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Staying at home is a privilege: evidence from fine-grained mobile 

phone location data in the U.S. during the COVID-19 pandemic 

 

The Coronavirus disease 2019 (COVID-19) has exposed and, to some degree, 

exacerbated the social inequity in the U.S. This study reveals the correlation 

between demographic/socioeconomic variables and home-dwelling time records 

derived from large-scale mobile phone location tracking data at the U.S. Census 

Block Group (CBG) level in twelve most-populated Metropolitan Statistical Areas 

(MSAs) and further investigates the contribution of these variables to the disparity 

in home-dwelling time that reflects the compliance of stay-at-home orders via 

machine learning approaches. We find statistically significant correlations between 

the increase in home-dwelling time (𝛻ு஽்) and variables that describe economic 

status in all MSAs, which is further confirmed by the optimized Random Forest 

models, as median household income and percentage of high income are the top 

two most important variables in predicting 𝛻ு஽். The partial dependence between 

median household income and 𝛻ு஽்  reveals that the contribution of income to 

𝛻ு஽் is place-dependent, non-linear, and different given varying income intervals. 

Our study reveals the luxury nature of stay-at-home orders with which lower-

income groups may not afford to comply. Such disparity in responses under stay-

at-home orders reflects the long-standing social inequity issues in the U.S., 

potentially causing unequal exposure to the COVID-19 that disproportionately 

affects the vulnerable populations. We must confront systemic social inequity 

issues and call for a high-priority assessment of the long-term impact of COVID-

19 on geographically and socially disadvantaged groups.  

 

Keywords: COVID-19; mobile phone data; stay-at-home orders; social inequity; 

Random Forest.  

 

 



 

 

1 Introduction 

The Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2) has been a global threat that leads to many 

health, economic, and social challenges. The World Health Organization (WHO) declared 

COVID-19 as a pandemic on March 11, 2020. Two days after, the U.S. declared the 

National Emergency (March 13, 2020), stating the severity of the situation and urging 

local governments and organizations to join forces. At the time of writing, we are still 

witnessing widespread community transmission of COVID-19. As of October 18, 2020, 

there had been a total of 40,118,333 infections and 1,114,749 deaths (WHO 2020). The 

U.S., as one of the global epicenters of the disease, accounts for 20.1% of the global 

infections (8,065,615 infections) and 19.6% of the global deaths (218,131 deaths) (WHO 

2020). 

Following the lockdown of the earlier epicenter city of Wuhan in China, social 

distancing, aiming to restrain the spread, has gradually emerged as one of the most 

common and effective non-pharmaceutical control measures to reduce person-to-person 

contact (Wilder-Smith and Freedman 2020). Studies have discovered that the 

implementation of strong social distancing measures leads to the reduction in mobility 

and the increase in home-dwelling time, largely responsible for the reduced transmission 

of SARS-COV-2 in countries that include China (Kraemer et al. 2020), South Korea 

(Shim et al. 2020), Italy (Remuzzi and Remuzzi 2020), and France (Stoecklin et al. 2020).  

In the U.S., the stay-at-home orders (or similar mitigation measures) have been 

issued by the Federal and local governments to encourage residents to limit their outdoor 

activities and large gatherings. During the stay-at-home orders, the majority of non-

essential businesses were closed to further reduce the risk of viral transmission. Following 

the first state-wide stay-at-home order issued in California (March 16, 2020), other states 

started to adopt similar mitigation strategies. On March 24, 2020, more than half of the 

U.S. population was under stay-at-home orders, and only ten days later (April 4, 2020), 

95% of the U.S. population was suggested to stay at home (Baek et al. 2020). However, 

the effectiveness of the stay-at-home orders greatly relies on public compliance (Gao et 

al. 2020). Given the voluntary nature of stay-at-home orders in the U.S., there is a 

collection of evidence that reveals disparate responses from different communities even 

under the same order (Huang et al. 2020a; Huang et al. 2020b; Chiou and Tucker 2020). 



