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ABSTRACT
Dynamic human activity intensity information is of great impor-
tance in many location-based applications. However, two limita-
tions remain in the prediction of human activity intensity. First, it is 
hard to learn the spatial interaction patterns across scales for pre-
dicting human activities. Second, social interaction can help model 
the activity intensity variation but is rarely considered in the exist-
ing literature. To mitigate these limitations, we proposed a novel 
dynamic activity intensity prediction method with deep learning on 
graphs using the interactions in both physical and social spaces. In 
this method, the physical interactions and social interactions 
between spatial units were integrated into a fused graph convolu-
tional network to model multi-type spatial interaction patterns. The 
future activity intensity variation was predicted by combining the 
spatial interaction pattern and the temporal pattern of activity 
intensity series. The method was verified with a country-scale 
anonymized mobile phone dataset. The results demonstrated that 
our proposed deep learning method with combining graph con-
volutional networks and recurrent neural networks outperformed 
other baseline approaches. This method enables dynamic human 
activity intensity prediction from a more spatially and socially inte-
grated perspective, which helps improve the performance of mod-
eling human dynamics.
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1. Introduction

Dynamic population distribution, as one of the core indicators showing the pattern of where 
people live and move, plays an important role in many geographical studies. Capturing the 
variation of population across space over time has been a fundamental requirement of 
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many advanced location-based services, such as intelligent traffic management, personal 
recommendation, and emergency evacuation (Small and Cohen 2004, Linard et al. 2012, 
Deville et al. 2014, Li et al. 2020; Chen et al., 2018a). Example applications include adjusting 
the load of cell phone towers based on the number of service users, estimation of the air 
pollution exposure levels for residents, spatiotemporal modeling of infectious disease 
spread, and early warning of crowd stampedes and crushes (Wang et al. 2019, Li et al. 
2019b; Li et al., 2020b; Chen et al., 2018a). Accurate population activity prediction would 
improve the performance of such applications and benefit many domains (e.g. geography, 
urban planning, disaster response, traffic engineering, and population health).

With the developments of information and communication technologies (ICT), posi-
tioning technologies and ubiquitous digital devices, a huge number of individual-level 
tracking data have been accumulated for business intelligence and accessible for research 
use (Gonzalez et al. 2008, Gao 2015, Xu et al. 2016, Yuan and Raubal 2016, Liu et al. 2017, 
Feng et al. 2019). It has transformed the ways we capture human mobility in multiscale 
space and place, and then impacted the dynamic population estimate methods (Deville 
et al. 2014, Yue et al. 2014, Liu et al. 2019, Li et al. 2019a). With the huge amount of tracking 
data, inferring population distribution by counting human activity intensity has become 
an important research area (Deville et al. 2014, Wang et al. 2018). Thus, detailed human 
activity intensity prediction has become a key component in the dynamic population 
prediction problem. Although the human activity intensity prediction problem has been 
widely studied (Li et al., 2012; Liang et al. 2016; J. Chen et al., 2018b), there are two 
limitations remaining. First, human activities are often aggregated to spatial statistical 
units such as census blocks, census tracts or cell tower catchment areas (Deville et al. 2014, 
Li et al. 2019a; Gao et al, 2019b). These spatial units have different numbers of adjacent 
neighbors, which may conflict with the fixed-length input format of some downstream 
machine learning models. Also, the scale transformation between different units may 
introduce additional statistical errors. It is hard to learn the spatial patterns of human 
activity variations comprehensively, especially regarding different distance ranges of 
spatial interactions (Zhu et al. 2020). Second, the social relationship of people between 
different spatial units can help explain the human movements, especially periodic beha-
viors (Cho et al. 2011, Guo et al. 2015, Shi et al. 2015); and reverse causality may also exist 
as spatial proximity may facilitate the formation of social and community links (Johnson 
and Gilles 2003, Crandall et al. 2010, Ratti et al. 2010, Wang et al. 2015). For example, one 
may make a phone call to book seats in advance before she or he goes to a restaurant or 
a mother may call her daughter’s school from her workplace before heading to the school. 
It means that the social interactions, especially the phone call behaviors, may influence 
human activity intensity variation. Previous research also found that the similarity 
between two individuals’ movements or mobility characteristics within the communities 
positively correlates with their proximity in social networks (Wang et al. 2011, Shi et al. 
2015). In the past decade of geography and GIScience research, there has been a recent 
trend of integrating social network connections to the space-time analytical framework 
and into GISystems (Yu and Shaw 2008, Shaw and Yu 2009, Luo et al. 2011, Andris 2016, Ye 
et al. 2016). However, as far as we know, most existing prediction models have mainly 
focused on the movement interactions between spatial units or the periodicity of the 
activity intensity time series, which ignored the influence of integrated spatial social 
interactions in the models.
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To tackle these limitations, this study proposed a novel human Activity Intensity 
Prediction method using the Interactions in Physical and Social spaces, called ‘AIP-IPS’ 
with deep learning methods on graphs, to predict the future activity intensity variation. 
Considering the characteristics of huge volume, comprehensive stratified population 
coverage, and high correlation with population distribution (Deville et al. 2014; Chen 
et al., 2018b, Li et al. 2019a, Kang et al. 2012), the phone call volume in a region at certain 
time, was selected as the indicator of human activity intensity in this study. The main 
contributions of this research are summarized as follows:

(1) The spatial statistical units (as nodes) as well as their relationships (as edges) were 
represented in the form of graphs to overcome the conflict between the hetero-
geneous distribution of spatial units and the fixed-length input format of some 
downstream machine learning models, which can help model the spatial pattern of 
activity intensity variation more accurately.

(2) The impacts of integrated physical and social interactions on activity intensity 
estimation were comprehensively considered with a graph fusion technique, 
which can significantly improve the accuracy and interpretability of dynamic 
activity intensity prediction.

