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A B S T R A C T   

Digital footprints collected from social media platforms are often clustered using methods such as the density- 
based spatial clustering of applications with noise (DBSCAN) and its variants to identify daily travel activities 
(e.g., dwelling, working, entertainment, and eating). However, these clustering methods mostly only consider the 
spatial distribution of travel activity points while ignoring their geographic context, resulting in the aggregation 
of digital footprints representing different activity types into one cluster. In addition, existing works only focus 
on examining people’s travel activities at either the collective (i.e., macro) or individual (i.e., micro) level. To 
this end, this study utilizes geographic context information and develops a novel activity knowledge discovery 
framework to better detect frequent travel activities at both levels. First, we develop a multi-level spatial clus-
tering method to aggregate digital footprints of a group of users into collective clusters (i.e., activity zones) by 
inferring and integrating the underlying activities performed at each zone with OpenStreetMap (OSM) datasets 
that can inform geographic context of the activity zones. Next, we introduce a location-aware clustering method 
to detect activity zones and associate activity types at the individual level by aggregating individual footprints 
based on the collective results. As case studies, digital footprints from 49 selected Twitter users are analyzed to 
evaluate the proposed framework. The results reveal that: (1) The multi-level spatial clustering method can often 
detect significant collective activity zones; and (2) The location-aware clustering method can aggregate indi-
vidual digital footprints into activity zones more effectively compared with existing density-based spatial clus-
tering methods (e.g., DBSCAN).   

1. Introduction 

Examining people’s movement and activity patterns can benefit 
infrastructure construction and policymaking related to transportation, 
urban planning, disease control, and disaster management (Batty et al., 
2012; Cheng et al., 2011; González, Hidalgo and Barabási, 2008; Song 
et al., 2010; Zhao et al., 2016). It is also essential for studying a variety of 
social problems, such as social segregation (Huang & Wong, 2015; Xu 
et al., 2018). To explore these topics, individual travel data have been 
collected traditionally through surveys, which is tedious and expensive. 
Recently, the advancement of smart devices has allowed collecting 
travel data by passively capturing a vast amount of tracking records 
from cell phones, GPS devices, and social media platforms. Among them, 
social media messages often include GPS locations as geo-tags to 
represent where they are posted (Blanford et al., 2015) and are 
increasingly used due to several unique advantages (Huang and Wong 

2015; Yuan, Liu and Wei, 2017; Tu et al., 2017): (1) public availability, 
(2) capturing long-term trajectories, (3) a large number of participants, 
and (4) nearly real-time data availability. 

Digital footprints collected from social media platforms are typically 
recorded as sequences of locations with timestamps to represent indi-
vidual trajectories (Zheng, Zha and Chua, 2012). Using them to study 
human movement and patterns presents two major challenges: (1) 
Digital footprints record not only regular activities at sparse and irreg-
ular time intervals (Cao et al., 2014), but also random movements over 
space and time (González et al., 2008; Song et al., 2010). The captured 
individual travel patterns are thus not immediately visible and identi-
fiable (Cheng et al., 2011; Gao and Liu, 2014); and (2) Digital footprints 
do not carry semantic information that can describe people’s activities, 
such as the purpose of people’s visit to a location (e.g., going to work), 
and context of the location (e.g., office), which is paramount for inter-
preting these data (Alvares et al., 2007). 
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To address these challenges, an important research topic, which we 
define as activity knowledge discovery (AKD), emerges for human 
mobility analysis with digital footprints (Huang and Wong 2015; Com-
ito, Falcone and Talia, 2016; Chaniotakis et al., 2017). Specifically, AKD 
includes two tasks: (1) identifying travel trajectory clusters, also known 
as activity space or zones where people frequently visit, and (2) inferring 
the activity type (e.g., dwelling, working, and entertainment) performed 
at each zone. The former task can handle the sparseness and irregularity 
of digital footprints by aggregating them into clusters to represent reg-
ular daily activities. The latter offers semantic information of each 
footprint and travels between footprints, which improves the under-
standing of individual travel patterns and enables analyzing mobility 
patterns of groups with different socioeconomic status (Huang & Wong, 
2016). AKD is different from semantic trajectory knowledge discovery in 
previous works (Alvares et al., 2007; Chaniotakis et al., 2017; Comito 
et al., 2016; Tu et al., 2017), which focus on activity type inference of a 
set of locations, without optimizing the footprint aggregation process to 
enable the detection of most frequent activities. 

Currently, various clustering methods (Chen et al., 2011; Gao et al., 
2018; Linton et al., 2014; Zhao et al., 2017) are developed to identify 
activity zones and unveil the complexity of millions of individual foot-
prints. However, these methods require relatively dense and successive 
footprints to identify individual activities and thus are mostly applicable 
for traditional datasets or GPS trajectories extracted from cell phone 
logs. As such, these methods often fail to detect frequently visited lo-
cations from digital footprints (Huang, Cao, & Wang, 2014), which are 
sparser and contain more irregularities (Cao et al., 2014). In addition, 
these methods mostly consider the spatial distribution of points while 
ignoring their geographic context, resulting in the aggregation of digital 
footprints representing different activities (e.g., eating and education; 
Fig. 1b) into one cluster (Fig. 1c). 

To infer activity types, researchers leveraged multiple types of data, 
including movement patterns and behaviors (e.g., transitions among 
locations; Wu et al., 2014), temporal information (e.g., stay time at a 
location; Steiger, Resch and Zipf, 2015), geographic and environmental 
context (e.g., land use data, POIs; Huang and Wong, 2016; Jiang et al., 
2015), and textual information (e.g., content of posted messages or user 
profiles; Preoţiuc-Pietro and Cohn, 2013; Chaniotakis et al., 2017). For 
example, Huang and Wong (2016) inferred home area of social media 
users as the residential land use zone with the largest number of tran-
sitions, as well as workplace as the commercial zone with the largest 
number of transitions. Several other activities (e.g., entertainment, ed-
ucation) in a particular area of interest (AOI) were inferred through 
incorporating land use data and Google Place Services (Huang, Cao, & 
Wang, 2014). However, individual representative daily travel trajectory 
with detailed and accurate activity information was not yet produced. 
Furthermore, the land use data are typically published by a local 
authoritative organization and need to be collected and processed case- 
by-case for different regions. 

