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A B S T R A C T   

Extracting hidden information from human mobility patterns is one of the long-standing challenges of urban 
studies. In addition, exploring the relationship between urban functional structure and traffic spatial interaction 
pattern has long been of interest. Recently, vehicle GPS trajectory data emerged as a popular data source for 
revealing human mobility patterns and urban functions. However, few studies have fully leveraged traffic 
interaction information that is hidden in human mobility patterns to identify urban functions at the road segment 
level. To address this issue, a geo-semantic analysis framework was introduced in this study to model the 
relationship between traffic interaction and urban functions at the road segment level. First, a Road-Trajectory 
corpus was built and trained to obtain the semantic embedding representation of road segments. Then, 
considering topological connections between road segments, we used a graph convolutional neural network 
model to process the contextual and topological information to classify social functions along streets. A case 
study in Beijing, China, using a large volume of real-world taxi trajectories data, was conducted. The results show 
that our proposed methods, with relative less loss and high accuracy, outperform other comparative methods for 
classifying urban functions at the road segment level. This work contributes to the assessment of urban functional 
structure, and further aiding urban planners in designing better urbanization strategies with regard to traffic 
interaction and urban space structure.   

1. Introduction 

Extracting hidden information from human mobility and activity 
data is one of the long-standing challenges in the fields of urban geog-
raphy (Gonzalez, Hidalgo, & Barabasi, 2008; Huang, Li, Liu, & Ban, 
2015), land use planning (Castro, Zhang, Chen, Li, & Pan, 2013), and 
traffic planning (Jiang, 2009). Recently, numerous in-depth discussions 
have been conducted to explore urban land use and urban functions via 
human mobility and activity information (Barbosa et al., 2018; Gao, 
Janowicz, & Couclelis, 2017; Wu et al., 2020). As one of the conceptual 
and practical themes in human mobility, traffic interaction patterns are 
closely related to urban functions. They indicate the routes and purposes 
of the trips that people take in cities at the individual level and the 
spatial interaction patterns between urban regions from the collective 
perspective (Yang, Stewart, Tang, Xie, & Li, 2018; Zheng, Capra, Wolf-
son, & Yang, 2014). The exploration of traffic interaction patterns not 
only helps to understand urban structures but contributes to 

characterizing the activity of a city and getting a sense of its urban dy-
namics (Liu et al., 2015). 

The proliferation of crowdsourcing technology and location-based 
services and the emergence of individual-level trajectory data create 
unprecedented opportunities for researchers to better understand 
human mobility and the social functions of urban regions (Zheng et al., 
2014). Human activity trajectory data containing valuable information 
on how urban spaces are used are generated by people in their daily 
lives. Generally, this type of trajectory data includes vehicle GPS records 
(Yang et al., 2018), mobile phone positioning data (Pei et al., 2014), and 
social media check-in data (Martí, Serrano-Estrada, & Nolasco-Cirugeda, 
2019). A GPS-enabled taxi is flexible and its movements are usually 
widely covered in urban regions. Such data has much higher precision 
than other data sources. The related research scale and throughput have 
not been limited by the accessibility of qualified data and privacy issues. 
Due to its powerful ability to aid the monitoring of real-time traffic 
situations and the sensing of spatial interaction patterns, taxi GPS data 
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has attracted much attention and it has been used with great success in 
multiple domains (Chen, Tao, Li, & Zhuo, 2016; Li et al., 2016; Siła- 
Nowicka et al., 2016; Yuan, Zheng, Zhang, & Xie, 2012). 

Attempts have also been made to understand urban structures and 
social functions using taxi GPS records data. For instance, Zheng, Yan-
chi, Jing and Xing (2011) first introduced taxi GPS records to detect and 
evaluate the effectiveness of urban land use planning. Liu, Wang, Xiao, 
and Gao (2012) employed seven-day taxi records to depict intra-urban 
land use from travel behavior patterns. This study borrowed the 
“source to sink” concept from the field of ecological studies, investi-
gating the temporal variations of pick-ups and drop-offs to characterize 
daily travel patterns and attempting to reveal their association with 
urban land uses in the city of Shanghai, China. Yuan, Zheng, and Xie 
(2012) proposed a DRoF (Discovers Regions of different Functions) 
framework, which uses a topic-based inference model based on features 
extracted from taxi GPS trajectories data and points of interest (POIs) 
data. In particular, the DRoF model featured the function of an urban 
parcel by using the temporal statistics of pick-up and drop-off locations 
within this parcel. Also, Liu, Gao, and Lu (2019) attempted to measure 
and incorporate spatial interaction patterns in classifying and under-
standing urban land use. In sum, these studies mainly use temporal or 
spatial variations (such as pick-up and drop-off frequencies) to highlight 
the potential role of taxi GPS records in monitoring people’s travel 
patterns and revealing urban functional structure. In general, a taxi 
travel route is consecutive and consists of the pick-up location, several 
intermediate GPS records and the drop-off location. Pick-up and drop-off 
locations represent the travel purposes of people, while intermediate 
GPS records also contain valuable information, such as the movement 
flows and traffic states, which have not been thoroughly explored 
(Zheng et al., 2014). 

