-
als’ dynamic behaviors. Predicting where or which type of location an individual would visit is also about when the 
individual is regarding the temporal dynamics of human mobility patterns (Gao, 2015; McKenzie, Janowicz, Gao, 
Yang, & Hu, 2015; Tu et al., 2017; Yang et al., 2016; Ye, Janowicz, Mülligann, & Lee, 2011; Yuan & Raubal, 2012), 
social relations (Liu, Yin, Lu, & Mou, 2020; McKenzie, Janowicz, Gao, & Gong, 2015), and semantic configuration and 
regional variability for temporal signatures of points of interest (POIs) (Shi, Chi, Liu, & Liu, 2015; Xu, Belyi, Bojic, & 
Ratti, 2017). Customers may exhibit different temporal visit preferences to different types of stores, resulting in dy-
namically shifting trade areas for these stores over different time periods. For example, grocery stores usually have 
more daily visits on weekends than on weekdays. The traditional Huff model can only provide one static estimate 
for each store, which ignores the potential temporal information. However, the temporal dynamics of POI visits 
in cities can be more accurately captured by using large-scale mobile phone location tracking data, facilitating the 
calibration of a “dynamic” Huff model to better represent dynamic trade areas at a more granular temporal scale.

In this research, therefore, we present a time-aware dynamic Huff model (T-Huff) for business location analy-
sis by augmenting the original Huff Model with a dynamic element to capture the time-varying probability of store 
visitation at the individual customer level. At the aggregated level, the resulting dynamic market share model is 
calibrated by large-scale store visits based on mobile phone location tracking data. We aim to answer the follow-
ing two research questions:

1.	 How accurate is the dynamic Huff model in predicting the market share of different types of business 
(e.g., supermarkets and department stores) over time?

2.	 How do spatial and socioeconomic factors determine the customer choice of particular store visits? Is there any 
regional variability for store visits in different cities?

The contribution of this research is threefold. First, we propose a dynamic Huff model to estimate hourly 
store visits from a particular neighborhood over time. Second, by using large-scale individual-level POI visit data 
across the 10 most populated US cities, we calibrate the T-Huff model parameters using the technique of particle 
swarm optimization (PSO) and find that the T-Huff model outperforms the static Huff model when estimating 
store temporal visits, although regional variability persists. Third, we demonstrate that various factors, such as 
distance, neighborhood total population, and socioeconomic variables (e.g., median household income, race, and 
ethnic diversity), entail distinct influence on store visits across categories and brands.

The remainder of this article is organized as follows. We review the relevant literature in Section 2 before 
introducing the formulations of the original and dynamic Huff models in Section 3. Then we present the data and 



     |  683LIANG et al.

study area under analysis in Section 4 and report the key empirical findings of the proposed model for three top 
chain-store brands across 10 US cities and discuss the broader implications in Section 5. Finally, we draw conclu-
sions and share our vision for future work in Section 6.

2  | LITER ATURE RE VIE W

There is a rich tradition in the marketing literature of studying store traffic and its driving factors. For example, 
Hutchinson (1940) used surveys to measure the amount of traffic passing by a Morgantown, WV shoe store and 
identified 13 factors which could impact sales, including seasonal variations, weather, general business conditions, 
purchasing power, special location factors, price levels, and competition. Bennett (1944) studied the out-of-town 
buying habits in a Maryland town located between Washington, DC and Baltimore, and found that in many cate-
gories purchases were made out-of-town in Baltimore because the survey respondents preferred the proximity of 
the stores in Baltimore as compared with their town in terms of shopping convenience. To understand how open-
ing a branch store will impact the parent store’s performance, Blankertz (1951) conducted a study revealing that 
branch and parent stores did not attract separate customer groups; rather, both drew trade from substantially the 
same group. Nearby customers in the “buffer” area between branch and parent traveled most frequently inward 
to the downtown shopping center despite the greater travel and time involved.

Huff (1964) defined a trade area as “a geographically delineated region, containing potential customers for 
whom there exists a probability greater than zero of their purchasing a given class of products or services offered 
for sale by a particular firm or by a particular agglomeration of firms.” Stanley and Sewall (1976) further suggested 
a series of modifications to the Huff model to evaluate the potential of prospective retail store locations.