Finally, people’s travel activities are mostly detected at either the 
collective (i.e., macro) or individual (i.e., micro) level to investigate 
human mobility patterns (Comito et al., 2016). Collective activities are 
typically detected as travel hot-spots by aggregating trajectory datasets 
of a group of users (Wu et al., 2014; Yin et al., 2011; Zhang et al., 2014; 

Zhou and Zhang, 2016), while individual activities are delineated as 
movement behaviors of an individual over a given period of time (e.g., 
one day, one year) (Wu et al., 2014; Huang and Wong, 2015; Hasan and 
Ukkusuri, 2014). Although Comito et al. (2016) examined travel activity 
patterns at both levels, their application of density-based clustering for 
spatial aggregation and online check-ins as activity type labels can lead 
to inaccurate or absent detection of frequent activities. 

To this end, this paper integrates open source geographic data to 
inform geographic context and optimize the aggregation of digital 
footprints, and develops a two-step AKD framework to detect both col-
lective and individual frequent travel activities. Within this framework, 
collective activity zones are first derived through a multi-level spatial 
clustering method based on footprints of all users, which innovatively 
integrates semantic information of activity types inferred with Open-
StreetMap (OSM) datasets. Next, individual travel trajectories are 
aggregated using a location-aware clustering method based on the se-
mantic collective activity zones to generate a set of semantic individual 
frequent activity zones. Using geo-tagged tweets of 49 selected users in 
Madison, Wisconsin (U.S.), we tested the application of both clustering 
methods in identifying collective and individual activity zones. Finally, 
we evaluated the aggregation and activity type identification results of 
location-aware clustering by comparing with manually labeled results (i. 
e., ground truth), as well as outcomes generated by other methods (i.e., 
DBSCAN and M-DBSCAN). To sum up, the contributions of this work are 
highlighted in three areas: 

1. We propose a two-step framework to effectively detect both collec-
tive and individual activity zones and activity types. To our best 
knowledge, this work is the first to examine people’s frequent ac-
tivities at both levels. 

2. The activity zone detection methods, with multi-level spatial clus-
tering for the collective level, and location-aware clustering for the 
individual level, consider the geographic context and enable the 
accurate detection of travel activities from sparse digital footprints.  

3. With open source OSM datasets, we provide a detailed inference of 
activity types (ten in total; Table 3), contributing to the compre-
hensive understanding and analysis of human movement behaviors. 

2. Related work 

2.1. Spatial clustering methods for activity zone detection 

People’s representative travel activities are typically denoted as 
clusters that are generated from their travel trajectories using aggrega-
tion methods (Lu et al., 2011). To date, researchers have developed a 
variety of clustering algorithms for aggregating spatial data points with 
noise, including partitioning algorithms, hierarchical algorithms, 
density-based algorithms, grid-based algorithms (Maciąg, 2017), and so 
on. Among these methods, partitioning algorithms predefine the number 
of clusters and can only detect clusters of round shapes (Velmurugan and 
Santhanam, 2011). Hierarchical algorithms either gradually merge 
smaller clusters or divide larger clusters to reach a predefined number of 
clusters (Karypis, Han and Kumar, 1999). Grid-based algorithms first 
divide data space into cells and then merge certain cells based on 

Fig. 1. Spatial clustering without considering geographic context.  
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predefined conditions (Cai, Lee and Lee, 2016). Graph-based algorithms 
achieve automatic clustering based on Voronoi modelling and Delaunay 
Diagrams (Estivill-Castro and Lee, 2000). 

Compared with other spatial clustering methods except for the 
graph-based ones, density-based algorithms can detect arbitrary cluster 
shapes and need less predetermined input parameters that rely on 
domain knowledge (Ester et al., 1996). Particularly, DBSCAN can effi-
ciently aggregate a large set of sparse digital footprints (Kang et al., 
2010; Zheng et al., 2012; Huang, Cao, & Wang, 2014; Huang and Li, 
2018), and thus becomes widely used in aggregating footprint trajec-
tories for activity zone detection (Marques, 2014; Huang and Wong, 
2015; Chaniotakis et al., 2017). Although graph-based algorithms 
(Estivill-Castro and Lee, 2000) and grid-based algorithms (Cao et al., 
2014) can produce spatial clusters of arbitrary shapes and varied den-
sities, they are more complicated while less efficient to deal with noise 
when processing sparse dataset. This study therefore discusses the 
optimization of spatial clustering for activity detection based on 
DBSCAN. 

DBSCAN clustering results vary with different eps (neighborhood 
radius) and minPts (the minimum number of points required to form a 
dense region) as input parameters (Bäcklund, Hedblom and Neijman, 
2011). One single eps often fails to detect clusters of different densities 
(Gong et al., 2015; Liu, Zhou and Wu, 2007). Several modified algo-
rithms based on DBSCAN thus have been designed to overcome this 
limitation, such as VDBSCAN (Liu et al., 2007), HDBSCAN (Campello 
et al., 2015), M-DBSCAN (Liu, Huang, & Gao, 2019), and OPTICS 
(Ankerst et al., 1999). These methods can detect clusters of varying 
densities based on the spatial distribution of digital footprints. Hierar-
chical algorithms can also detect spatial clusters with different densities, 
while the criteria to merge or split clusters needs to be explicit (Karypis 
et al., 1999). 

However, clustering digital footprints for activity zone detection not 
only depends on their spatial distribution (Fig. 1). For example, a large 
spatial cluster should be collapsed into smaller ones when they are 
geographically close to each other but represent diverse activities; 
Spatially adjacent digital footprints surrounding a dining hall and an 
academic building should be clustered as an eating zone and an edu-
cation zone respectively (Fig. 1b), instead of being considered as a 
uniform activity zone (Fig. 1c). Therefore, our proposed framework 
implements the aggregation of activity footprints with a similar idea as 
the hierarchical clustering and uses activity type as the criteria to merge 
adjacent clusters (i.e., clusters of the same activity type are merged). 