The momentum to collect geo-spatial data at a large volume, and the 
proliferation of new methods in machine learning and deep learning 
bring unprecedented opportunities to explore the implicit information 
from geo-enriched trajectory data. By converting from original vehicle 
route GPS records into consecutive tracking sequences, several in-depth 
studies have been conducted to leverage the route records to explore 
sequential information on trajectories, which have a significant corre-
lation with traffic interaction. For example, taking language as an 
analogy and regarding the mobile user anchor sequence (mobile user 
trajectory) as sentence and areal research unit as word, Li, Fei, and 
Zhang (2019) introduced a novel regionalization approach based on 
Word2Vec model, a representation learning model in the field of natural 
language processing (NLP), for portioning and grouping spatial parcels 
in an urban area. Embracing the same idea, Zhang et al. (2020) proposed 
the Traj2Vec model to classify urban land use type and measured the 
degree to which urban land use is mixed. However, different with mo-
bile user trajectories analysis on areal units, vehicle movements are 
carried along the streets and constrained by urban road networks (Liu, 
Gao, & Lu, 2019; Zhu, Wang, Wu, & Liu, 2017). Therefore, many re-
searchers have attempted to investigate traffic interaction at the road 
segment level along the urban road network (Chu et al., 2014; Zhang 
et al., 2016). 

In an urban road network, roads are not isolated but connected. 
Existing studies usually assume that roads within a certain spatial or 
topological distance are correlated with each other. However, the 
studies in spatial heterogeneity of traffic impacts are still insufficient, 
and their potential remains to be tapped (Cheng, Haworth, & Wang, 
2012; Wang, Wei, He, Gong, & Wang, 2014; Zou, Yue, Li, & Yeh, 2012). 
For example, upstream road traffic flows usually do not spread uni-
formly to its neighborhood roads (e.g., downstream and bidirected 
roads), but are concentrated in specific directions. The operation of a 
large number of motor vehicles in the urban road network generates 
traffic flow, while the different driving behavior of different vehicles 
result in diverse traffic interaction patterns. Since roads are adjacent and 
topologically connected, referring to the contextual relationship be-
tween words and documents in NLP (Bengio, Ducharme, Vincent, & 

Jauvin, 2003; Zhang et al., 2020), contextual and topological informa-
tion can be employed to indicate traffic interaction pattern hidden in 
trajectories. Exploring this contextual and topological information is of 
great significance. 

Road segments have geographical and topological association with 
other road segments, especially its neighbors. Road segment classifica-
tion task is dependent on both the characteristics of that road segment, 
and its connected ones (Kwan, 2007). Therefore, a spatial prediction 
model is needed that can consider connections and integrate the char-
acteristics of its neighbors. Moreover, vehicles moving within a city are 
naturally constrained by urban roads. As a typical graph structure in 
complex network study, urban road networks have been widely 
explored in urban studies and planning (Zhao et al., 2020). With 
powerful modeling ability for graph-structured data, graph convolu-
tional neural networks (GCNN) has received much attention from re-
searchers (Defferrard, Bresson, & Vandergheynst, 2017; Yan, Ai, Yang, 
& Yin, 2019; Zhu et al., 2020). By representing an urban road network as 
a road graph and aggregating characteristics of neighboring nodes, the 
contextual and topological information hidden in roads can be explored 
at a deeper level with a GCNN model. GCNN can handle the urban road 
network, which is structured for spatial interactions among irregular 
geographical units (Zhu et al., 2020). 

In this study, we presented a geo-semantic analysis framework to 
investigate the traffic interaction patterns at a fine scale and evaluate the 
relationship between traffic interaction and urban functions. First, by 
analogizing road segments and taxi GPS trajectories (traffic elements) to 
words and sentences (linguistic terms in NLP), we built a Road- 
Trajectory corpus and learned a geo-semantic embedding representa-
tion from training a Word2Vec model. Then we introduced a GCNN 
model to classify the social functions of road segments based on the 
extracted geo-semantic embedding features. The purpose of this study is 
to address these issues:  

• Classifying urban functions at the road segment level using traffic 
interaction information extracted from taxi GPS trajectories data; 

• Presenting a GCNN model with geo-semantic embedding represen-
tation to improve the performance of urban function prediction task. 

The remainder of this paper is organized as follows. The presented 
framework, including study materials and methods, is introduced in 
Section 2. The implementation and findings are then discussed in Sec-
tion 3. Discussion and potential limitations of this work are outlined in 
Section 4. The conclusions are drawn in Section 5. 

2. Framework 

2.1. Overview 

In this study, a geo-semantic analysis framework to investigate the 
linkage between traffic interaction patterns among road segments and 
urban functions is proposed (Fig. 1). Geo-semantic analysis takes 
advantage of semantic embedding technology (Bengio, Courville, & 
Vincent, 2013; Mikolov, Chen, Corrado, & Dean, 2013) in the field of 
NLP, analogizing traffic (or spatial) elements to NLP terms and then 
building high dimension embedding vectors to quantitatively represent 
the traffic elements, thereby investigating potential information in 
geographical data (Liu, Pelechrinis, & Labrinidis, 2019; Yao et al., 2017; 
Zhai et al., 2019). We start with collecting multi-sourced datasets, 
including taxi trajectory data, urban road network data, and POIs data 
within the research area. Then, we build geo-semantic embedding fea-
tures/vectors and obtain urban functions a road segment perspective by 
using the auxiliary data of POIs. Specifically, we build a Road-Trajectory 
corpus based on the geo-semantic analogizing assumption and employ a 
Skip-gram based Word2Vec model to learn geo-semantic embedding 
features. At the last step we introduce a GCNN model and evaluation 
metrics using the features constructed. 