This literature further evolved into more sophisticated location analysis, for instance, to advise store site 
selections. Rosenbloom (1976) reported on the formation and application of a retail strategy matrix that incorpo-
rated three relevant factors: a store’s geography, consumer demand, and the area’s heterogeneity for identifying 
and selecting new trade areas for retail stores. He also suggested methods that can be used to adjust the mer-
chandise of existing retail outlets to their trade locations. Ghosh and Craig (1983) presented a procedure to help 
retailers formulate a strategic location plan in a dynamic environment, which involved a model for assessing site 
desirability, a criterion for selecting among alternative sites, and a heuristic to facilitate the computational proce-
dure. More broadly, Grether (1983) called for more regional-spatial analysis in marketing research.

The development in this area has also propelled methodological innovation. For example, Fotheringham (1988) 
proposed a competing destinations model to study hierarchical spatial choices of stores and showed its supe-
rior performance as compared to other choice models, such as the nested logit model. Donthu and Rust (1989) 
used kernel density estimation to estimate the spatial distribution of customers in a market and showed how a 
density-based product positioning methodology may be applied to site selection for a new or relocated store or 
distribution center. Rust and Donthu (1995) accounted for geographically localized misspecification errors in store 
choice models with omitted variables that can be correlated with geographic location. They showed that spatial 
non-stationarity of the model parameters may also be expressed as an instance of omitted variables and therefore 
be addressed using their method.

The more recent literature in this domain has focused on location-based competition among stores or chains. 
A positive association between the number of larger stores and the number and size of smaller stores is reported, 
implying a mutually beneficial relationship among different types of retailers rather than an overwhelming com-
petitive advantage for larger stores (Miller, Reardon, & McCorkle, 1999). Vitorino (2012) used a strategic model 
of entry to study the store configurations of all US regional shopping centers and to quantify the magnitude of 
inter-store spillovers. The author showed that, consistent with the agglomeration and clustering theories, firms 
may have incentives to co-locate despite potential business stealing effects; and that the firms’ negative and posi-
tive strategic effects help predict both how many firms can operate profitably in a given market and the firm-type 
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configurations. In the context of retail outlet locations in the fast food industry, both McDonald’s and Burger King 
were shown to be better off avoiding close location competition if the market area is large enough; but in small 
market areas, McDonald’s would prefer to be located together with Burger King; in contrast, Burger King’s profits 
always increased with greater differentiation (Thomadsen, 2007). Regarding customers’ location awareness, Jiang 
et al. (2019) calibrated the Huff model with social media data and found that customers far from the existing retail 
agglomerations might be more sensitive to the distance.

Furthermore, studying price competition among (gasoline) retailers conditional on geographic locations, Chan, 
Padmanabhan, and Seetharaman (2007) found that consumers were willing to travel up to a mile for a saving of $0.03 
per liter. Talukdar (2008) found price differentials between wealthy and poor neighborhoods to be 10–15% for every-
day items. Even after controlling for the store size and competition, prices were found to be 2–5% higher in poor areas, 
which was explained by access to cars that acted as a key determinant of consumers’ price search patterns.

In sum, the original Huff model and its subsequent extensions have been widely used to model a brand or a 
store’s trade area and to predict customer visit probability, but they are largely static. Recent research by McKenzie 
and Adams (2017) demonstrated that thematic regions can be represented dynamically using place-type specific 
temporal patterns. Customers have different temporal visit preferences for different types of stores. A dynamic 
model is thus required to better capture the spatio-temporal characteristics of customers’ store visit behaviors.

3  | METHODS

3.1 | The original Huff model

The Huff model was introduced in order to provide a probabilistic analysis of shopping center trade area, that is, 
the region containing potential customers (Huff, 1963, 1964). The identification of a trade area for a store is cru-
cial as the business owner can estimate how many potential customers will visit the store within the region, and 
therefore can predict the market sales of the store among competing businesses.

The Huff model, which is essentially a gravity-based spatial interaction model, proposes that there are two 
major factors affecting the number of potential customers of a store. The first is the merchandise offerings, 
namely, the ability of the store to fulfill the customers’ needs (Huff, 1963). This is also called the attractiveness 
of the store. If a store has a large number of items, it is able to attract more customers even from distant regions. 
The second factor is the travel time or travel distance to the store. As the cost of travel to a store increases, the 
willingness to visit the store could be significantly reduced (Huff, 1963).

Based on those two factors, the probability of one customer traveling to a given store can be expressed as 

where Pij is the probability of customer i visiting store j; Sj is the attractiveness of store j; Dij is the physical distance 
between customer i and store j; and n indicates there are n stores that customer i can visit. The parameters α and β are 
used to reflect the effects of attractiveness and distance on the model.