2.2. Inference of travel semantics 

Individual travel trajectories denote a series of places people visit 
along a timeline. These places (e.g., home, workspace, and park) reflect 
people’s corresponding activities (e.g., dwelling, work, and entertain-
ment), which are discussed as semantic knowledge and could be implicit 
under raw digital footprints (Cai et al., 2016; Yan et al., 2013). Semantic 
inference methods can be differentiated by the source and representa-
tion of semantic knowledge. A typical approach is to represent travel 
semantics with manually defined activities using the geographic co-
ordinates and content of user-generated place labels, such as Foursquare 
labels (Hasan and Ukkusuri, 2014). In these methods, boundaries of 
activities (i.e., activity zone) are not defined while could be useful 
(Chaniotakis et al., 2017). Another approach is to detect activity zone (e. 
g., location or region; Huang, Cao, & Wang, 2014) at first and then to 
associate an activity zone to an activity type using predictive models 
which are calibrated with digital footprints’ metadata (e.g., content, 
timestamp; Yang et al., 2014, Steiger et al., 2015, Aurelio Beber et al., 
2016). 

Additionally, the underlying geographic context of digital footprints 
is directly applied to improve activity detection accuracy. For example, 
Huang, Cao, & Wang (2014) identified the activity type of activity zones 
based on a regional land use maps and Google Places application 

programming interface (API), which returns information about a place 
given the place location. Du et al. (2016) imposed geographic back-
ground constraints on density-based clustering to yield more relevant 
clustering results, such as separating a cluster which spans over a river 
into two clusters. Alternatively, some studies aggregate geographic 
context data into semantic types and then label trajectory segments with 
these types. For example, Cai et al. (2016) identified semantic clusters 
representing people’s activities by aggregating outside POIs which 
indicate geographic contexts. Semantics of individual trajectories is thus 
detected by searching their spatially overlapped semantic clusters. Jiang 
et al. (2015) estimated land use types at the census block level by 
classifying POI types with a machine learning model and identified local 
individual activities based on the land use distribution. 

2.3. Activity identification using digital footprints and geographic data 

Using user-generated place labels for activity identification is insuf-
ficient simply because they are always not available and often miss 
frequent activities as people usually check in at limited types of locations 
(Hasan and Ukkusuri, 2014). Semantic metadata attached to digital 
footprints are usually leveraged via topic modelling (Steiger et al., 
2015), which generate semantic clusters based on topic hotspots. 
However, this approach was unable to establish a complete activity 
classification mechanism for daily activity identification. 

While incorporating underlying geographic context for activity 
detection (Huang, Cao, & Wang, 2014; Du et al., 2016), officially pub-
lished datasets are often difficult and time-consuming to acquire. Offi-
cially published land use data are mostly defined for a small area (e.g., 
city-level), and researchers need to search for specific data based on 
their study areas. Moreover, detailed land use data for statewide or 
citywide regions are produced in different standards, and thus create 
various land use type subdivisions. Meanwhile, commercial geographic 
services (e.g., Google Places API), require API keys to be generated 
before people can use these interfaces, and allow limited number of free- 
charged requests within a period (Huang, Cao, & Wang, 2014). There-
fore, open source data are increasingly leveraged (Estima and Painho, 
2013; Fonte et al., 2015). For example, Cai et al. (2016) used GeoNames, 
an accessible gazetteer database, which contains a large amount of 
qualified data to identify geographic contexts (Ahlers, 2013). Jiang et al. 
(2015) widely collected open source POIs, including those from Yahoo!. 
However, the accuracy and coverage of open source geographic data 
need to be considered (Zielstra and Zipf, 2010). 

POIs indicating geographic context are mostly clustered with grid- 
based algorithms (Cai et al., 2016; Jiang et al., 2015). Nevertheless, it 
is computationally intensive for classification at small scales (e.g., 
distinguish different activities happening in neighboring buildings) as 
the grid needs to be finely divided for multiple times to detect arbitrary 
shapes (Hio et al., 2013). Moreover, these methods are sensitive to pa-
rameters such as the size of cell, which is hard to specify (Njoo et al., 
2015). Furthermore, for sparse digital footprints, it is inefficient to 
identify semantics of every grid cell, since only a small portion of them 
are covered by trajectory points. 

Additionally, only a few clusters can be detected for most individuals 
by directly aggregating their travel trajectories due to data sparsity. 
Meanwhile, each cluster often takes a small area, which can rarely 
provide sufficient context information to identify associated activities. 
For example, a person may regularly visit a restaurant and tweet at one 
fixed location outside the restaurant. As a result, the geographic feature 
of the restaurant, typically represented as a POI, is outside the spatial 
extent of these tweets. As the geometry of this tweeting area (i.e., zone) 
may not overlap any eating place or zone, its activity type can hardly be 
inferred without referring to other resources such as message content. 

In sum, previous methods for identifying activity zone types using 
social media data are not sufficient at a collective level with relatively 
dense data due to the lack of semantic information. They show extra 
problems when dealing with activity identification at an individual level 
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due to data sparsity. We propose a framework of activity knowledge 
discovery to detect frequent activities and determine activity zone types 
at both levels more effectively with sparse digital footprints. 

3. Methodology 

Using geotagged tweets as an example, this research proposes a 
framework to first discover collective activity zones and types by fusing 
OSM datasets. Individual activity zones and types are subsequently 
detected. This framework includes three components and five primary 
steps (Fig. 2): (1) Data pre-processing removes inactive or abnormal 
users (e.g., users representing a company), and represents users’ tweet 
records as a set of spatiotemporal (ST) points with each point repre-
senting individual presence (i.e., footprint) at a location and a time 
point; (2) Multi-level spatial clustering aggregates ST points of all 
selected users into collective activity zones and derives the centroid of 
each cluster as a representative location where corresponding activities 
are performed; (3) Activity type identification detects the activity type 
(e.g., dwelling, work, entertainment, and eating) of each zone by inte-
grating multiple datasets from OSM and merges adjacent activity zones 
of the same activity type into semantic collective activity zones; (4) 
Location-aware clustering aggregates every individual travel trajectory 
into a series of representative individual activity zones based on the 
spatial relationship between each individual footprint and the detected 
collective activity zones; and (5) Representative activity type of each 
individual zone is detected based on its attached collective zone type. 