S. Hu et al.                                                                                                                                                                                                                                       
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Fig. 1. An overview of the proposed framework.  
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2.2. Feature construction 

2.2.1. Building the road-trajectory corpus 
In the field of NLP, based on a large-scale semantic corpus, we can 

effectively train the language model and mine the potential semantic 
representations or relationships. This corpus typically contains many 
documents and each document consists of many words (Stefanowitsch & 
Gries, 2007). Similarly, a geographical contextual corpus can be built in 
the research field of geo-semantic mining (Hu et al., 2020; Yao et al., 
2017). In this study, we assumed that the traffic interaction pattern re-
flects the characteristics of the travel activities of urban people and that 
this pattern is closely related to the urban spatial structure. A Road- 
Trajectory corpus was developed on that basis. We divided the city’s 
main roads into road segments based on the significant traffic nodes 
(such as intersections and T-junctions) within the road network. We 
analogized road segments to NLP words, the trajectories (or routes) of 
vehicles to documents, and the study area to a corpus. The aim of 
building such a corpus was to mine the traffic interaction patterns and 
potential contextual semantic relationships between road segments. It is 
worth noting that semantic relationship is expressed in two ways in the 
NLP: one is the co-occurrence relationship between words, such as 
phones and laptops, which often appear concurrently in technical doc-
uments; the other is the semantic similarity relationship between words, 
such as laptops and desktops, which typically have identical semantics 
(Katukuri, Raghavan, & Xie, 2013). In this study, the spatial semantic 
relationship referred to co-occurrence relationships. A strong similarity 
between two road segments suggests that both segments typically co- 
occur along travel routes or that they share either upstream or down-
stream segments along the travel routes (Liu et al., 2017). 

As an essential mode of transportation for urban people, taxis oper-
ate in the urban road network. Taxi routes hold valuable information 
about human activity and the traffic flow. For one taxi route, it usually 

includes the pick-up location, drop-off location, and intermediate GPS 
points. By means of a map matching algorithm (C. Yang & Gidofalvi, 
2018), GPS records were mapped to urban road segments. Each taxi 
travel route can be represented as the sequence of unduplicated and 
consecutive road segments (Fig. 2). Using these sequences, the final 
documents of the Road-Trajectory corpus for the geo-semantic training 
area were constructed. Note that we excluded vacant GPS data from this 
study. 

2.2.2. Training geo-semantic embedding model 
The geo-semantic mining method transforms the geographical (or 

spatial) elements (such as urban functional parcels, POIs) to NLP ele-
ments, and then represents the spatial relationship or patterns between 
elements as semantic information, to support various geographic ap-
plications. Word embedding is a popular geo-semantic representation 
method that represents spatial elements as high-dimensional semantic 
embedding vectors and is widely applied to geographical clustering and 
classification studies. Word embedding has proved to be an effective and 
practical approach in geographical semantic representation and urban 
functional structure mining (Yuan et al., 2014; Zhang et al., 2020). In 
this study, we introduced the Word2Vec model for the semantic repre-
sentation of spatial elements. Specifically, we took the Road-Trajectory 
corpus as an input; by training the Skip-gram based Word2Vec model 
(Goldberg & Levy, 2014), contextual information and traffic interaction 
patterns can be investigated, and each road segment symbolizes a high- 
dimensional feature vector. By entering the documents composed of 
road segment sequences, the optimization goal of the Word2Vec model 
is to minimize the information loss function; that is, to maximize the 
probability of the occurrence of a trajectory route that connects those 
road segments. The likelihood function of the Skip-gram model is as 
follows: 

Fig. 2. Mapping raw GPS records to a road segments sequence.  
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L(θ) =
∏N

i=1

∏

− m≤s≤m,j∕=0
p
(
ri| ri+s

i− s

)
(1) 

Where N refers to the number of road segments, s denotes the win-
dow size, and ri− s

i+s represents context road segments of target road 
segment ri. The conditional probability of generating the context road 
segments for the given target road segment p(ri| ri− s

i+s) can be obtained by 
performing a softmax operation: 

p
(
ri| ri+s

i− s

)
=

exp
(
ri, ri+s

i− s

)

1
N

∑N
i=1exp(ri, ri+s

i− s)
(2) 

Finally, we characterize each road segment in the road network as a 
high-dimensional geo-semantic embedding vector. This vector implic-
itly contains deep traffic interaction information. The implementation of 
Word2Vec relies on the tools of genism (Rehurek & Sojka, 2010) in 
Python. 

2.2.3. Obtaining urban functions from a road segment perspective 
Because POIs can be used to infer areas of land with complex func-

tions and have a high availability from map services, such data is of 
practical significance in the study of urban spatial and social structures 
(Zheng et al., 2014). Inspired by prior studies that employed POIs data to 
investigate urban functional structure (Gao et al., 2017; Hu et al., 2020; 
Zhai et al., 2019), our method assumes that social functions at the road 
segment level, such as residential, commercial, and transportation 
(Table 1), can be represented by the auxiliary data of POIs. As indicated 
by existing studies, POIs data has become a promising source to repre-
sent urban functional structure in the absence of urban functional 
ground truth, especially in China (Wu et al., 2020; Zhang et al., 2020; 
Zhang & Du, 2015). 