 

 

As Dr. Anthony Fauci, the Director of the National Institute of Allergy & Infectious 

Diseases, White House Coronavirus Task Force, once stated1: 

"When you're in the middle of a crisis like we are now with the coronavirus, it 

really does…ultimately shine a very bright light on some of the real weaknesses and 

foibles in our society."  

Such disparity in responses reflects the long-standing social inequity issues in the 

U.S., potentially causing unequal exposure to the COVID-19 that disproportionately 

affects the socially disadvantaged groups (Bonaccorsi et al. 2020; Dasgupta et al. 2020). 

Therefore, it is of great importance to understand whether and how communities respond 

to government decisions and what drives the disparity in responses under those decisions. 

Such knowledge not only deepens our understanding of social inequity issues exposed by 

the COVID-19 pandemic but also benefits the decision-making of the Federal 

government and local authorities in choosing appropriate responses to the COVID-19 

pandemic and future epidemics.  

For the COVID-19 pandemic, numerous studies have investigated the disparate 

reactions in response to stay-at-home orders, and many pieces of evidence at various 

scales have been found, pointing to the societal construct largely determined by 

demographic and socioeconomic variables. On the country scale, Barnett-Howell and 

Mobarak (2020) found that social distancing measures are generally less effective in poor 

countries, as the poorer people are less willing to, or can not afford to, make economic 

sacrifices. The spatial models constructed by Oyedotun and Moonsammy (2020) revealed 

a negative relationship between per capita gross domestic product and attributable deaths 

in South American countries. Similar patterns are confirmed by Huang et al. (2020a), who 

conducted a similar study at the U.S. county-level using multi-source mobility datasets 

and found counties with high income tend to reduce their mobility aggressively. Similar 

patterns were also found at a much finer scale, as a census tract-level study by Chiou and 

Tucker (2020) revealed that high-income earners generally spent more time at home 

during the stay-at-home orders (the access to high-speed Internet plays a vital role). 

Besides the contribution of financial factors, the disparity in response can be explained 

 

1 https://www.businessinsider.com/fauci-covid-19-shows-unacceptable-disparities-for-african-

americans-2020-4 



 

 

by other quantifiable demographic/socioeconomic variables, such as racial/ethnic 

composition (Czeisler et al. 2020; Huang et al. 2020b), educational attainment (Gray et 

al. 2020), and commuting modes (Huang et al. 2020a). Other factors that involve risk 

awareness (Jones 2020; Barrios and Hochberg 2020; Brodeur et al. 2020), belief in 

science (Briscese et al. 2020), and political affiliations (Painter and Qiu 2020), are also 

proved to be relevant to the compliance of stay-at-home orders, despite that those factors 

are difficult to be quantified and accessed.  

Fortunately, the increasing availability of mobile phone location tracking derived 

mobility datasets with fine-grained spatiotemporal resolution has greatly facilitated the 

rapid monitoring of human mobility in a spatially explicit manner. Through the 

examination of the stay-at-home compliance in twelve selected Metropolitan Statistical 

Areas (MSAs), this study contributes to the existing literature by applying data-driven 

approaches and by taking advantage of the fine-grained home-dwelling records at the 

U.S. Census Block Group (CBG) level. We aim to reveal the correlation between 

demographic/socioeconomic variables and home-dwelling time and further statistically 

investigate the contribution of these variables to the disparity in home-dwelling time that 

reflects the compliance of stay-at-home orders. The detailed contributions of this work 

are summarized as follows: 

 We use fine-grained home-dwelling records (aggregated at CBG level) collected 

from millions of mobile devices to assess and cross-compare the compliance of 

stay-at-home orders in the top twelve most-populated MSAs in the U.S. 

 We reveal the correlation between the increase in home-dwelling time during 

stay-at-home orders and demographic/socioeconomic variables. We further apply 

an optimized Random Forest algorithm, a popular machine learning method, to 

statistically investigate the contribution of these variables to the increase in home-

dwelling time.  

 We present the feature importance of selected demographic/socioeconomic 

variables and the performance of the designed Random Forest model in predicting 

the increase in home-dwelling time based on these variables. 