3.1. Data preprocessing 

Using Twitter streaming API, users are identified within a geographic 
boundary, and their historic data are then collected with Twitter Search 
API. Users with more than 50 geotagged tweets are selected to generate 
representative daily travel paths (Chaniotakis et al., 2017). Twitter ac-
counts representing organizations or companies are shared by many 
individuals and are thus removed, which are identified as users at a 

relocation speed over 240 m/s (Yin and Wang, 2016). Next, intertown 
travels of the valid users are discarded as this study focuses on local 
travel patterns. Specifically, a box boundary is predefined to remove 
invalid footprints located outside the target area, and to exclude corre-
sponding long-distance travels. The remaining geotagged tweets are 
then processed and organized as a set of ST points to indicate individual 
trajectories. 

3.2. Collective activity knowledge discovery 

3.2.1. Activity zone identification with multi-level spatial clustering 
In this paper, a multi-level spatial clustering method based on 

DBSCAN with varying eps is implemented to aggregate digital footprints 
of a group of users into collective activity zones of different densities. 
Specifically, three distinct eps values are first used as DBSCAN input to 
detect potential clusters at different density levels. Considering the 
common eps values used in the literature, 50 m, 100 m, and 200 m are 
selected; while 50 m can detect relatively small clusters capturing col-
lective activities in a compact space (Hwang, Hanke and Evans, 2018), 
eps as 200 m is reported to be able to identify most AOIs in cities using 
geotagged Flickr photos and tweets (Hu et al., 2015; Liu, Huang, & Gao, 
2019). 

After applying DBSCAN on the ST points of all users at three different 
levels (Algorithm 1 line 1), a set of candidate clusters (C1, and C2, and 
C3) are produced. Next, a series of activity zones (Z1, and Z2, and Z3) 
are generated (Algorithm 1, line 2) based on these candidate clusters. 
Specifically, a convex hull represented as a polygon feature is derived 
from all points within each spatial cluster Huang & Li et al., 2016 to 
reveal its geometrical features (e.g., location, shape, and range) and to 
represent the activity zone. The geometric median for each spatial 
cluster is calculated to denote the cluster centroid. Since at least three 
different points are required to generate a convex hull, the points rep-
resenting cluster centroids are used to denote activity zones containing 
less than three different locations. 

Fig. 2. Workflow of activity knowledge discovery at both collective and individual levels.  
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Next, the associated zone type of each activity zone is identified with 
Algorithm 1 (Algorithm 1, line 3; Section 3.2.2) by selecting optimal 
clusters at different density levels to represent collective activity zones. 
Specifically, we iterate clusters generated at each density level using a 
nested loop (Algorithm1, lines 4–5). Within each inner loop, the type of 
each activity zone is checked and compared with the surrounding ac-
tivity zones detected with the eps at the next level. Smaller activity zones 
are replaced by a larger one at the next level that shares the same zone 
type and overlaps these smaller zones (e.g., Fig. 3a; Algorithm1, lines 
6–7). However, if they have different activity types (Fig. 3b and c), the 
algorithm will not merge them (i.e., the larger activity zone will not 
replace smaller ones). 

Larger activity zones with zone type identified without overlapping 
any activity zone detected at the previous level are also kept (Algo-
rithm1, lines 8–9). This is because mergence could improperly aggregate 
diverse activity zones into a generalized one (Fig. 3b and c), where 
important activity zones (i.e., Za in Fig. 3b; Za, and Zb in Fig. 3c) are 
merged as part of the large surrounding activity zone (i.e., zone ZN) 
detected with the next-level eps. As a result, their associated activity 
zone types are generalized (e.g., Type 2 in Fig. 3b, Type 1 and 2 in 
Fig. 3c) and cannot be accurately identified. This mergence process 
eventually generates collective activity zones from three sets of candi-
date activity zones. 

3.2.2. Activity type inference 
As an open data source, OSM increasingly contributes to location 

collections, and provides comprehensive location sets with detailed in-
formation such as location types and names. For example, more than 20 
OSM records while less than 5 from GeoNames could be detected within 
an activity zone based on our experiment. In addition to point data (e.g., 
POI dataset), OSM also contains data (Table 1) of other geometries such 
as polygon (e.g., street building dataset and water area dataset) and 
polyline (e.g., waterways dataset) to be able to improve detection res-
olution. Therefore, this work utilizes OSM datasets (Table 1) to identify 
activity zone types (Fig. 4). 

Specifically, ten activity types are predefined to capture the majority 
of people’s daily activities in an urban area (Huang, Cao, & Wang, 2014; 
Chaniotakis et al., 2017), including Eating, Shopping, Education, Work, 
Health, Entertainment, Service, Dwelling, Transportation, and Trans-
portation network (Table 3). OSM land use datasets are labeled with 
vague feature classes, thus are mapped to eight general types (i.e., land 
use types; Table 2) to produce a land use layer corresponding to the ten 
activity types (Fig. 4 Step 1). A spatial join operation is performed on all 

Fig. 3. Activity zone detection at current level and the next level: activity zone Za,Zb ∈ ZIor ZII, detected with smaller eps at current level (e.g., eps = 50 m); activity 
zone ZN ∈ ZIIor ZIII, detected with larger eps at the next level (e.g., eps = 100 m). 
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activity zones and the land use layer to identify the land use type of each 
zone (Step 3), which in turn can indicate whether an activity type is 
considered as Dwelling (e.g., the activity performed within the area of the 
residential land use type) or other seven general types (e.g., Work and 
Entertainment). 

Given an activity zone, the associated land use type helps determine 
its activity type. However, three activity zone types, including Eating, 
Transportation, and Transportation network, are missing in land use types. 
Furthermore, commercial land use type cannot be directly mapped to an 
activity type as it could be used for diverse activities (e.g., Eating and 
Entertainment). Moreover, many land use types could include a large 
area with mixed activities (e.g., Dwelling area may consist of Eating ac-
tivities). Therefore, additional OSM datasets (Table 1) are mapped to 
establish POI layers with activity zone types (Table 3; Fig. 4 Step 2) and 
spatially joint with activity zones to further indicate relevant activities 
(Step 3). These supplementary datasets include poi, building, and water 
features, which amplify the type reference for the activity zones. 