Specifically, to classify the social functions of each road segment, the 
functions depending on the associated POI categories were grouped into 
three categories: commercial, public, and transportation (Table 2). 
Then, the Term Frequency-Inverse Document Frequency (TF-IDF) 
method (Ramos, 2003) was employed to calculate the weight of POI 
categories inside the buffer area of one road segment (in this paper, 100 
m was employed as the buffer size). TF-IDF is an effective metric to 
identify semantics and urban functions (Liu et al., 2020). The urban 
function of a road segment can be subsequently identified by POI cate-
gories with a high weight. 

wrj = tf rj × idf rj (3) 

Where wrj denotes the weight of POI category j for the road segment 
r; tfrj= nr, j/nr means the term frequency; idfrj = log (N/Nj) means the 

inverse data frequency. Note that a greater value of wrj indicates the 
POIs category j is more important in a road segment r. 

2.3. GCNN prediction model 

In the above steps, a road segment in the road network is charac-
terized as a geo-semantic embedding feature, which can be used to es-
timate the association between traffic interaction and urban functions at 
a street level. Road segments are not isolated in the urban road network 
but are linked topologically to each other. The estimation of a road 
segment, therefore, depends on the features of both this road segment 
and its connected road segments. Considering the influence of topo-
logical adjacency of road segments, this study introduced a well- 
established semi-supervised classification neural network model 
(GCNN) (Bruna, Zaremba, Szlam, & LeCun, 2013; Zhu et al., 2020) to 
classify the social function of road segments based on high-dimensional 
embedding vectors. 

First, we used the road network to construct a bidirectional dual 
graph G ≡ (V,E), consisting of a set of vertexes V that connect edges E 
(Porta, Crucitti, & Latora, 2006). Vertexes V refers to road segments and 
edges E refers to the topological connection between adjacent road 
segments (Fig. 3). Each vertex k has a feature vector xk, which is sum-
marized in a vector matrix Xn*d . where n represents the number of 
vertexes, and d represents the dimensions of the feature vector. 
Furthermore, the graph structure is described in a binary adjacency 
matrix A. 

Second, the GCNN model was constructed based on an urban road 
graph G (Zhao et al., 2020). The GCNN model is designed as a multilayer 
neural network structure referred from traditional convolutional neural 
networks (CNNs). However, since graph structure is structured in the 
irregular spatial domain, CNNs cannot directly handle the urban road 
graph. For the road graph structure, the most straightforward way to 
construct a neural network is to expand all the nodes, with each node 
acting as a neuron processing unit, using the same weights and opera-
tions as in the multilayer perceptron (MLP) neural network. But infor-
mation about the connections between nodes in the road graph, i.e., the 
road topology, is missing. To address this issue, Graph convolutional 
filter is introduced to transform urban road graph to the spectral domain 
and therefore the convolutional network structure is applied to handle 
with complex network issues. Fig. 4 displays the proposed architecture 
of GCNN with geo-semantic embedding. 

In this work, The GCNN model was introduced to classify urban 
functions at the road segment level using geo-semantic embedding 
features. GCNN has a typical three-level network architecture: an input 
layer, two hidden layers and an output layer. Given an urban road graph 
G, the GCNN model inputs G with geo-semantic embedding vector ma-
trix Xn*d , iteratively forward propagation operates with graph con-

Table 1 
Functional Terminologies used in this study.  

Terminologies Meaning 

Traffic roads Traffic roads are used to handle the link between the various 
functional parcels in the city and their connection with the city’s 
external transportation hub. They are distinguished by high 
traffic speed, wide lanes and few pedestrians. 

Commercial 
roads 

Commercial roads are made up of shops on one side or both, and 
are the most common type of shopping space. Diversified roles, 
protection, comfort and facilitation of pedestrian activities 
characterize them. 

Residential 
roads 

Residential roads are primarily linked to residential clusters for 
walking bicycles and some motor vehicles, and a quiet 
environment should be preserved by such roads. According to 
the concept of pedestrian priority, the spatial environment 
should be organized, conducive to human activity and able to 
facilitate people contact. 

Public roads Public roads are designed to meet the needs of living activities 
within the functional areas of the city, which are characterized 
by low traffic speed. The lane can be slightly narrower, and both 
sides are usually configured for public buildings, parking lots, 
and living services.  

Table 2 
Mapping POI categories to the social functions of road segments.  

No. POI category Count Social function 

1 Car service 10,821 Traffic 
2 Daily life service place 68,240 Public 
3 Sports/recreation 19,308 Public 
4 Public facility 19,370 Public 
5 Corporate business/factory 48,416 Commercial 
6 Medical service 17,426 Public 
7 Road facility 2387 Traffic 
8 Governmental and public organizations 45,848 Public 
9 Residential 21,148 Public 
10 Science and education 49,655 Public 
11 Shopping mall 116,345 Commercial 
12 Transportation facilities 69,473 Traffic 
13 Business building 34,911 Commercial 
14 Bank/financial 24,275 Commercial 
15 Tourist attraction 8628 Public 
16 Food and beverage place 56,989 Commercial  
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volutional filter in hidden layers, and finally outputs the node-level road 
graph G with the probability distribution of social functions Р. The 
hidden layer can be described as a non-linear function: 