 We discuss how the statistically important variables from the Random Forest 

model reflect the long-standing social inequity issues in the U.S. and what can be 

suggested for better policy-making during the COVID-19 pandemic and future 

epidemics.    



 

 

2 Study Areas and Datasets 

2.1 Study Areas 

We select twelve most-populated MSAs in the U.S. as our study areas (Figure 1), 

according to the MSA Population Totals in 2019 (U.S. Census Bureau 2020a). These 

twelve MSAs include New York-Newark-Jersey City (New York MSA), Los Angeles-

Long Beach-Anaheim (Los Angeles MSA), Chicago-Naperville-Elgin (Chicago MSA), 

Dallas-Fort Worth-Arlington (Dallas MSA), Houston-The Woodlands-Sugar Land 

(Houston MSA), Washington-Arlington-Alexandria (D.C. MSA), Miami-Fort 

Lauderdale-Pompano Beach (Miami MSA), Philadelphia-Camden-Wilmington 

(Philadelphia MSA), Atlanta-Sandy Springs-Alpharetta (Atlanta MSA), Phoenix-Mesa-

Chandler (Phonenix MSA), Boston-Cambridge-Newton (Boston MSA), and San 

Francisco-Oakland-Berkeley (San Francisco MSA).  

Established by the U.S. Office of Management and Budget (OMB), a MSA is 

delineated as a region that consists of at least one urbanized area with a minimum 

population of 50,000 (U.S. Census Bureau 2020b). The area defined by the MSA 

generally receives similar mitigation measures during the COVID-19 pandemic and is 

typically marked by significant social and economic interaction, thus serving as an ideal 

geographic unit in this study. In addition, the dense population in MSAs ensures sufficient 

home-dwelling records. The geographical boundaries of these MSAs are the 2019 

TIGER/Line Shapefile products issued by the U.S. Census Bureau. 

 



 

 

 

Figure 1. Top twelve most-populated Metropolitan Statistical Areas (MSAs). Basemap credit: Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N 

Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap, and the GIS user community.



 

 

2.2 Home-dwelling Time Records 

2.2.1 Data Description 

The home-dwelling time records are open-sourced by SafeGraph (https://www. 

safegraph.com/), a company that aims to provide insights about physical places by 

aggregating anonymized location data from numerous applications. The data are collected 

using a panel of GPS points from around 45 million anonymous mobile devices. Home 

locations of anonymous device users are first determined based on the common nighttime 

location of each mobile device over a six-week period to a Geohash-7 granularity (∼153m 

× ∼ 153m) (SafeGraph 2020). Based on these derived home locations, the home-dwelling 

time (measured in minutes) for a certain resident is further computed on a daily basis. To 

enhance privacy, SafeGraph aggregates observed home-dwelling time records to the CBG 

level by selecting the median value for all available devices within a certain CBG. 

SafeGraph also excludes CBG information if fewer than five devices visited an 

establishment in a month from a given CBG to further protect users' privacy. The raw 

home-dwelling time records cover a total of 219,972 CBGs in the U.S. and span from 

January 1, 2020, to August 31, 2020 (244 days).  

2.2.1 Data Visualization and Data Representativeness 

In the study, we select the CBGs that fall within the boundaries of the twelve MSAs. Let 

𝐻𝐷𝑇௝  denote the median value of the home-dwelling time from all available mobile 

devices in a CBG on day 𝑗. Appendix Figure A presents the time-series of daily home-

dwelling time in twelve selected MSAs, with the transparency set as 0.01. We further 

derive the heat map by plotting all the available pairs, i.e., (𝑗, 𝐻𝐷𝑇௝), within the time 

frame (January 1 to August 31) for each MSA (Figure 2). The impact of COVID-19 on 

home-dwelling time can be observed, evidenced by the notable increase in home-dwelling 

time in all MSAs from March to May, 2020. Despite the similarity in the general trend, 

each MSA presents its unique pattern, revealing the discrepancy in mitigation measures 

and the inconsistency in responses following these measures. Compared with other 

MSAs, CBGs in New York MSA (Figure 2h) present high consistency in responses, as a 

cluster of 1,300 mins in home-dwelling time (out of 1,440 mins in a day) can be observed 

in March and April. In comparison, CBGs in D.C. MSA (Figure 2l) show rather 

inconsistent responses, evidenced by the scattered values in the heat map. Besides the 