POIs of an unknown feature class (e.g., blank or meaningless class 
name) are usually anonymous buildings (e.g., buildings at a Shopping 
area), thus the land use type identified for the activity zone is considered 
as its representative zone type (Fig. 5). Activity zones without POIs 
included are also assigned its land use type if applicable (i.e., the land 
use type is identical to one of the ten activity zone types). The type of an 
activity zone is determined by the maximum votes of the activity zone 
types associated with all its included OSM POIs (Fig. 4 Step 3). However, 
the most frequently appearing POI type is not necessarily selected. 
Specifically, ten activity zone types are classified into four priorities 
(Table 3) to maximize the identification accuracy of activity zone types 
based on our experiments. Activity types of lower-level priorities are 
more specific and could be distributed at smaller scales (i.e., areas of 
smaller size), which could also be conducted at activity zones of higher- 

level-priority types. For example, Eating activities could occur in the 
campus primarily for Education activities; Pharmacies and retails can be 
located at a Dwelling area for people’s convenience. Based on the pri-
ority, activity zone types of higher priorities (e.g., priority I > priority II) 
should be taken before considering others of lower priorities, reducing 
the possibility of misclassifying finely divided zones as broader or large- 
scale types. 

3.3. Individual activity knowledge discovery 

Next, an improved clustering method, defined as location-aware 
clustering, is used to generate activity zones for individuals (Fig. 2). 
Specifically, given an individual ST point (e.g., point a, b, c, d, e in 
Fig. 6), a buffer zone with a radius of 200 m (the same as the largest eps 
to detect activity zones) is generated to search for spatially overlapped 

Table 1 
OSM dataset description (please refer to Table 1 in appendix for complete fea-
tures classes).  

Dataset Feature 
geometry 

Distinct feature class 

landuse polygon residential, park, …, retail, heath, cemetery, 
industrial 

pois point dentist, college, cinema, …, restaurant, bank, hotel, 
laundry, florist, track, camera_surveillance pois_a polygon 

pofw point jewish, hindu, …, muslim 
pofw_a polygon 
natural point cliff, beach, peak, spring, …, glacier, volcano, tree 
natural_a polygon 
traffic point waterfall, dam, fuel, stop, …, street_lamp, 

traffic_signals traffic_a polygon 
transport point railway_halt, tram_stop, …, ferry_terminal, taxi, 

bus_stop transport_a polygon 
buildings polygon apartment, cinema, clinic, …, mall, station, offices, 

empty 
water polygon water, wetland, dock, reservoir, river 
waterways polygon river, stream, drain, canal  

Fig. 4. Workflow of activity type identification.  

Table 2 
Mapping of land use types and OSM land use feature classes.  

Land Use Type Distinct Feature Class of OSM Land Use Dataset 

Dwelling residential 
Entertainment recreation_ground, vineyard, park, orchard 
Health health 
Commercial commercial 
Service cemetery 
Shopping retail 
Work farm, meadow, military, industrial, quarry 
Others scrub, nature_reserve, grass, forest, allotments  

Table 3 
Mapping of activity zone types and feature classes of OSM POIs in point/polygon 
format (please refer to Table 2 in appendix for activity zone type definition and 
complete OSM features classes).  

Activity Zone Type Priority OSM Distinct Feature Class 

Eating I bakery, cafe, fast_food, …, restaurant, food_court, 
caboose, cafeteria 

Work embassy, police, bank, …, community_centre, 
courthouse, factory, barn, industrial 

Shopping II beauty_shop, bookshop, …, clothes, beverages, 
bicycle_shop, butcher, computer_shop, florist 

Education college, kindergarten, …, library, school, 
academic, university, academic_building 

Health dentist, doctors, …, hospital, pharmacy, chemist, 
optician, nursing_home 

Entertainment III alpine_hut, artwork, …, archaeological, attraction, 
arts_centre, bar, battlefield, bench, biergarten 

Service bicycle_rental, atm, …, post_box, car_repair, fort, 
car_wash, graveyard, guesthouse, hostel, laundry 

Dwelling dormitory, houses, …, house, family_house, shed, 
condominium, townhouse, apartment, home 

Transportation IV airplane, terminal, …, station, train_station, track, 
bridge, transportation, car_park 

Transportation 
network 

parking_shelter, …, camera_surveillance  
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collective activity zones (Section 3.2; zone A, B in Fig. 6). An individual 
point is attached to the collective zone which has the largest overlap 
with its buffer zone. For example, the buffer zone of point c is over-
lapped with both zone A and zone B, and then point c is attached to zone 
A as it has a larger overlap with the buffer zone of point c. ST points 
without any activity zone attached (e.g., point e in Fig. 6) are considered 
as noise and discarded. ST points attached to the same activity zone (e. 
g., points a, b, and c) are grouped as a distinct cluster, defined as an 
individual activity zone. 

The activity type of individual activity zone is inferred based on its 
attached collective zone type (Fig. 6). Note that an individual activity 
zone should be classified as Dwelling type if it, as the largest cluster of 
this individual, is overlapped with both Dwelling and Entertainment land 
use areas. This is because people usually spend most of their time in 
Dwelling zones and post lots of messages. Entertainment land use type is 
often mapped by parks, which is closely related to home locations. 

Each derived cluster indicates an activity zone that an individual 
visits, which is defined as a semantic individual activity zone. However, 
not every individual zone represents a regular travel activity of the in-
dividual. In fact, many zones capture random activities. Specifically, if 
an individual activity zone includes a large number of points, it indicates 
that this individual frequently visits the zone in a typical day Huang & Li 
et al., 2016. To differentiate regular zones and random ones, the mini-
mum number of points for each zone, similar to the parameter of minPts 

in DBSCAN, is defined to remove random ones. As discussed in previous 
research Huang & Li et al., 2016, we use 4 as the minimum number. 
After removing insignificant zones, semantic individual frequent activ-
ity zones are derived. 

4. Results 

This study uses publicly accessible digital footprints, collected as 
geotagged tweets via Twitter’s streaming API, to identify frequent ac-
tivity zones with semantics at both collective and individual levels. A 
total of 115,065 tweets posted by 13,922 users within the geographic 
boundary of Madison, Wisconsin from September 2013 to June 2015 
were archived. Next, 49 unique eligible users were selected for our ex-
periments with each user having posted more than 50 tweet records in 
total, since these users have adequate trajectory points to unfold their 
activity patterns (Section 3.1). 