(3) A human activity intensity prediction model was constructed by utilizing a graph 
convolutional network (GCN) for modeling the spatial interaction patterns between 
different spatial units and a long short-term memory neural network (LSTM) for 
modeling the tendency and periodicity of the temporal pattern of activity intensity 
series.

(4) The proposed method was evaluated with a large-scale anonymized mobile phone 
dataset in the country of Senegal, involving the call detail records (CDRs) of one 
hundred thousand individuals with a period of one year. The results demonstrated 
that our proposed deep learning method outperformed other baseline approaches.

The remaining parts of this study are organized as follows. Section 2 presents the 
literature review on dynamic activity intensity mapping and spatial activity intensity 
prediction. Section 3 provides the mathematical statement of this problem. Section 4 
explains the particulars of our proposed human activity intensity prediction method using 
deep learning techniques, and other baseline methods with performance evaluation 
metrics. Section 5 presents a case study with experiment analysis and performance 
comparison. Section 6 discusses broad implications of this work and our vision for future 
work. Finally, section 7 presents the conclusion of this study.

2. Literature review

2.1. Dynamic human activity intensity mapping

Dynamic human activity intensity mapping has been widely used in fine-grain population 
estimation. Existing human activity intensity mapping methods can be divided into two 
categories based on data sources: remote sensing data-based methods, and movement 
tracking data-based methods. The remote sensing data-based methods present indicators 
or proxies which are significantly related to the human activity intensity distribution from 
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remote sensing images, and can derive the human activity intensity variation by modeling 
the relationship between the extracted indicators and the underlying population (Zhuo 
et al. 2009, Levin and Duke 2012, Gao et al. 2019a). Nightlight satellite images and 
extracted built-up areas are the most widely used indicators (Azar et al., 2013, Yu et al. 
2018, Lloyd et al. 2019). For example, Tripathy et al. (2017) used the indicators of night 
light area and light volume derived from nighttime satellite imagery to estimate human 
activity intensity distribution through a regression model. Robinson et al. (2017) created 
high resolution human activity intensity estimations from composite Landsat images with 
a trained convolutional neural network model. Recently, Xing et al. (2020) proposed an 
end-to-end deep learning framework (Neighbor-ResNet) to estimate human activity 
volumes from remote sensing imagery, which is good for regional population and activity 
intensity estimations. However, limited by the acquisition period of the remote sensing 
images and the impact of weather factors such as clouds and fog, the human activity 
intensity variation inferred by these methods are not continuous in a fine-granular 
temporal resolution (e.g. hourly) and often have the data missing phenomenon.

The increasingly available location-based services provide data support to further 
improve the accuracy and granularity of dynamic human activity intensity mapping. 
Emerging techniques to obtain dynamic human activity intensity information mainly 
rely on GPS-equipped taxi trajectories (Liu et al. 2012, Kang et al. 2013, Wang et al. 
2018), smart card data (Ma et al. 2017), and geotagged social media data (Huang & 
Wong, 2016; Liu and Wang 2015, Hipp et al. 2019, Zhang et al. 2020a). For example, 
Hipp et al. (2019) used geocoded Twitter data to construct activity intensity variations at 
different times of a day. Ma et al. (2017) modeled the hourly changes in population at the 
community level based on the number of people swiping in and out of the subway 
stations. Whereas, the representativeness problem of these methods leads to the sam-
pling bias (Mellon and Prosser 2017).

With the characteristics of wide coverage and fine spatiotemporal scale, mobile phone 
data has become an advanced data source for mapping human activity intensity and 
human dynamics as well as land-use inference (Deville et al. 2014, Pei et al. 2014, Jiang 
et al. 2017, Liu et al. 2018, Sakarovitch et al. 2018). Kang et al. (2012) analyzed the 
relationships between the population and the phone call intensity Erlang value, the 
number of calls, and the number of active mobile users using mobile phone CDR data, 
and found that there is a linear relationship between the number of calls and mobile 
active users. Douglass et al. (2015) fitted the relationship between CDR data and demo-
graphic data with a piecewise log-linear function, and then used the land use data to 
estimate the urban population distribution through a random forest model. Jiang et al. 
(2017) demonstrated how the large-scale CDR data can be used to infer population 
residential distribution and activity-based mobility patterns in Singapore. Alongside the 
great success from existing works, there are still several issues that need to be addressed, 
such as the data missing problem and the oscillation distortion problem when using such 
data (Fiadino et al. 2012, Chen et al. 2019, Li et al. 2019a).

2.2. Spatio-temporal prediction methods

The basic goal of spatio-temporal prediction methods is to learn the mapping relationship 
from independent variables to dependent variables (Li and Shahabi 2018). It can be 
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divided into two categories: statistics-based parametric methods and machine learning- 
based nonparametric methods (Deng et al. 2018). The statistics-based parametric methods 
are mostly extended from the classic spatial statistical methods. They were constituted by 
further considering the temporal information on the basis of spatial information, such as the 
space-time autoregressive integrated moving average methods (STARIMA) (Min and Wynter 
2011, Cheng et al. 2014) and the geographical and temporal weighted regression methods 
(GTWR) (Huang et al. 2010, Ma et al. 2018, Wu et al. 2019), etc. For example, Cheng et al. 
(2014) introduced a dynamic spatial weight matrix into a localized STARIMA model to 
capture the heterogeneity and nonstationary of traffic network data; Ma et al. (2018) used 
the GTWR model to explore the spatio-temporal impact of the built environment on 
passenger traffic flow. However, the spatio-temporal relationships in the existing parametric 
methods were usually expressed in a simple functional manner, which was insufficient to 
describe more complex nonlinear relationships.