Hl+1 = f
(
Hl,A

)
(4)  

where Hl denotes the lth neural network layer, especially H0 = Xn*d is the 
input layer, and HL = Р is the output layer, l being the number of layers. 
Specifically, the GCNN follows a layer-wise propagation rule f(∙,∙), 
which can be expressed as: 

f
(
Hl,A

)
= σ

(
D̂

− 1/2
Â D̂

− 1/2
HlWl

)
(5) 

where σ(∙) denotes the non-linear activation function. In this paper, 
a Rectified Linear Unit (ReLU) was adopt to introduce nonlinearity into 

the hidden layers (Glorot, Bordes, & Bengio, 2011). D̂
− 1/2

ÂD̂
− 1/2 

de-
notes the normalized Laplacian matrix, which making GCNN taking 
advantage of neighboring characteristics and fully leveraging 
geographical information. Wl is the weight matrix for the lth layer. More 
details about the GCNN model can be found in Kipf’s work (Kipf & 
Welling, 2016). 

2.4. Evaluation indictors 

We compared the cross-entropy loss and prediction accuracies of 
different methods. The evaluation indictors are defined as follow: 

2.4.1. Cross-entropy loss: 

loss = −
∑M

c=1
yclog(pc) (6) 

where M is the number of social function class c (In this paper, M = 3, 
i.e., commercial road, public road, and traffic road). y is the binary in-
dicator, y = 1 if road segment is correctly classified, otherwise y = 0. p is 
predicted probability calculated by Softmax function. 

2.4.2. Accuracy: 

acc =
1
N

∑N

n=1
yc (7) 

Where N is the size of the test set. Note that the prediction accuracy is 
the major evaluation metric and the cross-entropy loss is only used as a 

complementary indicator for model comparison. 

3. Implementation and results 

3.1. Study area and data description 

China’s capital, the city of Beijing is the center of politics, culture, 
science, technology, and international exchange. Beijing has the largest 
urban built-up area and road traffic system in China. In recent years, 
with the acceleration of urbanization, new requirements have been put 
forward for road spatial planning and urban functional structure. The 
study area was the central urban area within the 5th Ring Road of Bei-
jing (Fig. 5.a), characterized by a diverse urban morphology and 
elevated mixed land use rates. Taxis play an important role in intra- 
urban transportation in Beijing. The dataset, collected GPS trajectories 
of more than 12,000 taxis from November 1, 2011–November 14, 2011 
in Beijing. The format of a GPS record comprises of taxi ID, longitude, 
latitude, timestamp, direction, speed, and status (vacant or occupied). 
The sampling frequency of the GPS track is about 30 s. 

The primary road network and POIs data of the study area were 
collected from the Beijing City Lab (https://www.beijingcitylab.com/), 
which is an innovative research community that exploring urban dy-
namics quantitively and offering new insights for urban planning and 
governance for sustainable urban development in China. The lab also 
actively shared and released valuable urban geographical datasets, 
which have been widely used in many types of research (Long, 2016). In 
this study, the road network data covers the main roads in the study area 
(Fig. 5.b), including primary, secondary, and other driven roads. 
Meanwhile, due to the complexity of urban functional structure and the 
lack of urban land use ground truth, we employed the POIs data as 
auxiliary data to obtain the social function of each road segment. Fig. 5.c 
maps the kernel density distribution of POIs data. In these POI records, 
in addition to the basic information (e.g., POI name, address, 
geographical coordinates, and district name), multilevel category in-
formation, including top-level category, second-level category and 
third-level category is also included. The top-level category allowed us 
to infer urban functions. In this study, WGS84 geographic coordinate 
system was adopted. 

Fig. 3. An example of converting road network sample to a dual graph representation.  
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3.2. Geo-semantic embedding representation 

3.2.1. Parameters setting in Word2Vec 
In this study, we extracted the main traffic roads in the study area 

and divided them into 1514 road segments. By inputting the Road- 
Trajectory corpus and training the Word2Vec model, each road 

segment can be represented as a high-dimensional vector, which con-
tains important traffic interaction information and can be easily used in 
the downstream neural network models. 

The parameter sensitivities of Word2Vec have been widely discussed 
in recent exploratory studies. Considering the computational cost of the 
Word2Vec model and the volume of the real taxi GPS trajectory data, 

Fig. 4. The proposed architecture of GCNN.  
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most of the parameters were set to recommended or default values. 
Inspired by existing exploratory studies (Liu et al., 2017; Yan, Janowicz, 
Mai, & Gao, 2017), the vector dimension in the Word2Vec model was set 

to 128 and the scanning window was 6. However, an uncertain 
parameter still existed, namely the number of iterations k, which may 
have an impact on the final results. This uncertain parameter is usually 

Fig. 5. Study area and data schema. (a) Study area – the central urban area of Beijing City. (b) The primary road network in the study area. (c) Kernel density 
distribution of POIs data. 