 

 

consistency, the intensity of response in selected MSAs also differs. For instance, CBGs 

in Los Angeles MSA (Figure 2f) show a notably higher increase in home-dwelling time 

compared with the CBGs in Houston MSA (Figure 2e). Those inconsistencies come from 

various geographical and socioeconomic factors, which will be our main focus of this 

study.   

To understand the penetration (representativeness) of the home-dwelling time 

records from SafeGraph, we calculate the median daily device count for each CBG from 

January 1 to August 31. Following the work by Huang et al. (2020b), the 

representativeness is defined as the ratio between the median daily device count and the 

CBG's population (from the American Community Survey 2014-2018 estimates). As 

shown in Figure 3, the representativeness of one MSA differs from that of another, with 

Dallas MSA (Figure 3d) showing the highest representativeness while San Francisco 

MSA (Figure 3k) showing the lowest. Despite the inconsistency among MSAs, the 

representativeness for most CBGs ranges from 5% - 10%, suggesting a considerably high 

penetration percentage of the SafeGraph data. In the U.S. panel, SafeGraph’s samples 

correlate highly with the Census population in various demographic and socioeconomic 

settings (SafeGraph 2019). 



 

 

 

Figure 2. Heat map of daily home-dwelling time for twelve selected MSAs from January 1, 2020, to August 31, 2020. High/low concentrations 

are marked as red/blue. 

 



 

 

 

Figure 3. The representativeness of SafeGraph samples in the twelve selected MSAs. (a) Atlanta MSA; (b) Boston MSA; (c) Chicago MSA; (d) 

Dallas MSA; (e) Houston MSA; (f) Los Angeles MSA; (g) Miami MSA; (h) New York MSA; (i) Philadelphia MSA; (j) Phoenix MSA; (k) San 

Francisco MSA; (l) D.C. MSA. The CBG boundaries are derived from 2019 TIGER/Line Shapefiles by U.S. Census Bureau 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php). 



 

 

2.3 Demographic/Socioeconomic Variables 

The demographic and socioeconomic variables in this study are derived from the latest 

5-year American Community Survey (ACS) data, i.e., the 2014-2018 ACS 5-year 

estimates, obtained from Social Explorer (https://www.socialexplorer.com/). ACS is an 

ongoing survey that regularly gathers vital information about population statistics 

previously contained only in the long form of the U.S Decennial Census. Its 60-month 

sampling period (from January 1, 2014, to December 31, 2018) increases the statistical 

reliability when examining small geographical areas, thus believed to be more reliable 

compared with ACS 1-year and ACS 3-year estimates. Following the design by Huang et 

al. (2020b), we include and recode twenty-one demographic/socioeconomic variables 

from five major categories: 1) economic status; 2) race and ethnicity; 3) gender, age, and 

household type; 4) education; 5) transportation. Numerous studies have proved that these 

variables are, to some degree, associated with the participation of out-of-home activities 

(Farner and Páez 2009; Morency et al. 2011; Kuppam and Pendyala 2001). The detailed 

information regarding the notations and descriptions of these variables is presented in 

Table 1. 

Table 1. Notations and descriptions of the demographic/socioeconomic variables from 

five major categories. 