With the recent progress in computer sciences, machine learning-based nonparametric 
methods have become a mainstream in this research area. The popular classical models 
used in spatio-temporal prediction include the K-nearest neighbor model (Zhang et al. 
2013, Cheng et al. 2020), the hidden Markov model (Qi and Ishak 2014, Xu et al. 2015), and 
the support vector machine model (Feng et al. 2018). To account for the highly non-linear 
spatio-temporal dependence, deep learning methods offer new promise for spatio- 
temporal prediction researches (Wu and Tan 2016, Li et al. 2017, Ren et al. 2020, Jin 
et al. 2020). For example, Zhang et al. (2017) modeled the transportation network as an 
image and used convolutional neural networks to capture the spatial dependency of the 
traffic. Zhang et al. (2020b) and Cui et al. (2019) represented the traffic network as graphs 
and forecasted the short-term traffic conditions with graph convolutional networks to 
consider the topology of the underlying network. Chai et al. (2018) proposed a multi- 
graph convolutional neural network model to predict citywide bike-sharing flows at 
station-level and the model significantly reduced prediction error in their experiments. 
However, these methods are mostly used in the fields of transportation (Zhang et al. 2019, 
Cui et al. 2019, Yao et al. 2020), ecology (Yi et al. 2018), and economics (Zhou et al. 2019). 
Research on dynamic population mapping and human activity intensity prediction are still 
insufficient. Moreover, how to improve the prediction performance by considering the 
domain knowledge and integrating interactions in both physical and social spaces is still 
a problem worth exploring.

2.3. Spatial activity intensity prediction

Since there exists strong spatial regularity and predictability in human movements, 
previous literatures have attempted to predict the rhythm and variation of spatial activity 
intensity (Song et al. 2010, Xu et al. 2016, Barbosa et al. 2018). The existing methods can be 
divided into two categories according to different topics of interest. The first category 
focuses on the tendency and periodicity of the activity intensity series (Li et al., 2012; Liang 
et al. 2016; Cheng et al., 2020). For example, Li et al. (2012) discovered the temporal 
patterns of taxi passengers using an adaptive watershed algorithm from taxi tracking 
data, and then predicted the activity intensity variation with an improved ARIMA model. 
Liang et al. (2016) proposed a human activity intensity prediction framework based on an 
advanced recurrent neural network and a parallel streaming computing technique, which 
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was efficient for real-world requirements from activity intensity prediction. However, the 
fundamental causes of activity intensity variation are human movements and various 
types of spatial interaction flows between regions (Shaw and Yu 2009, Andris 2016, Zhen 
et al. 2019). Therefore, it is less effective to model the activity intensity variation with only 
considering the activity intensity time series.

To deal with the problems abovementioned, researchers started focusing on the 
movement interactions between spatial units (Zhang et al. 2017; J. Chen et al., 2018b; 
Crivellari & Beinat, 2019). For example, Crivellari and Beinat (2019) embedded the location 
into multidimensional vectors from the human movement activities and provided 
a meaningful way to represent locations. Fan et al. (2015) clustered the individuals with 
similar movement behaviors by the Markov Chain Monte Carlo method, and then fore-
casted future activity intensity variation via a random walk model. Chen et al. (2018b) 
modeled the flows and spatial correlation of activity intensity using artificial neural net-
work to predict the activity intensity variation at a large metropolitan area. Whereas, the 
influence of integrated spatial social interactions was often ignored in the existing 
models, and thus the prediction performance of these methods was not completely 
satisfactory and needed further improvement.

3. Problem statement

The problem of dynamic human activity intensity prediction can be summarized as 
predicting the future activity intensities of certain spatial units over time. Given a set of 
spatial units S ¼ U1;U2; . . . ;Un½ � and corresponding activity intensity time sequences 
ActUi ¼ Ai;1;Ai;2; . . . ;Ai;m

� �
, the problem of interest is to predict the value of Ai;mþ1 for 

each spatial unit, where Ui indicates the ith spatial unit, and Ai;t indicates the activity 
intensity of the spatial unit Ui at time t. To solve this problem, the tendency and 
periodicity of the activity intensity time series and the multi-layer spatial interaction 
patterns of those spatial units are required to explore, and the most likely activity intensity 
values are predicted based on prior samples.

4. Methodology

In this section, we presented the particulars of our human activity intensity prediction 
method using deep learning models, which includes the following three parts. First, we 
explained how graphs were constructed from physical and social interactions using the 
mobile phone dataset. Second, we developed an algorithm to integrate the multiple 
graphs for model training. Third, we introduced the details of constructing prediction 
models by integrating GCN and LSTM. The flow chart of our prediction method is shown 
in Figure 1. Finally, the evaluation metrics and other baseline methods for comparison are 
introduced at the end of this section.

4.1. Graph construction

Extracting complex spatial relationships into the form of graphs is a key step of GCN. The 
constructed graphs should be able to represent the relationships between the nodes and 
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be related to the problem of interest. Overall, nodes with stronger connections should be 
assigned with higher edge weights. In order to quantify the relationships between spatial 
interaction and human activity intensity, two types of relationships (geographical dis-
tance and human movement) are selected to model the interactions in physical space and 
the phone call behavior is selected to model the interaction in social space.

Based on the idea of Tobler’s first law of geography, the geographical distance affects the 
similarity of two different places (Tobler 1970, Zhu et al., 2018a). As for the human activity 
intensity prediction problem, places with shorter geographical distances are more likely to 
have more similar activity intensity change patterns. Therefore, the geographical distance 
was used to construct one of the graphs. In this graph, the nodes represent the cell phone 
towers and the geographical distance between two nodes is taken as edge weight. An 
illustration of the distance graph is shown as Figure 2 (a), where GD i;jð Þ represents the 
geographical distance between cell phone tower ci and cj . It is worth noting that the farther 
stations are linked with higher weights in this graph, which conflicts with the intuitive idea 
of geographical graph generation. Thus, further processing of the distance graph is needed 
in the graph transformation step.

The human movements between spatial units can cause activity intensity changes 
(Zhang et al. 2017, Zhu et al. 2018, Peng et al. 2019). The more movement records 
between two places mean that the activity intensity changes in these two places are 
more relevant. Thus, the movement interaction can be a key aspect to predict human 
activity intensity variation. Following this idea, we construct the movement interaction 
graph according to their historical human movement records. An illustration of the 
movement interaction graph is shown in Figure 2 (b), where GM i;jð Þ represents the total 
number of human movement records between two cell phone towers ci and cj , and 
a movement is detected when the two adjacent call detail records of one individual linked 
to different cell phone towers (Gao et al. 2013).