Fig. 6. Change of the testing accuracy of prediction assessment with increases in the number of iterations in Word2Vec. The box plot in each iteration dedicates the 
distribution of test accuracy of 20 times running, while the blue dot line dedicates the change of the mean value of test accuracy. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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determined by different geo-semantic tasks. In this study, a few trials 
were performed to determine the appropriate k value in the Word2Vec 
model, which was achieved by running the GCNN prediction task with 
different numbers of iterations (ranging from 10 to 150 with intervals of 
10, each iteration running 20 times to ensure the stable accuracy) and 
evaluating the testing accuracy. As depicted in Fig. 6, the mean value of 
testing accuracy peaked at about 0.76 when the number of iterations 
was set as 20, 40, 100, and 120. However, the box plots show that the 
distribution of test accuracy was uneven, and outliers existed when k =
40 and k = 120. Therefore, we set the number of iterations to 20 and 100 
respectively in the following analysis. 

3.2.2. Correlation analysis 
In order to verify the effectiveness of the geo-semantic embedding 

vector of a road segment, we selected a road segment of interest: the 
FuCheng Road in Xidan district to visually estimate its traffic interaction 
and similarity among neighboring roads. We obtained the semantic 
embedding vector of FuCheng Road and its neighboring road segments. 
Then, we calculated the cosine similarity metric between them and 
explored the traffic interaction in the road network. As depicted in 
Fig. 7, the cosine similarity between FuCheng Road and its neighboring 
road segments in Xidan district were spatially heterogeneous. The 
maximum cosine similarity was 0.69, occurring between FuCheng Road 
and its downstream road segment, i.e., Tiyuguan South Road – road 
segment 1 in Fig. 7. However, the similarity value between FuCheng 
Road and its adjacent road segment, i.e., West 3rd Road—road segment 
6 in Fig. 7—was only 0.029, meaning that there was less traffic inter-
action. Meanwhile, the similarity value between FuCheng Road and its 
bidirected road segment—road segment 3 in Fig. 7—was also small, only 
0.036. We believe that this result is primarily related to the social 
function of a road segments and/or its spatial interaction with other 
road segments. For example, a typical taxi trip would not include 
FuCheng Road as well as road segment 3 because that would require 
making a U-turn at the end of one road segment and then going to the 
opposite direction, which does not happen very often with taxi trips. 
However, as the topological distance between FuCheng Road and its 
neighboring road segments increases, the similarity value between them 
becomes smaller, resulting in a weaker traffic interaction. 

3.3. Spatial distribution of social functions 

Considering the weight and proportion of POI categories along and 
near each road segment, the social function of road segments was 
divided into three types: commercial, public and traffic. Commercial POI 
dominated streets were the largest proportion at 37.8%, while public 
and traffic POI dominated streets account for 36.6% and 25.6%, 
respectively. As is shown in Fig. 8, commercial POI dominated streets 
are located in several popular business centers and market districts, such 
as Xidan, Wangfujing, and Shijiecheng commercial streets. Traffic POI 
dominated streets typically comprise ring roads, carrying the function of 
transportation, such as commuting between downtown and suburban 
areas. Public POI streets mainly comprise public services streets, 
distributed in scenic areas, public services areas, and residential areas. 

3.4. Validation of GCNN prediction model 

3.4.1. Comparative methods 
A MLP neural network model (Pal & Mitra, 1992) was introduced to 

compare with the proposed GCNN prediction model. As one of the 
commonly applied feed-forward neural networks, MLP has various 
characteristics, such as fast operation, ease of implementation and 
smaller training set requirements. In addition, for a better understanding 
of the effectiveness and strength of semantic embedding features, a 
vector consisting of pick-up and drop-off features was implemented for 
comparison. Researchers have verified that the urban functions of a 
certain urban area can be characterized by the temporal and spatial 

dynamics of the number of taxi pick-ups or drop-offs (Liu et al., 2012; 
Pan, Qi, Wu, Zhang, & Li, 2013). For comparison purpose, we extracted 
similar features at the road segment level, i.e., the number of pick-ups 
per hour, the number of drop-offs per hour, and the difference be-
tween these two numbers from the real taxi GPS trajectory data set. 
Then, we concatenated the above features and generated a 72-dimen-
sional Origin-Destination (OD) feature vector. All compared methods 
are listed as follow:  

a) semantic embedding features with k = 20 + GCNN model (SE20 +

GCNN);  
b) semantic embedding features with k = 20 + MLP model (SE20 +

MLP);  
c) semantic embedding features with k = 100 + GCNN model (SE100 +

GCNN);  
d) semantic embedding features with k = 100 + MLP model (SE100 +

MLP);  
e) pick-up and drop-off features + GCNN model (OD + GCNN);  
f) pick-up and drop-off features + MLP model (OD + MLP). 

In the above methods, different feature vectors were fed into the 
GCNN model and MLP model, and the urban functions of each road 
segment were predicted. Additionally, by setting the random seed, we 
randomly split the dataset into the training dataset, the validation 
dataset, and the testing dataset with ratios of 60%, 20%, and 20%, 
respectively. The validation dataset was used to validate the model at 
each epoch while the training and the testing datasets were used to 
evaluate the final overall accuracy. The learning rate was set to 0.01; the 
number of hidden units was set to 64; and other parameters were set to 
the default values. The maximum number of training epochs was set to 
1000 to fit the GCNN model sufficiently. The dropout mechanism (Sri-
vastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) and 
weight decay regularization were introduced to prevent overfitting in 
training process. To ensure a reliable and stable estimation of the pre-
diction accuracy, each model was run 20 times with different random 
seeds. 