4.1. Detection of semantic collective activity zones 

After aggregating all ST points representing these users’ geotagged 
tweets using the multi-level spatial clustering method discussed in 
Section 3.2, 345 activity zones are detected, and 330 of them are iden-
tified with an activity type (Table 3). Compared with the base map 
provided by Google Maps API (Fig. 7b), most activity zones are detected 

Fig. 5. Activity zone type identification in different scenarios (a. Mapping a POI of unknown type to Dwelling type; b. Mapping two POIs of unknown type to 
Shopping type). 

Fig. 6. Demonstration of location-aware clustering.  
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with the zone types that convey the same context information as the base 
map (Fig. 7a). 

In Fig. 7a showing the detection results surrounding a campus area, 
polygons in different colors represent collective activity zones with the 
symbols indicating different activity types. Although some small zones 
are adjacent to each other, they are not replaced by a single large zone 
detected with a larger eps since the large zone is not of the same zone 
type. At the lower-left side of Fig. 7, many zones where academic 
buildings are located are correctly identified as Education types. Outside 
the Education zones, especially on the east side of the campus close to the 
downtown area of the city, many Shopping and Eating activities are 
detected. Further outside are dormitories, apartments, and houses 
mostly for students and faculties, where many Dwelling zones are 
detected. These detections are consistent with the manual interpretation 
based on the base map as well as in-person observations and under-
standing of the whole area. The detected semantic collective zones are 
used to identify semantic individual activity zones in the next 

subsection, and the evaluation result (Section 5) indicates that our 
classification mechanism based on DBSCAN and only OSM datasets are 
applicable and efficient. 

4.2. Detection of individual activity zones 

Individual travel trajectories are clustered based on their overlapped 
collective activity zones. Fig. 8a shows seven clusters (clusters A, B, C, D, 
E, F, and G) detected for a typical user using the proposed location- 
aware clustering method, with each cluster displayed in a distinct 
color. Among these clusters, clusters A, B, C, D, E, and F are also detected 
with DBSCAN (Fig. 8b, c, and d). However, some points relatively far 
away from the main cluster, are classified as noise. Moreover, cluster G 
is spatially scattered and not detected by the DBSCAN method until eps is 
increased to be 300 m (Fig. 8d), which is extremely large and runs the 
risk of merging clusters representing different activities or integrating 
random activity points (i.e., noise) into clusters. 

Fig. 7. Visualization of semantic collective activity zones around a campus (a) and geographic context of the area by Google Maps (b).  
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Fig. 8. Detection of individual activity zones using location-aware clustering and DBSCAN with different eps values for selected Twitter user 1.  

Fig. 9. Detection of activity zones using location-aware clustering and M-DBSCAN for selected Twitter user 2.  
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Fig. 9 shows the clustering results of another selected Twitter user 
using location-aware clustering (Fig. 9a) and M-DBSCAN (Fig. 9b). M- 
DBSCAN performs well in detecting clusters of different spatial densities 
(e.g., G, H, and I in Fig. 9b). It automatically generates eps values based 
on the spatial distribution of all the footprints, and then aggregates the 
footprints in various scales by applying different eps values. However, it 
does not consider the semantic homogeneity of these clusters, and thus 
breaks the integrated activity zones detected by location-aware clus-
tering (e.g., cluster B, F, and H in Fig. 9a). Additionally, M-DBSCAN may 
misclassify semantic noise because noise (e.g., point a, b, c in Fig. 9a) 
can form a spatial cluster of small densities (e.g., cluster I in Fig. 9b) and 
non-noise (e.g., point d in Fig. 9n) can be located relatively far away (i. 
e., beyond the selected eps) from the main cluster (e.g., cluster A in 
Fig. 9b). 

Based on the above analysis, location-aware clustering can detect 
clusters representing individual travel activities from digital footprints 
more effectively (Figs. 8a and 9a). To this end, individual daily travel 
patterns can be extracted with the activity identification results. For 
example, Fig. 10 demonstrates the detected daily frequent travel activ-
ities for the same individual as Fig. 9. We can observe that Dwelling, 
Education, Entertainment, Shopping, and Eating activities constitute this 
person’s daily life. In fact, Dwelling and Work/Education activities are 
detected for most individuals. Besides, this selected person conducts 
Entertainment activities at multiple locations, and might travel a long 
distance westward for Eating. These activities can also be verified using 
the reference map (Fig. 10b). 

5. Evaluation 

Among 49 unique Twitter users in Madison, Wisconsin, 6 users with 
the largest number of distinct dates when one or more geotagged mes-
sages were posted, are manually investigated to validate the clustering 

and activity type inference results. These users are selected to ensure 
that each user generated diversified trajectory data on different dates 
over a long period for our analysis. Next, activity clusters are manually 
identified for each user based on the spatial distribution of individual 
digital footprints, the activity type information drawn from geographic 
context and message content (Fig. 11). Three primary labeling principles 
are followed: (1) frequent tweets (i.e., ≥ 4 points) located at a specific 
place or its neighboring places representing one type of activity (e.g., 
Dwelling, Shopping) are clustered (i.e., cluster A, B, C in Fig. 11); (2) 
tweets outside the cluster while representing the same or related activity 
(e.g., parking) are clustered; (3) infrequent tweets (i.e., < 4 points) at 
places described as (1) and (2) (i.e., noise points in Fig. 11) and spatially 
adjacent tweets spreading over multiple places of distinct activity types 
(points of cluster A and point a in Fig. 11) are not clustered. In addition, 
to differentiate clusters based on the activity types performed at an ac-
tivity zone, activity clusters of small spatial scales are labeled separately 
if their surrounding clusters cover relatively large zones with more 
general or different activity types (e.g., zone A is labeled as Dwelling 
although located between two large Entertainment zones B and C in 
Fig. 11). This principle ensures that small-scale activities are not 
neglected and misclassified as the type of its surrounding large-scale 
activities. Finally, through examining the overlapped land use map 
and POIs of each cluster, its activity type is manually identified, and 
every ST point within it is assigned this type. 

Next, we applied the proposed location-aware clustering method on 
each selected user’s footprints and evaluated clustering results by 
examining how well different activities are detected and classified. 
Specifically, ST point grouping schemes are evaluated with Rand Index 
(RI) and Adjusted Rand Index (ARI). Activity type identification accu-
racy is evaluated with several quality measures in comparison with 
manually labeled results in Section 5.2. 