Figure 1. The prediction process of the AIP-IPS model.
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As discussed in the introduction, the social relationship, especially the phone call 
behavior, can help explain the human movements and have influence on human activity. 
Like movement interaction, the more social interaction records between two places may 
indicate that the greater correlation of human activities between these two places (Gao 
et al. 2013). Therefore, the social interaction graph was constructed based on their 
historical phone call interaction records. An illustration of the phone call graph is 
shown in Figure 2 (c), where represents the total number of phone call records between 
cell phone tower ci and cj, and a phone call interaction is detected when one individual 
makes a phone call to another individual in this study.

It is worth noting that, considering that the purpose of graph construction is to model 
the connection strengths between places (Zhu et al. 2020), the edge weights in the 
movement interaction graph and social interaction graph are the sum of bidirectional 
values (See more discussions in section 6.2). This procedure helps to make the matrix 
symmetric (one requirement in the spectral-based GCN models using graph Laplacian, 
Kipf and Welling (2016)), which is convenient for downstream neural network solutions.

4.2. Graph transformation

As we want to consider the impacts of geographical distance, movement interaction and 
social interaction on human activity intensity variations comprehensively, there are still 

Figure 2. Illustrations of the three types of graphs including (a) distance graph GD, (b) movement 
graphGM, and (c) phone call graph GS. Each of the graphs was represented as a symmetric matrix.
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two problems that need to be dealt with before feeding the graphs into the prediction 
model. First, the graphs generated from the mobile phone dataset should be transformed 
into characteristic matrices which fit the input of GCN (Kipf and Welling 2016). Second, 
since the edge weights between graphs vary widely, each graph should be normalized 
separately before integration. Therefore, a symmetric normalized Laplacian matrix is 
adopted to tackle these problems (Defferrard et al. 2016, Geng et al. 2019, Zhu et al. 2020).

To generate the Laplacian matrix, we first transform the constructed graph G into an 
adjacency matrix A. As the values in generated graphs are continuous variables, which 
need to be converted into binary variables to represent adjacent or not by setting 
a threshold. The values that satisfy the threshold in the constructed graph will be 
converted to 1 and the unsatisfied will be converted to 0 to form the adjacency matrix. 
Then, the degree matrix D is calculated by adding each column element of the adjacency 
matrix and putting the summation values on the diagonal (other places are zero). In other 
words, the degree matrix represents the connectivity weights of each point in the 
adjacent matrix. Finally, the corresponding symmetric normalized Laplacian matrix can 
be defined as follows: 

L ¼ I � D�
1
2AD�

1
2 (1) 

where L denotes the Laplacian matrix, I denotes the unit matrix, A denotes the 
adjacency matrix, and D denotes the degree matrix. An illustration of Laplacian matrix 
generation is shown as Figure 3.

Based on the Laplacian matrix generation result, the geographical distance graph, the 
movement interaction graph and the social interaction graph are converted into three 
characteristic matrices with same dimension and same value range. Thus, the character-
istic matrix of the fusion graph can be combined by the weighted summation of the three 
Laplacian matrices at the element level. To keep the weighted summation result 

Figure 3. An illustration of the graph transformation process.
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normalized, we define the sum of weights as 1. Therefore, the graph fusion operator can 
be defined as follows: 

F ¼
XN

i¼1
Wi � Li (2) 

XN

i¼1
Wi ¼ 1 (3) 

where F indicates the fusion graph, N indicates the number of Laplacian matrices, which 
equals to 3 in this study, Li indicates the ith Laplacian matrix and Wi indicates the 
corresponding weight.

Noting that the thresholds may play different roles in different graphs. To fit the 
requirement that nodes with stronger connection intensity should be with higher edge 
weights, the values in the distance graph which are smaller than the distance threshold 
are marked as connective. Besides, the values in the movement interaction graph and 
social interaction graph which are larger than the corresponding thresholds are marked as 
connective. Moreover, the optimal weighting coefficients assigned for each graph were 
determined by a grid search approach in the parameter space based on the validation 
dataset performance with the strategy of lowest root mean square error. Advanced 
heuristic techniques to determine the weights automatically may further improve the 
prediction efficiency.

4.3. Prediction model with the GCN and LSTM network

We construct the AIP-IPS model to predict the human activity intensity from both 
spatial and temporal aspects. It mainly includes two parts: a GCN layer for modeling 
the multi-type spatial interaction patterns between different units and a LSTM network 
used as an encoding-decoding framework for modeling the tendency and periodicity of 
human activity intensity variation. The architecture of the AIP-IPS model is shown in 
Figure 4.

As shown in Figure 4, the inputs can be summarized into two parts. First, the current 
human activity intensity distribution (Actt) and the fusion graph (which is described in 
Section 4.2) are used as inputs to the GCN layer to consider the impact of the interactions 
in both physical space and social space comprehensively. This procedure can be imple-
mented as formula 4: 

H lþ1ð Þ ¼ @ F � H lð Þ �W lð Þ
� �

(4) 

where l indicates the number of convolutions, @ indicates the activation function, F 
indicates the fusion graph which has been introduced in Section 4.2. H lð Þ indicates the 
characteristic matrix, which is the historical human activity intensity distribution when l 
equals to 1. W lð Þ indicates the weight matrix, which is randomly initialized for model 
training.