3.2 | A time-aware dynamic Huff model

Given that people visit different places of interest at different times (McKenzie, Janowicz, Gao, & Gong, 2015; 
McKenzie, Janowicz, Gao, Yang, & Hu, 2015), we propose the following time-aware dynamic Huff model: 
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where Pijt is the probability of customer i visiting store j within a temporal window t (e.g., a hour or a day of week); Sj is 
the attractiveness of store j; Dij is the physical distance between customer i and store j; Pjt is the temporal visit proba-
bility for one store j within a temporal window t. Vjt is the total visit count for one store j within a particular hour t (in 
this research), and we sum the counts over one week as 

∑m

t=1
Vjt (i.e., m = 168 hr). As shown in Figure 1, even for the 

same chain-store brand (e.g., Whole Foods), the five branch stores in Los Angeles have distinct temporal visit patterns. 
The parameters α and β are used to reflect the effects of attractiveness and distance on the model.

We also construct another advanced time-aware dynamic Huff (A-Huff) model which estimates the customer 
visiting probability at each time-stamp by comparing all possible visits the customer may make at the same time-
stamp, which considers the business competition from integrated spatial and temporal aspects. The A-Huff model 
shares the same parameters with the T-Huff model in Equation (2) but with a different formulation as follows: 

 

In addition to the predicted visiting probability Pijt using the A-Huff model, the actual visiting probability P′
ijt

 for 
this model is calculated using the formula:

where Vij is the observed pairwise visits from customer i in a specific neighborhood to store j.

3.3 | Parameter calibration using PSO

Before we use the original Huff and the time-aware dynamic models (T-Huff and A-Huff) to make market share 
predictions, we need to calibrate the models by adjusting their parameters to make sure that the results approxi-
mate or reflect reality. Previously the two parameters (α and β) were often decided arbitrarily, which can lead to 
inaccurate or even erroneous results (Huff, 2003). A few methods have been used to optimize α and β. Many 
researchers have used ordinary least squares (OLS) method to estimate the parameters by transforming the Huff 
model into a logarithm-centering format and estimating the parameters using linear regression (Huff & McCallum, 
2008; Nakanishi & Cooper, 1974). Geographically weighted regression was also used to calibrate the Huff model, 
estimating the parameters for every point within the study area (Súarez-Vega, Gutíerrez-Acuña, & Rodríguez-
Díaz, 2015). Recent research has applied optimization algorithms such as the PSO technique to find an optimal or 
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near-optimal solution of the parameters that fit the observation data more accurately (Suhara, Bahrami, Bozkaya, 
& Pentland, 2019).

In this research, to calibrate both the Huff and the T-Huff model parameters we used the PSO technique, 
which was introduced by Eberhart and Kennedy (1995), inspired by the foraging behavior of flocks of birds. As a 
widely used optimization method, PSO makes few or no assumptions (e.g., linearity) about the problem being op-
timized, so it is appropriate for our problem. Also, we are able to design the objective function based on different 
needs. In our case, we selected the correlation between the predicted store visit probability and the actual visit 
probability as the objective function. Compared with the traditional OLS approach, the PSO technique allows 
more freedom at the optimization design stage and is efficient at finding solutions from a very large candidate 
solution space, which means that we can try a large number of α and β values and observe the trend of conver-
gence through the optimization process.

To initialize the optimization, a few particles are generated, and each particle represents a potential (α,β) pair. 
The particles will change their positions (the values of α and β) based on their previous best location and the global 
best position (Kennedy, 2010; Xiao, Wang, Liu, & Wang, 2013). The particles should then gradually cluster in the 
area of the optimal solution and return an optimized result. Here the performance of every particle is determined 
by a pre-defined objective function. The goal of the optimization process is to find the best combination of the 
parameters that maximize the objective function. The objective function in this study is the Pearson correlation 
between the estimated probability and the actual probability of pairwise visits from a particular neighborhood to 
a store. We calibrate the parameters for each specific brand of stores using large-scale anonymous mobile phone 
location tracking data (in the following section) in order to find the models that can best reflect the particular store 
visit patterns.