Fig. 10. Individual daily frequent activities detected with location-aware clustering for selected Twitter user 2 (a) and geographic context of these activities 
highlighted with circles in yellow by Google Maps (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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5.1. Clustering evaluation with rand index and adjusted Rand index 

RI (Rand, 1971) and ARI (Hubert & Arabie, 1985) are used to eval-
uate the effectiveness of the proposed location-aware clustering method. 
Both RI and ARI can validate clustering results by measuring the 
agreement between object pairs in two partitions. Specifically, if a pair 
of objects are assigned to the same class or different classes using 
different partition methods, the assignment is counted as an agreement 
(A), or otherwise a disagreement (D). The similarity of two partitions 
can thus be estimated by measuring the overlap of A versus D (Walde, 
2006). ARI can estimate the similarity between two partitions with 
different numbers of clusters (Santos & Embrechts, 2009; Yeung & 
Ruzzo, 2001). To measure the similarity between manually labeled 
outcomes (C) and the predicted results (M) produced by different clus-
tering methods, a RI(C,M) and an ARI(C,M) are generated for each 
selected user. Table 4 shows the averaged values (RI(C,M) and 
ARI(C,M)) for all six users using different clustering methods (Table 4). 

As shown in the table, location-aware clustering achieves high 
RI(C,M) and ARI(C,M) values (over 0.98), which means it can aggregate 
digital footprints into activity clusters in agreement with manually 
labeled results. In contrast, M-DBSCAN receives lower values for both 
indexes, and DBSCAN gets lower values for RI(C,M), but higher values 
for ARI(C,M) with eps less than or equal to 100 m. This is because 
DBSCAN with small eps may collapse a cluster (i.e., M) into smaller 
clusters (i.e., C), decreasing the agreement measure for RI(C,M) while 

increasing the measure for ARI(C,M). As eps increases, both index values 
increase first and then drop for DBSCAN. When eps equal to 100 m, both 
indexes become nearly the same as the indexes for location-aware 
clustering. Despite the high indexes, DBSCAN with a single eps value 
cannot detect clusters of different spatial densities as illustrated in 
Section 4.2. Points in sparse clusters are misclassified as noise without 
evidently decreasing both indexes. Therefore, the performance of 
location-aware clustering shows an improvement while detecting 
distinct activities. 

5.2. Activity zone type identification 

We evaluate the performance of activity zone type identification at 
two levels: the point level and the activity zone (cluster) level. At the 
point level, activity zone type (i.e., one out of ten predefined categories) 
is manually identified and predicted for each trajectory point. Each 
point is thus considered as a classification instance and gets evaluated. 
At the cluster level, the predicted activity type of each manually iden-
tified cluster is defined as the predicted type of the majority points 
within the cluster. Therefore, each manually identified cluster (without 
noise) is considered as a classification instance. 

At both levels, given a predefined activity zone type, a binary label (i. 
e., true or false) is assigned to each classification instance indicating 
whether it is classified as this type. For each instance, there are four 
measurement indexes: true positive (TP), false negative (FN), true 

Fig. 11. Demonstration of manually detected activity clusters.  

Table 4 
Rand index and adjusted Rand index analysis using different clustering methods.  

Cluster Method Location-aware Clustering M-DBSCAN DBSCAN 

eps N/A N/A 20 m 50 m 100 m 200 m 300 m 

RI(C,M) 0.984 0.971 0.950 0.979 0.983 0.976 0.955 

ARI(C,M) 0.984 0.978 0.990 0.992 0.985 0.948 0.896  
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negative (TN), and false positive (FP) (Fawcett, 2006). TP indicates the 
number of instances our method successfully classifies, whereas TN 
counts the instances that are misclassified and do not belong to a certain 
type. Three quality measures for each classifier are then defined below,  

• accuracy = TP+TN
TP+TN+FP+FN: the ratio of the amount of correctly classified 

instances to the amount of all classification instances. It measures the 
general accuracy. A higher value means more instances are correctly 
classified.  

• sensitivity (recall) = TP
TP+FN: the ratio of the number of instances which 

are correctly identified as a specific type to the number of instances 
labeled as this type. A higher value means a better capability to 
detect such activity type.  

• F1 score =
2*precision*recall
precision+recall : a combined measure of precision and recall, 

where precision = TP
TP+FP. It measures a balanced performance, with a 

higher value indicating the more effectiveness of activity detection. 

Table 5 lists the activity zones of each activity zone type detected for 
every test user and Table 6 shows the averaged quality measure values 
for all test users. Generally, the detected activities of Dwelling or Work 
are more than the manually labeled ones. Meanwhile, less Entertainment 
or Shopping activities are detected. The predicted Education and Eating 
activities are almost the same as the manually labeled ones. Accordingly, 
Education and Eating activities receive relatively high F1 scores at the 
cluster level. Three activity zone types, including Health, Service, and 
Transportation network, are neither detected by the algorithm nor 
manually identified, which are thus not included in Table 5 and Table 6. 

Since TN index is always high (i.e., most points are classified as not 
belonging to the activity zone type), all activity type predications 
receive high accuracy at the point level. Most predictions also receive 
high accuracy at the cluster level except for Dwelling and Entertainment 
activities. This is because many Entertainment activities are misclassified 
as Dwelling ones as they are located at Dwelling areas, which might be a 
friend’s home instead indicated by Twitter message content. Other 
misclassifications are also related to the mismatch of people’s real ac-
tivities and geographic-context-indicated activities. For example, an 
Entertainment activity at a gym located at a shopping mall is misclassified 
as a Shopping activity, and an Eating activity near a workspace is mis-
classified as a Work activity. 

All manually labeled Dwelling activities can be successfully detected 
by the proposed location-aware clustering method. Therefore, the 
overall sensitivity for Dwelling becomes 1.0. Most Education and Eating 
activities are also successfully detected with a high sensitivity measure. 
Furthermore, nearly half of Entertainment and Work activities can be 
correctly identified. Shopping activities are rarely detected as they are 
mostly located at the “Commercial” area, which is not classified as any 
specific activity type in this study. 