Then, the LSTM network was used as the encoding-decoding framework to model the 
temporal pattern of the human activity intensity variations. This procedure can be 
implemented as formulas 5–10: 
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ft ¼ @ Wf� ht� 1;H lþ1ð Þ
h i

þ bf

� �
(5) 

it ¼ @ Wi� ht� 1;H lþ1ð Þ
h i

þ bi

� �
(6) 

eCt ¼ @ Wc� ht� 1;H lþ1ð Þ
h i

þ bc

� �
(7) 

Ct ¼ ft�Ct� 1 þ it�eCt (8) 

ot ¼ @ Wo� ht� 1;H lþ1ð Þ
h i

þ bo

� �
(9) 

ht ¼ ot�@ Ctð Þ (10) 

where ft , it , ot indicate the forget gate layer, input gate layer, and output gate layer, 

respectively; indicates the cell state; eCt indicates the candidate values; Wf , Wi, Wc, Wo 

indicate the corresponding weight matrixes of these layers, respectively; bf , bi, bc, bo 

indicate the corresponding biases in these layers. As shown in the formulas, the graph 
convolution result H lþ1ð Þ is taken as the input and the matrix ht is the current output of this 
model. More technical details of the GCN layer and the LSTM layer can be found in the 
research papers (Kipf and Welling 2016) and (Hochreiter and Schmidhuber 1997), respec-
tively. With this architecture, the AIP-IPS model is trained to predict future time series of 
activity intensity variation. When performing prediction, new human activity intensity 
sequence of each cell phone tower and the fusion graph will be formed as the input and 
passed into the trained model, and then the predicted results of all cell phone towers are 
obtained.

Figure 4. The architecture of the AIP-IPS model.
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4.4. Performance evaluation

4.4.1. Evaluation metrics
We used the metrics of root mean square error (RMSE) and mean absolute error (MAE) to 
evaluate the performance of the proposed activity intensity prediction model.

Given the human activity intensity distribution of all the cell phone towers at time t 
Actt ¼ Ac1;t ;Ac2;t ; . . . ;Acn;t and the corresponding predicted human activity intensity 
distribution Act0t ¼ A0c1;t

; A0c2;t
; . . . ;A0cn;t

, the two metrics are defined as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
PT

t¼1 A0ci;t
� Aci;t

� �2

N � T

v
u
u
t

(11) 

MAE ¼

PN
i¼1
PT

t¼1 A0ci;t
� Aci;t

�
�
�

�
�
�

N � T
(12) 

where the Aci;t indicates the activity intensity at cell phone tower ci at time t, N represents 
the total number of the cell phone towers involved in the processing, and T represents 
the total number of time slots that need to be predicted.

4.4.2. Baselines
To demonstrate the superiority of our proposed AIP-IPS method compared with other 
prediction models for human activity intensity prediction, the following methods were 
selected as baselines:

● ARIMA: The autoregressive integrated moving average is a popular time series 
analysis method which can predict future time series values by learning the effects 
of the lagged value, error term combination, and non-stationarity (Li et al., 2012).

● KNN: The k-nearest neighbors model finds the k closest training samples and out-
puts the average value or the weighted average value of the k closest neighbors as 
the predicted result (Smith et al. 2002).

● GBDT: The gradient boosting decision tree, also known as multiple additive regres-
sion tree, is an iterative decision tree generation algorithm consisting of multiple 
decision trees as weak learners. The results of all trees are added up to make the final 
decision (Friedman 2001).

● LSTM: The LSTM is an advanced recurrent neural network architecture. It is well- 
suited to making predictions based on time series data and has been widely adopted 
in recent studies such as traffic flow prediction (Huang et al. 2019, Ren et al. 2020).

● AIP-PM: The original GCN-based model on physical movement interaction only is 
the foundation of our proposed method. The movement graph introduced in section 
4.1 was used to learn the spatial interaction. A similar architecture was also used for 
short-term traffic prediction (Zhao et al. 2019).

● AIP-PGM: To measure the influence of different interaction expressions on the 
prediction performance, a gravity-based interaction intensity expression was also 
used as the edge weight of graph to construct the prediction model AIP-PGM. 
Different from using the bi-directional movement summation as the edge weight 
in our proposed method, the edge weight in AIP-PGM was defined as M i;jð Þ�M j;ið Þ

Popi�Popj
, where 
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M i;jð Þ and M j;ið Þ represented the total number of human movement records from 
place i to place j and from place j to place i in the study period, respectively; and Popi 

and Popj represented the number of mobile phone users of place i and place j, 
respectively. Other network settings were similar with AIP-PM.

● ASTGCN: The attention-based spatiotemporal GCN model utilizes a spatial-temporal 
attention mechanism to learn the dynamic spatial-temporal correlations in data, and 
employs graph convolutions to capture the spatial interaction patterns and common 
standard convolutions to describe the temporal features (Guo et al. 2019).

The features extracted for model training of the baseline models were classified into 
three categories. For the ARIMA model, the entire human activity time sequence in 
training dataset was formatted as the features to learn the periodicity and tendency of 
the overall time series. As for the KNN, GBDT, and LSTM models, the human activity time 
sequence was split into fixed length subsequences (with a subsequence length of six) and 
the corresponding activity intensity values in the subsequences were organized as 
features for training (except for the last dimension used as outcome label). In terms of 
the AIP-PM, AIP-PGM, and ASTGCN models, the feature organizations were similar to our 
proposed AIP-IPS method that was introduced above. For all models, the parameters were 
tuned with a grid search method based on the validation dataset performance, and the 
performance on the testing dataset was reported in Section 5.3.

5. Case Study

5.1. Data and processing

The anonymized mobile phone call detail records (CDRs) used in this study was provided 
by a major telecommunications carrier covering over 9 million users in Senegal and was 
accessed through the ‘Data for Development’ Senegal challenge (De Montjoye et al. 2014). 
The mobile phone data was collected for a year in 2013. In order to improve the data 
performance, the users having less than 25% days with interactions per given period and 
having an average of more than 1000 interactions per week were marked as noise/outlier 
and removed from the dataset. After the data cleaning, two types of mobile phone datasets 
were provided: a tower-to-tower call frequency data for all cell phone towers on an hourly 
basis of the whole population, and a tower level call detail record data at the individual 
level of 10% sampled users. For privacy concerns, all personal information was removed 
before the telecommunication carrier provided the data. Examples of the two data struc-
tures are shown in Tables 1 and 2 and the map of the study area is shown in Figure 5.