3.4.2. Prediction performance 
In this subsection, we discuss the performance of proposed GCNN 

model and comparative methods on the real taxi GPS trajectory data in 
Beijing. Table 3 shows the comparative results for the performance. We 
found that (1) our proposed methods (identifier a and c in the Table 3), 
with relative less loss and high accuracies, outperform other compara-
tive methods (identifier b, d, e and f) for classifying urban functions on a 
very large volume of real-world taxi trajectories; (2) MLP-based methods 
(b, d and f) drop behind GCNN-based methods (a, c and e) as they ignore 
contextual information in geographic contexts in an urban road 
network, so compared with GCNN-based methods, MLP-based methods 
may suffer from the issue that how to fully leverage geographical in-
fluence; (3) semantic embedding based methods (identifier a, b, c and d) 
obtain much better performance than pick-up and drop-off based 
methods (e and f), indicating that modeling the underlying traffic 
interaction information extracted from taxi GPS trajectories is important 
for classifying urban functions at the road segment level. 

To summarize, with semantic embedding features, our proposed 
GCNN model is able to learn and better leverage traffic interaction in-
formation extracted from taxi GPS trajectories data and significantly 
improve the performance of social function prediction task along road 
segments in urban areas. 

4. Discussion 

4.1. Semantic embedding features and model selection 

In this study, we constructed semantic embedding features to 
represent traffic interaction characteristics among road segments by 
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Fig. 7. Cosine similarity between FuCheng Road and neighboring road segments in Xidan district.  
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Fig. 8. The social function distribution of road segments. The three subfigures above the map are street view images of three interest road segments: A. South 5th 
Road (Traffic); B. Xidan South Street (Commercial); C. Jingshan Street (Public). 

Table 3 
Test assessment of compared methods.  

ID Method Loss Accuracy 

Mean Max. Min. Std. Mean Max. Min. Std. 

a) SE20 + GCNN 0.842 1.070 0.612 0.115 0.761 0.802 0.702 0.027 
b) SE20 + MLP 1.116 1.609 0.953 0.197 0.528 0.571 0.452 0.036 
c) SE100 + GCNN 0.786 0.988 0.664 0.084 0.759 0.802 0.710 0.026 
d) SE100 + MLP 1.092 1.878 0.964 0.202 0.546 0.601 0.485 0.033 
e) OD + GCNN 0.981 1.012 0.946 0.021 0.532 0.581 0.495 0.022 
f) OD + MLP 1.032 1.069 0.993 0.017 0.491 0.436 0.538 0.029 

Bolded score indicates relatively fit value in the corresponding column. 
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geo-semantic training in the Word2Vec model based on a Road- 
Trajectory corpus. Furthermore, urban function prediction results indi-
cate that our proposed GCNN model outperformed traditional methods 
in comparative trials. Compared with existing methods, the proposed 
method has the following advantages. First, without considering traffic 
interaction correlations, the OD-based method merely leverages tem-
poral and spatial activity variations and frequencies to classify urban 
functions, which may miss the contextual and underlying spatial inter-
action information. Liu, Kang, Gong, and Liu (2016) have revealed that 
urban land use is intricately linked to traffic behaviors, and a lack of 
information on spatial interaction creates a barrier for the improvement 
of classification accuracy in urban functional studies. Our study reso-
nates with Liu’s work and shows that semantically embedding features 
considering traffic interaction patterns can significantly improve the 
performance of modeling urban function prediction. 

Second, how to learn effective data representation automatically 
becomes a key issue in machine learning and geo-semantic studies 
(Bengio et al., 2013). Early representation approaches, such as features 
extraction and features selection, both incorporate certain subjective 
learning assumptions and easily ignore potential information. Geo- 
semantic embedding features take advantage of potential information 
learning and inner spatial interaction, integrating a GCNN model that 
considers the influence of topological adjacency of road segments, 
thereby reducing manual intervention. 

Third, although geo-embedding techniques, such as topic modeling 
and Word2Vec, have been investigated in urban road networks to 
certain degree, the advances for geo-embedding representation remains 
a key challenge, especially when integrating advanced deep learning 
methods with large geo-enriched movement data. Liu et al. (2017) 
presented a Road2Vec model to reveal traffic interaction pattern using 
vehicle travel routes. They used artificial neural network and support 
vector machine model to a short-term traffic forecasting task. The results 
showed that geo-embedding features can reveal implicit traffic rela-
tionship among roads and have a good performance in traffic fore-
casting. However, how to effectively leverage non-linear traffic 
interaction information hidden in geo-semantic embedding still needs 
further research. In this study, a semi-supervised GCNN model was 
introduced to integrate with geo-semantic embedding features of road 
segments. Enabled by the unique advantages of graph convolutional 
neural networks in dealing with an unstructured road graph, the po-
tential of geo-semantic embedding features can be further explored. Our 
experimental results also revealed that the GCNN model with semantic 
embedding features obtains less information loss and higher prediction 
accuracies, and outperform comparative MLP-based methods. 

In addition, GCNN was selected as the machine learning model to 
classify urban functions with regard to the characteristics of traffic 
spatial interactions among road segments. Geo-embedding representa-
tion has been shown to be an effective property that can describe the 
uniqueness and similarity of a road segment. However, roads are con-
nected but are not isolated in urban road networks. GCNN adopt an 
aggregation strategy in which each road segment aggregates its topo-
logically neighbors’ embedding characteristics to learn the contextual 
and geographical information. Therefore, it is ideal for modeling urban 
road networks. Our results also showed that the GCNN-based method 
can perform better than other comparative methods. 