4  | DATA AND STUDY ARE A

We collected over 3.6 million POIs with visit patterns in the U.S. from the SafeGraph business venue database 
(https://www.safeg​raph.com). The POIs are first classified based on the North American Industry Classification 
System (NAICS) six-digit sector codes. Among them, we selected two categories of interest: (1) supermarkets 
and grocery stores (445110); and (2) department stores (452210). There are over 20,000 POIs in total for the 
two selected categories in the 10 most populated US cities (New York, Los Angeles, Chicago, Houston, Phoenix, 
Philadelphia, San Antonio, San Diego, Dallas, and San Jose). In addition to the spatial distribution of the POIs, 
we also retrieved the fine-resolution visit patterns of all those POIs from the aforementioned SafeGraph data-
base which covers dynamic human mobility patterns of millions of anonymous smartphone users. The SafeGraph 
data sampling correlated highly with the US Census populations (https://www.safeg​raph.com/blog/what-about​
-bias-in-the-safeg​raph-dataset). These mobile location data consist of “pings” identifying the coordinates of a 
smartphone at a moment in time. To enhance privacy, SafeGraph excludes census block group (CBG) information 
if fewer than five devices visited a place in a month from a given CBG. For each POI, the records of aggregated 
visitor patterns illustrate the number of unique visitors and the number of total visits to each venue during the 
specified time window (October to December 2018 in our data set), which could reflect the attractiveness of each 
venue. For example, Figure 2 shows the spatial distributions of CBGs that have visit flows to the five Whole Foods 
Markets and the 14 Ross Stores in Los Angeles. Furthermore, we computed the average hourly visit probability for 
each POI over 168 hr (24 hr × 7 days of a week) to show the dynamic visit patterns. For future studies, the hourly 
visit frequency can also be estimated from other resources, such as the shopper’s loyalty card data or the popular 
times collected by Google Maps or Yelp for business locations. The corresponding demographic and socioeco-
nomic attribute data of all CBGs were collected from the American Community Survey.

https://www.safegraph.com
https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
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5  | RESULTS

5.1 | Visit distance distributions

We first analyzed the distribution of the median distance that the visitors traveled from homes to all the stores 
given a specific NAICS category. The probability density distributions of visit distances across cities showed a 
variety of heavy-tailed distributions. The mean of the median distance (great circle distance) from the visitors’ 

F I G U R E  2 Spatial distributions of CBGs that have visit flows to: (a) five Whole Foods Markets; and (b) 14 
Ross Stores in Los Angeles (note: the number of stores for each brand only reflects the data we have; the geo-
visualization is created using the kepler.gl tool)
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homes to supermarkets and grocery stores (NAICS: 445110) across these cities is about 7.8 km. However, the 
median distance distribution does vary over different cities (as shown in Figure 3). Most people in Philadelphia, 
San Jose, Chicago, and Los Angeles traveled relatively shorter distances (with median 3.8, 4.5, 4.6, and 4.7 km, 
respectively) than people in other big metropolitan areas in the U.S. such as Dallas and New York (with the largest 
medians 8.4 and 7.8 km, respectively). As expected, the mean of the median distance from the visitors’ homes to 
department stores (NAICS: 452210) across these cities is about 10.3 km and larger than that to supermarkets and 
grocery stores.

In addition, the distance decay phenomenon exists in the visit median distance density distribution across all 
cities (as shown in the log–log plots in Figure 3). The visit probability decreased significantly after about 10 km, 
which offers insights into location business decision-making. And different cities have varying decay exponents 
β (Gao, Liu, Wang, & Ma, 2013), which may link to their urban morphology (e.g., size and shape) (Kang, Ma, Tong, 
& Liu, 2012). The distance decay slopes for supermarkets and grocery stores are steeper than that of department 
stores in all cities, which demonstrates that there is much less long-distance travel for supermarkets and grocery 
store visits than for department stores.

5.2 | Huff model calibration for top brands

5.2.1 | Parameter calibration and comparison

Given the variability of store visits for chain-store brands and local brands in our exploratory analysis, we did not 
calibrate the models for all brands in each POI category. Instead, we only designed comparative experiments for top 
three chain-store brands with the most stores across the 10 most populated cities in our data set. Take the Whole 
Foods Markets in Los Angeles as an example: the attractiveness of each Whole Foods store is estimated using the 
total visit count over the 3 months in the Safegraph data set. Figure 2a shows the flow map from each CBG to the 
five Whole Foods Markets in the Los Angeles area. It is clear that people in each CBG have a particular store visit 
preference, and the store visited is usually within a certain spatial proximity to that CBG. The Whole Foods Markets 
are chain stores that usually have similar product layouts and sizes. Therefore, the major factor affecting the visits 
of customers is usually the distance from the customer to the store. There are also some other factors. For example, 
for the two Whole Foods Markets on the left in Figure 2a, we can see a clear delineation of visiting CBGs to the two 
stores separated by the highway. Even though these two Whole Foods Markets are located closely to each other, 
they have very distinct visitors due to the infrastructure barrier in that area. Other demographic and socioeconomic 
factors influencing store visits will be further discussed in Section 5.3.