Corresponding to the two mobile phone datasets, two types of human activity 
intensity data were generated in the data processing step to evaluate the perfor-
mance of our proposed method. For the first one, we aggregated the hourly tower-to- 
tower call frequency to each tower to represent the human activity intensity variation 
of the whole population (abbreviated as Whole-data). For the second one, the 
individual call detail records were aggregated to each tower at an hourly time interval 
to represent the activity intensity variation of sampled users (abbreviated as Sample- 
data). The two datasets showed a high coefficient of correlation (with a value of 
0.784) but with differences in detail, which helps evaluate the prediction performance 
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comprehensively. In order to split the data into training and testing sets, the last 10% 
days’ data of each dataset were chosen as test data and the others were chosen as 
training data. All the methods were coded in the Python programming language. The 
experiments were performed on a server with six Intel(R) Xeon(R) Gold 6140 CPU 
Processors clocked at 2.30 GHz, one NVIDIA Tesla P100 GPU computing processor 
and 372 GB main memory, running on the Ubuntu operating system. The parameters 
used in this case study are shown in Table 3, which were tuned with a grid search 
method in the parameter space based on the validation dataset performance with 
the strategy of lowest root mean square error (Chai et al. 2018).

Table 1. An example of tower-to-tower call frequency data.
Date Time (t) Outflow_TowerID Inflow_TowerID Call number

01–01 00:00 2 3 14
01–01 01:00 2 5 22
. . . . . . . . . . . .
12–31 23:00 1659 1653 2

Table 2. An example of an individual’s call detail record data.
Individual ID Date Time (t) TowerID Longitude (x) Latitude (y)

5842***** 01–07 10:30 385 −17.35** 14.75**
5842***** 01–07 12:19 313 −17.40** 14.75**
5842***** . . . . . . . . . . . .
5842***** 01–13 21:40 386 −17.36** 14.75**

Figure 5. Map of the study area.
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5.2. Verification of spatial interaction fusion technique

As previously mentioned, we applied a graph convolutional neural network fusion tech-
nique to model the impact of interactions in physical and social spaces on human activity 
intensity. To verify its effectiveness, we evaluated the performance by comparing four 
strategies: (1) model with considering all above aspects (abbreviated as AIP-IPS), (2) model 
with geographical distance only (abbreviated as AIP-PD), (3) model with movement 
interaction only (abbreviated as AIP-PM), and (4) model with social interaction only 
(abbreviated as AIP-S).

Figure 6 showed the comparison results of graph fusion technique verification. It could 
be seen that the AIP-IPS model had the best performance on both two datasets using two 
evaluation metrics, which indicated that the graph fusion technique significantly 
improved prediction performance and robustness. Moreover, as the impact of movement 
interaction was widely used in human activity intensity prediction and showed the best 
performance in three single graph convolution models, we chose the AIP-PM model as 
one of the baselines to further demonstrate the superiority of our method.

5.3. Comparison with existing prediction methods

The detailed experimental result is shown in Table 4. The RMSE/MAE values of our 
proposed AIP-IPS method were 413.62/189.88 and 30.93/17.11 for the Whole-Data and 
the Sample-Data, respectively, which were lower than those for the other baseline 
methods. We found that the deep learning-based methods, such as AIP-IPS, AIP-PM, AIP- 
PGM, ASTGCN and LSTM, outperform others, which was possibly due to the fact that the 
deep learning models perform better in modeling the non-linear and comprehensive 

Table 3. Parameters used in this case study.
Parameter Value Parameter Value

Distance threshold 30,000 Distance graph weight 0.3
Movement threshold 20 Movement graph weight 0.1
Social threshold 20 Social graph weight 0.6
LSTM layers 1 Time sequence length 6
GCN layers 1 Num of hidden units 64
Graph convolution kernel size 1 Time step 6

Figure 6. Verification of the Graph fusion technique using (a) RMSE and (b) MAE.
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spatiotemporal relationships. The performance of AIP-PM and AIP-PGM were roughly 
similar, which indicated the different interaction intensity expression didn’t cause 
a huge change on the prediction performance. Considering the prediction errors do not 
conform to a normal distribution, the nonparametric K-S test (Smirnov 1948) was applied 
to test whether the improvement on accuracy is significant. The results were shown in 
Table 5. It shows that all the compared pairs have larger K-S statistics than the expected 
values under null hypothesis and with very small p-values, which indicates that the 
predicted errors of AIP-IPS are significantly different from those of the others. Moreover, 
the ARIMA method shows a bad performance in this case. It mainly because the ARIMA 
method learns the temporal patterns from the entire training dataset and generates the 
entire test sequences at a time, which introduces more uncertainty for the prediction 
result. Therefore, the ARIMA method won’t be included in the following sensitivity test 
experiments.

To further evaluate the sensitivity of our proposed method, we analyzed the prediction 
errors with different population sizes and activity intensity entropy. As the RMSE is more 
sensitive to outliers and is widely used in prediction tasks, it is selected as the evaluation 
metric in the following analysis. Figure 7 shows the maps of the AIP-IPS model prediction 
error (RMSE) in each cell for the whole population dataset and the aforementioned 
sampled dataset (in Section 5.1), respectively.

The prediction errors with different population sizes are quite different. To evaluate the 
prediction errors under different population sizes, we grouped all the cell phone towers 
into four classes regarding their population size using the quartile method (as we only 
concern about the grouping result, the population size can be simplified as average 
human activity intensity here.). The results are shown in Figure 8. It could be seen that 
there was an increase in the prediction error of the six methods with an increase in the 
population size. It was expected because a larger population size led to more complex 

Table 4. A performance comparison with the baselines.