5.3. Discussion 

This section discusses potential limitations in our work. First, the eps 
at different levels for multi-level spatial clustering are selected statically 
and by referencing the findings from previous studies (Hu et al., 2015; 
Liu, Huang, & Gao, 2019; Hwang et al., 2018). Based on the principles of 
DBSCAN, the smaller the eps, the more spatial clusters of high densities 
will be produced. In contrast, a larger eps will detect more spatial 
clusters of low densities. To better understand the impact of their 
various combinations, we generate collective activity zones using three 
selective eps out of an extensive set of values (i.e., 20 m, 50 m, 100 m, 
200 m, 300 m) and summarize the number of detected activity zones for 
each activity type (Table 7). The outcome shows that when reducing the 
eps of the first level to 20 m, more activity zones, especially those with 
compact space (e.g., Eating, Shopping, and Education zones), are detected. 
Meanwhile, increasing the eps at the third level enables the detection of 
activity zones consisting of very sparse spatial points, especially for 
Dwelling and some other Eating activities. However, 20 m as eps could 
break activity zones detected with larger values (e.g., 50 m) and result in 
many individual frequent activities undetected, because each broken 
zone mostly contains a limited number of footprints of an individual. 
Meanwhile, 300 m is too large to distinguish spatially adjacent activities 

Table 5 
Activity zone detection using manual labeling and location-aware clustering (L: label; P: prediction).   

Point Activity Cluster 

Clustered Noise Dwelling Education Work Eating Entertainment Shopping Transportation 

L P L P L P L P L P L P L P L P L P 

U1 406 403 48 51 1 2 1 1 0 0 0 1 3 1 0 0 0 0 
U2 324 335 79 68 2 3 0 0 1 2 2 1 4 4 3 3 2 0 
U3 389 417 91 63 2 8 1 1 0 1 2 2 7 3 0 0 0 0 
U4 605 605 14 14 1 3 0 0 0 0 0 0 2 0 1 0 0 0 
U5 219 216 46 49 1 2 2 2 0 1 0 0 2 1 1 0 0 0 
U6 343 335 13 21 1 2 0 0 1 0 0 0 1 1 1 0 0 0  

Table 6 
Performance analysis at point/cluster level for activity type identification using 
location-aware clustering.   

Overall accuracy Overall sensitivity Overall F1 score 

Point Cluster Point Cluster Point Cluster 

Dwelling 0.932 0.746 1.000 1.000 0.955 0.633 
Education 0.973 0.944 0.860 0.833 0.912 0.889 
Work 0.884 0.839 0.500 0.500 0.865 0.667 
Eating 0.994 0.964 0.939 0.750 0.968 0.833 
Entertainment 0.956 0.729 0.511 0.478 0.714 0.672 
Shopping 0.932 0.790 0.000 0.000 N/A N/A 
Transportation 0.987 0.929 0.000 0.000 N/A N/A  

Table 7 
Number of detected collective activities of different types using variant combi-
nations of eps values for multi-level spatial clustering (please refer to Table 3 in 
appendix for the counts of a complete set of combinations).  

Activity Zone 
Type 

eps (m) eps (m) combination 

20 50 100 200 300 20, 
50, 
100 

50, 
100, 
200 

50, 
200, 
300 

Eating 70 40 36 29 33 97 41 48 
Work 13 26 22 10 6 27 26 24 
Shopping 56 28 24 30 28 75 35 37 
Education 59 46 23 20 24 79 50 49 
Health 1 3 2 2 2 3 3 3 
Entertainment 41 83 82 52 43 75 85 78 
Service 2 2 1 2 1 3 3 4 
Dwelling 37 56 55 29 25 47 59 65 
Transportation 1 1 1 0 0 2 0 0 
Transportation 

network 
20 22 18 13 9 33 28 24 

Others 22 8 8 22 13 8 15 12 
Sum 322 315 272 209 183 449 345 344  
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of the same type. Therefore, this study selected a combination of 50 m, 
100 m, and 200 m. However, the most appropriate parameters are 
variant depending on different activity types and should be further 
investigated in future research. 

Moreover, a uniform buffer zone radius of 200 m is used to search for 
individual footprints for individual activity identification, while varying 
radius might be used for different activity types. Furthermore, the pri-
ority of activity zone types in multi-level spatial clustering is determined 
via extensive experiments to boost the overall activity identification 
accuracy, which is explained by analyzing the scales of diverse activity 
zones. However, the priority order can be changed to give dominance to 
different activity types. A universal activity identification scheme will be 
explored by establishing machine learning models in future study. 
Finally, the proposed multi-level spatial clustering method is not 
compared with other spatial clustering methods (e.g., graph-based and 
grid-based approaches) through evaluation experiments. While other 
spatial clustering methods can also be modified to infer travel semantics 
by integrating geographic context data, our study focuses on developing 
the two-step framework which enables semantic inference and can 
detect individual frequent travel activities from sparse digital footprints. 

6. Conclusion and future research 

With the explosive growth of social media data, existing spatiotem-
poral and semantic aggregation methods do not provide sufficient sup-
port for exploring collective or individual travel activity patterns using 
sparse digital footprints. This study focuses on developing a two-step 
AKD framework for efficient detection of travel activities at both col-
lective and individual levels. First, collective activity zones (i.e., spatial 
clusters) are generated from digital footprints of all users collected at the 
target area, using the multi-level spatial clustering method by consid-
ering the underlying activities (i.e., geographic context) of the clusters, 
which are identified by integrating OSM datasets. Second, individual 
digital footprints overlapped with the same collective activity zone are 
clustered and represent one distinct activity at the individual level with 
location-aware clustering. The experiment results show that by inte-
grating activity information drawn from OSM datasets, the proposed 
framework can better aggregate digital footprints into clusters at both 
collective and individual levels and the individual clusters are identified 
as different activities in high accuracy. 

Future efforts could be devoted to improving the performance of 
activity type identification. Specifically, parameters in multi-level 
clustering, such as eps values and buffer zone size, should be deter-
mined based on different activity zone types. Additionally, more fea-
tures associated with the tweet points can be utilized for prediction, such 
as message content and temporal information. Further, computation 
models with more robust performance, such as machine learning 
models, should be developed to fully leverage all data resources. 
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