The model parameter calibration is conducted for each brand of stores in order to find the best (α, β) pair 
reflecting the effects of attractiveness and distance on the particular brand using observed store visit data. A 
set of values for α and β is first determined in order to identify a smaller data range for optimization. The results 
of the correlation for the selected α and β for the original Huff model are shown in Table 1. In general, the model 
produces very good results, with all Pearson’s correlation coefficients >0.6. A higher correlation is obtained with α 
between 0 and 1 and β between 0 to 2 approximately. Therefore, the bounds for α and β in the PSO optimization 
are set to between 0 and 2. The optimization is repeated 10 times with 10 particles and is implemented using the 
Pyswarms open-source library in Python. The highest correlation obtained from the optimization is 0.864 when 
α= 0.717 and β= 0.805. The α and β values are then fed into the Huff model to estimate the store visit probability.

Also, Table 2 shows the Pearson correlation results with the same selected α, β values using the T-Huff model. 
In general, the T-Huff model exhibits higher correlations for all selected α and β than the original Huff model, 
which reflects that the T-Huff model might provide a more accurate estimation of the dynamic visit probability 
in most cases. The highest correlation obtained from the optimization procedure is 0.890 with α = 0.787 and β = 
0.765.
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In addition to the original static Huff model and the dynamic Huff models (T-Huff and A-Huff), another model 
called the M-Huff model is constructed for comparison. The synthetic M-Huff model assumes that the hourly 
visit probability for one CBG to one store is distributed evenly over the 168 hr in one week (using the mean visit 
probability) and therefore the model assigns the visit probability equally to each time window (every hour in this 
study). The correlation is then calculated between this equally distributed visit probability and the actual hourly 
visit probability from the SafeGraph data set. Table 3 shows the correlation results for selected α, β from the 
M-Huff model. The highest correlation from the optimization is 0.662 with α = 0.723 and β = 0.806. It is clear that 
the correlations drop dramatically compared with the results of the original Huff and T-Huff models, which means 
that the assumed equally distributed hourly visit probability cannot serve as a good representation of the actual 
dynamic visit patterns. In other words, the store visit patterns do have temporal variation and it is necessary to 
consider such variation in market-share models.

TA B L E  1 Model parameter calibration results with Pearson’s correlation for Whole Foods using the original 
Huff model

α

β

0.1 0.5 1 2 5

0.1 0.807 0.844 0.845 0.817 0.769

0.5 0.808 0.854 0.858 0.825 0.774

1 0.791 0.846 0.862 0.828 0.778

2 0.747 0.797 0.834 0.822 0.776

5 0.683 0.709 0.740 0.773 0.752

TA B L E  2 Model parameter calibration results with Pearson’s correlation for Whole Foods using the T-Huff 
model

α

β

0.1 0.5 1 2 5

0.1 0.847 0.874 0.873 0.844 0.791

0.5 0.848 0.882 0.884 0.852 0.796

1 0.835 0.877 0.888 0.855 0.801

2 0.789 0.832 0.861 0.847 0.799

5 0.694 0.716 0.744 0.775 0.761

TA B L E  3 Model parameter calibration results with Pearson’s correlation for Whole Foods using the M-Huff 
model

α

β

0.1 0.5 1 2 5

0.1 0.618 0.646 0.647 0.626 0.589

0.5 0.619 0.654 0.657 0.632 0.593

1 0.606 0.648 0.660 0.634 0.596

2 0.572 0.610 0.639 0.629 0.594

5 0.523 0.543 0.566 0.592 0.576
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5.2.2 | Visit spatial pattern comparison

Figure 4 shows two maps of the estimated market share from the original Huff model and the actual market share 
generated from the SafeGraph POI visit dataset. Here the market share means the probability that people from 