Category Method

Whole-data Sample-data

RMSE MAE RMSE MAE

Deep Learning AIP-IPS 413.62 189.88 30.93 17.11
AIP-PM 482.22 215.27 34.36 18.32
AIP-PGM 488.41 219.68 33.01 17.87
ASTGCN 518.56 251.02 37.79 20.56
LSTM 522.10 271.19 39.24 19.57

Classical Machine Learning KNN 536.71 192.80 50.62 19.18
GBDT 538.51 203.71 49.12 19.10

Time series ARIMA 1529.88 823.03 120.21 67.53

Table 5. The K-S test results for prediction performance comparison.

Compared pairs

Whole-data Sample-data

K-S statistics p-value K-S statistics p-value

AIP-IPS & AIP-PM 0.2009 p < 0.0001 0.0327 p < 0.0001
AIP-IPS & AIP-PGM 0.2640 p < 0.0001 0.0122 p < 0.0001
AIP-IPS & ASTGCN 0.1944 p < 0.0001 0.4764 p < 0.0001
AIP-IPS & LSTM 0.3052 p < 0.0001 0.0505 p < 0.0001
AIP-IPS & KNN 0.1454 p < 0.0001 0.0500 p < 0.0001
AIP-IPS & GBDT 0.1820 p < 0.0001 0.0319 p < 0.0001
AIP-IPS & ARIMA 0.2749 p < 0.0001 0.5036 p < 0.0001
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population interactions and higher prediction difficulty. It should be noted that although 
our proposed method got the best performance at each group and in each dataset, the 
predicted performance differences in the micro population size were small. It indicated 
that the classical machine learning methods could get acceptable prediction perfor-
mances in places with small population sizes. Moreover, the movement interaction and 
social interaction showed high correlation with population distribution. The Pearson 
product-moment correlation coefficients (Pearson 1894) between population size and 
movement interaction size, and between population size and social interaction size were 
0.97 and 0.94, respectively. Therefore, the comparison results were also applicable to 
comparing the prediction error variations of different social interaction size and move-
ment interaction size.

In addition, the information entropy can be used as an effective index to evaluate the 
stability and complexity of a time series (Song et al. 2010, Li et al. 2020). We defined the 
activity intensity entropy as follows to evaluate the heterogeneity of activity intensity 
variation: 

Figure 7. The maps of the AIP-IPS model prediction error (RMSE) in each cell (a) for the whole dataset 
and (b) for the sampled dataset.

Figure 8. The effect of population size on the RMSE (a) for the whole dataset, and (b) for the sampled 
dataset.
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Enti ¼ �
Xn

j¼1
p jð Þlog2p jð Þ (13) 

where Enti indicates the entropy of activity intensity variation of cell phone tower ci, p jð Þ
indicates the probability that the activity intensity within the jth group, and n indicates the 
number of groups that the activity intensity variation can be divided. To calculate p jð Þ, the 
value range of the activity intensity series is divided into several groups based on a predefined 
threshold. Then, the frequency of those values associated with each group j, freq jð Þ, and the 
length of the activity intensity series of cell phone tower ci, len ið Þ, are calculated. Thus, the 

probability p jð Þ equals to freq jð Þ
len ið Þ . In this study, the division thresholds were selected as 10 for 

the sampled dataset and 100 for the whole dataset, respectively. It is worth noting that the 
entropy absolute values themselves had less meaning, and what made more sense were their 
comparison. Therefore, the division threshold was decided by the size and variation pattern of 
data we used. The activity intensity entropy not only revealed the heterogeneity of the activity 
intensity variation patterns, but also revealed its regularity and repeatability. A larger entropy 
value indicated that the activity intensity had a more complex variation pattern. In this study, 
we divided cell phone towers into three classes using thresholds of Ent values of 4.19 and 5.30 
for the sampled dataset and 4.33 and 5.71 for the whole dataset, corresponding to the 
cumulative distribution values of 60% and 90% in the activity intensity entropy statistical 
distribution of each dataset, respectively. The results are shown in Figure 9. In general, all the 
methods showed good performance when the population entropy was small. With the 
increase of the entropy value, the RMSE values of the AIP-IPS method increased from 
174.12 to 840.19 on the whole dataset and from 9.62 to 38.29 on the sampled dataset. 
Nevertheless, our method still showed the lowest mean prediction error for each class of 
population entropy values.

6. Discussion

6.1. The effect of social ties on human movements

Studies on the intersection of social networks and human movements are exciting topics 
in the research on human mobility and movement data science (Cho et al. 2011, Andris 
2016, Dodge et al. 2020). Several fundamental hypotheses, such as that social connection 

Figure 9. The effect of activity intensity entropy on the RMSE (a) for the whole dataset and (b) for the 
sampled dataset.

18 M. LI ET AL.



strength between different spatial units can help explain the human movement patterns, 
have previously been studied (Guo et al. 2015, Shi et al. 2015, Zhou et al. 2018). In this 
study, the social interaction based on phone calls, was used as one of the indicators for 
modelling the variation of the human activity intensity. The results demonstrated that the 
consideration of social interaction was effective to improve the prediction performance. 
This study was an attempt to quantitatively study the impact of social connections on 
human activity intensity prediction. More related researches using other types of social 
connection data (e.g. Facebook users’ friendship network) have also been investigated in 
recent studies on COVID-19 human behavior responses (Charoenwong et al. 2020, Holtz 
et al. 2020). With the increasing development of social network applications and the 
popularity of mobile phone devices, more and more activities that once had to be 
completed in the physical space were associated with social network interactions, such 
as online shopping, food delivery, and video chat. The exploration of these social activities 
that include both geographical locations and social ties would provide an important 
insight for understanding human behavior more comprehensively.

6.2. The usage of symmetric matrices for interaction measurement

Extracting complex spatial relationships into the form of graphs is a key step of GCN. The 
constructed graphs should be able to represent the relationships between the nodes and 
be related to the problem of interest. In this study, two types of interaction relationships, 
the movement interaction in physical space and the phone call interaction in social space 
were selected as indicators and the interaction strength between two places was mea-
sured by the sum of bidirectional interaction values. The following descriptions further 
explain the rationale behind our use of these interaction measurements.