4.2. Comparisons with popular machine learning methods 

Moreover, comparisons with popular machine learning methods 
(Jordan & Mitchell, 2015) have also been employed to validate the 
performance of our proposed GCNN model. To ensure a reliable and 
stable estimation, a powerful toolkit for hyper parameter optimization 
and model compression- NNI (Neural Network Intelligence)-was utilized 
to obtain the best parameters (https://github.com/microsoft/nni). For 
comparative machine learning methods including linear regression (LR), 
k-nearest-neighbors (KNN), support vector machines (SVM), and 

random forest (RF), each model was run 100 times using semantic 
embedding features with k = 20 with different random seeds. Results are 
summarized in Table 4. Reported numbers denote the classification 
accuracy on the test set. We found that our proposed method, overall, 
outperforms other popular machine learning methods. The maximum 
accuracy of our proposed method is a little bit lower than the other three 
methods (KNN, SVM, and RF), but the mean accuracy and minimum 
accuracy are better than the other methods, while our method has a 
smaller standard deviation. This result indicates that our proposed 
method has better stability and robustness using the same features for 
geographic knowledge discovery. 

4.3. Contributions and limitations 

The contributions of this study can be summarized as following three 
aspects:  

• Taxi GPS trajectory data have been widely employed in the related 
studies of investigating urban functional structure. Extracting pick- 
up and drop-off positions and then measuring the proportions in-
side each region is a commonly used method to characterize urban 
functional regions. However, intermediate GPS records of each tra-
jectory also contain valuable information, such as the movement 
flows and traffic states, which have not been thoroughly explored. To 
address this issue, an analogizing strategy was presented and the 
Word2Vec model in NLP was employed to learned a geo-semantic 
embedding representation of road segment. Via geo-semantic 
embedding features, not only can we characterize urban traffic ele-
ments using representation learning, we can quantitatively investi-
gate and measure the traffic interaction between road segments by 
correlation analysis;  

• Vehicles moving within a city are naturally constrained by urban 
roads. As a typical graph structure in complex network study, urban 
road networks have been widely explored in urban studies and 
planning. Road segments have geographical and topological associ-
ation with other road segments, especially its neighbors. Road 
segment based classifying task is dependent on both the character-
istics of that road segment, and the characteristics of road segments 
to which it is connected. Therefore, a GCNN model was introduced to 
classify the social functions of road segments and improve the clas-
sification accuracy; 

• Finally, this work makes a contribution by enhancing the under-
standing of the urban functional classification at the road segment 
level in a large-scale urban environment in an automatic and effi-
cient way by using GCNN and taxi GPS trajectory data. This method 
can be done reproducibly and applicable with readily available tra-
jectory data, OSM road network data and POIs data in many other 
urban areas. 

The limitations of this study should also be noted and paid more 
attention to in future research. First, the social function of each road 
segment was identified, and these were divided into only three types. A 
real-world urban area, however, is characterized by more complex and 

Table 4 
Summary of results with compared machine learning methods.  

Method Mean Max. Min. Std. 

LR 0.561 0.573 0.551 0.007 
KNN 0.543 0.821 0.435 0.116 
SVM 0.682 0.834 0.338 0.164 
RF 0.671 0.834 0.327 0.164 
GCNN 

(Our Proposed) 
0.759 0.802 0.710 0.026 

Note: LR-Linear Regression Classification, KNN-K Nearest Neighbor Classifica-
tion, SVM-Support Vector Machine Classification, RF-Random Forest 
Classification. 
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diverse urban functional structures and elevated mixed social functions. 
The next work on this issue is to integrate the mixture natures of urban 
land uses and POI data to reflect the diversity and mixture of social 
functions. Second, future research is anticipated to use more features in 
the GCNN-based prediction, such as physical characteristics from 
remote sensing and street view data. Third, it needs to be further 
explored that whether we should consider longer distance range of in-
teractions rather than the directly connected neighbors when using 
graph-based deep learning models to study urban functions. 

5. Conclusion 

In this study, we proposed a novel framework for sensing the rela-
tionship between traffic interaction patterns and urban functions from a 
road segment perspective. Considering traffic interaction information, 
geo-semantic embedding features can be learned from the proposed 
Road-Trajectory corpus by training the Skip-gram Word2Vec model. 
Moreover, the social function of each road segment can be identified by 
integrating the auxiliary data of POIs and the TF-IDF weighting method. 
Finally, because road segments are topologically connected, we intro-
duced a GCNN to classify the urban functions of road segments. This 
work was implemented using extensive taxi GPS trajectory data in Bei-
jing. The result shows that our proposed GCNN model with geo-semantic 
embedding features outperform other comparative methods. We sub-
sequently discussed the advantages of geo-semantic embedding repre-
sentation and the potential improvement of the proposed framework. 
The framework and methods proposed in this study can be applied to 
other urban areas as well, which can be done reproducibly with readily 
available datasets. This study contributes to urban study and GIScience 
literature by building a Road-Trajectory corpus using vehicle GPS tra-
jectory data and investigating social functions based on geo-semantic 
embedding features from a road segment perspective using deep 
learning techniques. 
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