F I G U R E  4  (a) Estimated market share of five Whole Foods Market stores in Los Angeles using the original 
Huff model; and (b) Actual market share derived from the SafeGraph visit database
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a CBG will visit that particular store. For every CBG, it has a corresponding visit probability for each store, and 
the color hue of each CBG represents the store that people from this CBG would visit. The saturation of the color 
indicates the magnitude of the probability. By comparing the two maps, we find that the spatial distributions of 
trade areas are very similar (with high correlation of store visit probabilities). This means that the estimated result 
from the original Huff model can project the total visit probability with high accuracy. The result also supports our 
earlier statement that the large portion of visitors of each Whole Foods Market are usually within close proximity 
of that store. People may be reluctant to go to another Whole Foods Market that is far away from them. This is a 
characteristic of the chain stores: that the location of a store is very important to the performance of that store. 
As the chain stores may not be very different from each other with regard ti their products, the spatial proximity 
between the store and the customer becomes a primary factor affecting people’s choice.

Figure 5 shows the histograms of hourly visit probability on Sunday 3:00–3:59 p.m. and Monday 11:00–11:59 
a.m. Figure 6 maps the difference between the estimated and the actual market share of the Five Whole Foods 
for two different time windows obtained from the dynamic Huff model. Here we pick two different hours (Sunday 
3:00–3:59 p.m. and Monday 11:00–11:59 a.m.) to compare how the POI visit probability may differ at different 
times of day and on different days of the week (McKenzie, Janowicz, Gao, Yang, et al., 2015). The data classifica-
tion intervals for the visit probability mapping are determined by geometrical intervals as the probability distribu-
tions for all CBGs to all Whole Foods stores in the two hours both follow a right-skewed distribution.

From the T-Huff model, as the visit probability is assigned to a specific hourly window, it has a much smaller 
range compared with that of the original Huff model. Therefore, the ranges of the probability differences are also 
smaller, usually between −0.003 and 0.003 from the maps in Figure 6. Also, we can see that most of the predic-
tion errors are between −0.001 and 0.001. The prediction for Monday 11a.m. has a better accuracy than that for 
Sunday 3 p.m. as we can see that there are fewer dark red or dark green areas on the map for Monday 11a.m. One 
reason could be that there is larger variability of visits on Sunday 3 p.m.

5.2.3 | Brand comparison and regional variability

The same process of model parameter calibration using PSO for three brands (Whole Foods, Trader Joe’s and 
Ross stores) is conducted for the 10 U.S. cities. Three types of comparisons are examined: first, the performance 
of the four Huff models; second, how the models perform for the three brands; and third, discovering whether 
there exists regional variability among the same type of stores across different cities. Table 4 shows the number 
of stores for the three brands in each city. Table 5 shows the highest correlation coefficients from the PSO for 
the four Huff models and three brands in the 10 cities. Tables 6 and 7 show the corresponding α and β values for 
each optimal solution.

F I G U R E  5 Histograms of visit probability on: (a) Sunday 3:00–3:59 p.m.; and (b) Monday 11:00–11:59 a.m.
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By looking at each row, we can compare the performance of four models. The optimal correlations are gener-
ally high for the original Huff model, the T-Huff model and the A-Huff model across all stores and cities. But the 
correlation for the M-Huff model is always much lower than those of the other three models, which indicates that 

F I G U R E  6 Maps of the visit probability changes between the estimated market share using the T-Huff model 
and the actual market share derived from the SafeGraph visit database on: (a) Sunday 3:00–3:59 p.m.; and (b) 
Monday 11:00–11:59 a.m.
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the temporal variation cannot be ignored or simply considered as equally distributed. The T-Huff and A-Huff mod-
els have slightly higher correlations than the traditional Huff model, which may show that the temporal variation 
is important and can help improve the estimation accuracy. The result for the T-Huff model is the highest among 
the four models for each brand and city in most cases, which shows that adding the temporal visiting information 
in this model yields the best performance in our study. By comparing the parameters in Tables 6 and 7, the optimal 
α and β remain similar for each brand in each city among four models. This indicates that for each particular type 
of POI in each city, the optimization process is able to find consistent parameters among four models that reflect 
the impacts of attractiveness and distance specifically for each brand in that city.

We also compare the results row by row to detect any changes over different cities. The parameter changes in 
Tables 6 and 7 reflect different local patterns. From the table we observe that even for the same brand, the models 
produce very different parameters across cities, which indicates that people’s visit behaviors are affected by re-
gional differences (McKenzie, Janowicz, Gao, et al., 2015), which may link to the size and shape of a city, POI co-lo-
cation patterns, and urban spatial structure (Gao, Janowicz, & Couclelis, 2017; Kang et al., 2012; Yue et al., 2017).