From the methodology perspective, the spectral-based graph convolution network, 
which was used in our purposed method, requires a symmetric matrix (based on graph 
Laplacian) as the model input. Therefore, we used the sum of bidirectional values to 
represent the connection strengths to meet the Laplacian matrix requirement. This 
expression indicated that the more interaction records between two places, the more 
relevant the changes in the activity intensity of these two places. It is worth noting that 
our intent was not directly using the bidirectional flow traffic between two places as 
features nor as outcome labels. A similar undirected spatial interaction representation 
approach has also been used in recent graph-based neural network researches such as 
Zhu et al. (2020) and Chai et al. (2018). Furthermore, a prediction method AIP-PGM, which 
uses a gravity-based interaction expression as the edge weight, was used as one of the 
baselines to understand the effect of interaction expression on human activity intensity 
prediction. The results indicate that the proposed method with two types of interaction 
expressions have similar performance and outperformed other baselines. It shows the 
validity of using undirected connection strength to quantify the spatial interactions in our 
problem of interest. Other kinds of undirected movement interaction modeling 
approaches (e.g. gravity model) have also been used in other domains such as in economy 
growth estimation (Li et al., 2020a; Oberhofer and Pfaffermayr 2018) and population 
migration (Ramos and Suriñach 2017).

From the empirical observation perspective, an asymmetry test is applied to the origin- 
to-destination (OD) physical interaction matrix in this study. The indicator Asy is defined as 
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the volume from placeA to placeB divided by the volume from placeB to placeA. The statistical 
result of the average value is 1.18, the median value is 1.0, and the standard deviation is 0.92. 
The results showed that the overall asymmetry is distributed around the value 1 and the 
distribution is relatively concentrated in our dataset.

Finally, the main focus of this work is to demonstrate the importance of integrating 
deep learning models with multiple types of interactions (e.g. mobility and social con-
nectiveness) on improving the performance of predicting human activity intensity. An 
existing research (Liu et al. 2012) showed that the temporal variation of human activity in 
each cell can reveal the traffic source-sink areas. In this work, the temporal periodicity and 
variation of human activity intensities was modeled by the LSTM model, which implicitly 
characterized this aspect. The fused graph-based model (capturing connection strength 
between places) and LSTM model (capturing temporal periodicity and variability of 
human activity intensity) together in the proposed approach already well served our 
purpose. We consider that using an asymmetrical directed graph along with spatial graph 
convolutional models (Zhang et al. 2019), attention-based models (Veličković et al. 2017, 
Monti et al. 2018), and redefined Laplacians (Ma et al. 2019), may further improve the 
prediction performance, which will be explored in our future work.

6.3. Limitations and future work

In addition to the abovementioned usage of symmetric matrices for interaction measure-
ment, several other limitations of this work should be noted and further explored in future 
work. First, in the current AIP-IPS method, we only use the number of phone calls to quantify 
the social interaction. Dependent upon data availability, more social interaction indices, 
such as the call duration, can be used to evaluate whether the performance is stable or can 
be improved. Second, the graph fusion technique applied in the proposed AIP-IPS method 
was at the element level. That is to say, the characteristic matrix of a fusion graph was the 
weighted summation of three single graphs. In such a way, the complex network structure is 
ignored to some degree. How to merge the characteristics intelligently at a network level 
would be another important research direction. Third, the weighting coefficients assigned 
for each graph were determined by a grid search in the parameter space. Advanced 
heuristic techniques to determine the optimal weights automatically may improve the 
prediction efficiency. Fourth, the proposed AIP-IPS method only considered the interaction 
characteristics and spatial distribution of the cell phone towers, which ignored the impact of 
contexts. Considering the environmental and semantic contexts such as points of interest 
distribution (Yuan et al. 2014) and road density (Kotavaara et al. 2011) can be an extension of 
the human activity intensity prediction methods. Last but not least, how to overcome the 
sampling bias for inferring the dynamic distribution of whole population from the distribu-
tion of human activity intensity is another scientific problem worth solving. Our future work 
will explore these issues.

7. Conclusions

This study has proposed a novel human activity intensity prediction method using the 
interactions in physical and social spaces, called AIP-IPS, to predict the future activity 
intensity distribution in a country. In this method, we present the spatial units and their 
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interactions in the form of graphs to overcome the conflict between the heterogeneous 
distribution of these units and the regular input format of downstream machine learning 
models. We develop a deep learning-based graph fusion technique to consider the impact 
of interactions in both physical and social spaces on activity intensity distribution compre-
hensively with the aim of improving the accuracy and stability of human activity intensity 
prediction. Based on the prior techniques, we construct the activity intensity prediction 
model with integrating GCN and LSTM neural networks to model the spatiotemporal 
characteristics of activity intensity variation. By evaluating the prediction results with several 
baseline methods using a large-scale anonymized mobile phone dataset with hourly 
temporal resolution and at the spatial resolution of cell tower coverage in Senegal, the 
superiority of our proposed method was demonstrated. The case study results indicated 
that our proposed AIP-IPS method was preferable among those competing spatiotemporal 
prediction methods regarding both prediction error and stability.

By using the graph convolutional neural network model to simultaneously considering 
the impacts of the interactions in both physical and social spaces, our proposed method 
presents an effective human activity intensity prediction method in a fine spatiotemporal 
scale. The method allows us to more accurately predict future time series of activity intensity 
variation across the space, which is of great importance in many location based-services 
such as intelligent transportation and emergency evacuation. Moreover, the fine-scale 
activity intensity variation information may help reveal the underlying characteristics of 
human mobility patterns, thus providing support for other social science researches and 
practices. This study also contributes to the emerging trend of GeoAI research in the 
GIScience communities (Janowicz et al. 2020).
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