For example, β is the exponent of distance in the Huff models and reveals the impact of distance decay on visit 
activities; we can use β to compare different spatial interaction patterns (Liu, Sui, Kang, & Gao, 2014). In general, a 
larger β means the activities are more affected by the change of distances. Usually, with more spatial interactions 
in a city, we can expect a smaller β as people are less spatially separated with the support of modern multi-mode 
transportation (Liu et al., 2014; McKenzie, 2014; Su, Li, Xu, Cai, & Weng, 2017). Comparing the β changes over 
different cities, it is clear that New York has a very small β for both Whole Foods and Trader Joe’s compared with 
other cities. This indicates the POI visit patterns for people in New York are less influenced by distance. This is 
reasonable as the well-developed transportation makes people in such a large metropolitan area more connected 
to each other and long distance will have a less negative impact in terms of preventing people from traveling to 
other places. We also use the average β for each city to reflect the effects of distance to cities. The top cities with 
smallest β in Table 6 are New York, San Diego, Philadelphia, and Chicago. Except for San Diego which has a very 
small β for Whole Foods (there is only one Whole Foods Market in San Diego in our data set), the other three cities 
are all cities with well-developed public transit systems. The mixed mode of private driving and public transporta-
tion may make distance less sensitive for traveling and leads to small β for those cities.

Next, we compare the parameter differences over different types of stores and find some distinct patterns be-
tween the supermarkets and grocery stores on the one hand and the department stores on the other hand. Here 
the supermarkets and grocery stores are represented by two brands, Whole Foods and Trader Joe’s, and the de-
partment stores are represented by, Ross Stores. Of the nine cities that have Ross Stores, six have smaller average 

TA B L E  4 The number of stores for the three brands in 10 cities

Whole Foods Trader Joe’s Ross stores

Los Angeles 5 11 14

Houston 7 3 24

Chicago 10 5 12

Philadelphia 2 1 8

New York 8 5 0

San Antonio 1 2 15

Dallas 4 4 7

San Diego 1 6 7

San Jose 2 4 6

Phoenix 3 1 15

Note: The number only reflects the data we have.
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β for Ross Stores than for Whole Foods and Trader Joe’s. As we showed in Section 5.1, the department stores 
have a smoother distance decay slope than the supermarkets and grocery stores, which means that distance has 
a greater effect on visits to supermarket and grocery stores. From our result, a majority of the cities showed the 
same trend that distance plays a more important role when people visit supermarkets and grocery stores. This 
corresponds to the daily experience as customers tend to go to the closest supermarkets or grocery stores as the 
goods in those types of stores are generally similar. Therefore, distance becomes the major factor to consider 
when deciding which store to visit, and this is also validated by our data-driven analytical results.

5.3 | Location business insights

In addition to the store attraction and distance, we conduct a multiple linear regression (MLR) analysis to discover 
potential factors explaining why people from certain neighborhoods often go to a particular POI with regard to the 
characteristics of that neighborhood and the POI attraction. Specifically, we take factors from the demographic 
and socioeconomic aspects into consideration to detect whether people from a certain socioeconomic neighbor-
hood will have common mobility patterns in terms of the places they often visit. The dependent variable is the 
pairwise visit count from a CBG community to a store, and the independent variables with low-multicollinearity 
are store total visit counts, distance between a store and a customer’s most frequently visited home (work) CBG, 
the total population of a CBG, the median age and the median household income of people living in that CBG, and 
the Shannon entropy based on the natural logarithm to measure the racial and ethnic diversity of each CBG com-
munity (Shannon, 1948). A higher entropy value means a higher racial and ethnic diversity, while a lower entropy 
value indicates a larger proportion of a dominant racial or ethnic group in a CBG (Prestby, App, Kang, & Gao, 2020). 
Table 8 shows the MLR coefficients of those variables estimated using the OLS approach and their statistical 
significance for explaining the overall variability of the visit probability to three brands’ stores (i.e., Whole Foods, 
Trader Joe’s and Ross) across the 10 cities. The experiments demonstrate that store attractiveness measured by 
the total visit counts and median household income are significant positive factors that drive visits from CBGs to 
the stores of all three brands. Distance plays a significant negative role for both Whole Foods and Ross Stores but 
not for Trader Joe’s. Race and ethnic diversity (entropy measure) have a significant positive influence for Ross and 

TA B L E  8 Regression coefficients of influential variables for explaining the total visit variability for the three 
brands’ stores

Whole Foods Trader Joe’s Ross Stores

Coefficients Sig. Coefficients Sig. Coefficients Sig.

Intercept 3.399e+01 0.0016** 1.135e+00 0.9341 1.867e+01 1.73e−06***

Total visit counts 1.323e−03 0.0451* 4.112e−03 0.0007*** 3.980e−03 <2e−16***

Distance −9.218e−01 1.76e−07*** −1.436e−02 0.2943 −5.551e−01 <2e−16***

Total population 8.147e−04 0.0592**** 3.739e−03 7.31e−06*** 4.132e−03 <2e−16***

Median 
household 
income

1.431e−04 7.37e−07*** 1.411e−04 0.0001*** 4.369e−05 0.0423*

Median age −2.488e−01 0.1609 −2.579e−01 0.27144 −3.155e−01 0.0014**

Entropy −6.418e−01 0.8994 1.567e+01 0.0168* 7.337e+00 0.0002***

Significance level: ***p <0 .001; **p <0 .01; *p <0 .05; ****p<0.1. 
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Trader Joe’s store visits. The median age of people in CBGs seems not to play a significant role except for Ross 
Stores, where all factors are significant.

Furthermore, we investigate whether the customer visit patterns for the three brands and the performance 
of influential factors are different across these U.S. cities. Table 9 shows the R2 values for the three brands’ store 
visits in the MLR models. Overall the regression models perform better in supermarkets and grocery stores (the 
mean R2 value for Trader Joe’s is 0.279 and for Whole Foods is 0.235) than in department stores (the mean R2 
value for Ross Stores is 0.161). However, there exists large regional variability of the MLR model performance in 
explaining the store visit patterns. The standard deviation of R2 for Trader Joe’s (0.164) is the largest among the 
three brands. The regression model has a higher goodness of fit for the Trader Joe’s stores in Phoenix, San Diego, 
and New York (all with R2 > .4) but a very low R2 value in Dallas (0.07). Given the large size and socioeconomic 
complexity of these highly populated cities, there might exist other indicative features that we need to further 
investigate in the future.

6  | CONCLUSIONS AND FUTURE WORK

In this research we present a time-aware dynamic Huff model (T-Huff) that incorporates the hourly temporal 
variability of store visits to delineate the dynamic trade areas for different types of business POI. To calibrate the 
model parameters, we apply the PSO technique with hourly POI visit probability derived from a large-scale mobile 
phone location data set across the 10 most populated U.S. cities. To answer the two research questions that we 
posed at the beginning of this research:

1.	 The calibrated time-aware dynamic Huff model (T-Huff) is more accurate than the original static Huff 
model without temporal variation in predicting the market share of different types of business (e.g., 
supermarkets versus department stores) over time.

2.	 Spatial proximity, demographic and socioeconomic factors (e.g., median household income) have significant 
impacts on the customer choice of particular store visits. There exists regional variability for store visit patterns 
across different cities with varying calibrated Huff model parameters and different goodness-of fit-values in 

TA B L E  9 R2 for the regression models of three brands across the most populated US cities

City Whole Foods Trader Joe’s Ross stores

Los Angeles .265 .168 .242

Houston .096 .119 .101

Chicago 0.131 0.391 0.089

Philadelphia 0.289 0.187 0.101

New York 0.293 0.431 NA

San Antonio 0.381 0.202 0.126

Dallas 0.272 0.070 0.203

San Diego 0.240 0.436 0.224

San Jose 0.165 0.222 0.205

Phoenix 0.222 0.567 0.160

R2 mean 0.235 0.279 0.161

R2SD 0.085 0.164 0.059

Abbreviation: NA, no data available.
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MLR models. The performance variability of models may link to different spatial socioeconomic structure and 
transportation infrastructure in those large cities.

In sum, our time-aware dynamic Hull models and analytical workflow using location big data can be applied to 
other categories of business stores for location-based marketing and dynamic trade area analyses.

One limitation of our current analysis is the lack of street-network distance and centrality measures that may 
influence the spatial distribution of business stores (Porta et al., 2009). In addition, the travel time and traffic 
congestion contexts for certain routes in people’s minds may also impact their accessibility and decision-making 
(McKenzie, 2014; Stanley & Sewall, 1976; Su et al., 2017). We will consider street-network measures and traffic 
information in the modeling framework in future work.
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