Variable notations Descriptions 
Economic status 

 

% low income Percent of household income less than $15,000 
% high income Percent of household income greater than 

$150,000 
median hhinc Median household income 
% unemployment Unemployment rate 

Race and ethnicity 
 

% white Percent of White 
% black Percent of Black 
% asian Percent of Asian 
% hispanic Percent of Hispanic 

Gender, age, and household type 
 

% female Percent of female 
% elderly Percent of age 65 or older 
% single parent Percent of single-parent families among parenting 

families having children under 18 
% child Percent of age under 5 
% schooler Percent of age 5 to 17 

Education 
 



 

 

% low edu Percent of education equal or less than high 
school 

% grad edu Percent of education of master, professional, or 
doctoral degrees 

Transportation 
 

% work from home Percent of work from home 
% car commuter Percent of car commuters 
% transit commuter Percent of transit commuters 
% short commuter Percent of commuters with 10 min or shorter trips 
% long commuter Percent of commuters with 40 min or longer trips 
% 0car Percent of 0 car households 

3 Methodology 

3.1 Preprocessing  

We first select the CBGs that fall within the boundaries of the twelve MSAs, resulting in 

a total of 59,217 CBGs. SafeGraph applies a panel of GPS points from mobile devices to 

record residents’ daily home-dwelling time. Thus, the number of available devices 

determines the credibility of the home-dwelling records of a certain CBG. We apply 

several preprocessing techniques to ensure that the CBGs contain a sufficient number of 

devices. We calculate the median value of the daily device count for each CBG during 

the 244-day period and remove CBGs with the median device count lower than 50. The 

missing value between two consecutive available records is filled via linear interpolation, 

assuming that home dwell time changes linearly between two consecutive available 

records. Huang et al. (2020b) reported that the home-dwelling records from SafeGraph 

contain some CBGs with consecutive zero values, presumably due to the low number of 

available devices and failure of locating resident’s home locations. We further remove 

CBGs with 0 values that span more than three consecutive days. Table 2 presents the 

numbers of CBGs in each MSA before and after preprocessing. 

Table 2. Numbers of CBGs in each MSA before and after preprocessing. 

MSA  Number of CBGs 
Before preprocessing After preprocessing 

Atlanta 2,597 2,094 
Boston 3,417 1,305 

Chicago 6,585 3,793 
Dallas 4,128 3,131 

Houston 3,019 2,365 
Los Angeles 8,245 3,794 

Miami 3,417 2,409 
New York 14,326 7,464 



 

 

Philadelphia 4,305 2,247 
Phoenix 2,704 1,929 

San Francisco 2,898 1,125 
D.C. 3,576 2,159 

3.2 Constructing Response Windows and Calculating 𝜵𝑯𝑫𝑻 

In this session, we aim to capture the increase in home-dwelling time (𝛻ு஽்) during the 

stay-at-home orders by constructing response windows. Given the discrepancy in the 

start/end date and the time duration of the stay-at-home orders in selected MSAs, we 

construct response windows specifically for each MSA. A response window is defined as 

a time interval that extends seven days before and after the duration when the stay-at-

home order is effective. Such a fourteen-day extension to the original stay-at-home order 

aims to better capture the disparity in response from CBGs with different societal settings, 

as studies have found contrasting mobility patterns from different communities shortly 

prior to and following the orders (Gao et al. 2020; Huang et al. 2020a; Huang et al. 2020b; 

Weill et al. 2020). Appendix Figure B presents the summary of stay-at-home orders in 

the twelve selected MSAs (based on state-wide orders). 

For a CBG, as above-mentioned, 𝐻𝐷𝑇௜  denote its sampled mobile device 

accompanied residents' median home-dwelling time on day 𝑖. We define 𝛻ு஽் as: 

𝛻ு஽் = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻𝐷𝑇௠, 𝐻𝐷𝑇௠ାଵ … 𝐻𝐷𝑇௡) − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝐻𝐷𝑇ଵ, 𝐻𝐷𝑇ଶ … 𝐻𝐷𝑇௠ିଵ)   (1) 

where 𝑚𝑒𝑑𝑖𝑎𝑛 denotes the median operator, 𝐻𝐷𝑇ଵ denotes the home-dwelling time on 

the first day of the time series (January 1, 2020), and records from 𝐻𝐷𝑇௠ to 𝐻𝐷𝑇௡ denote 

the home-dwelling time within the response window of that CBG. The calculated 𝛻ு஽் 

in a certain CBG represents the amount of increased home-dwelling time, reflecting the 

impact of COVID-19 on outdoor activities as well as the compliance of the stay-at-home 

order. 

3.3 Pearson Correlation and Random Forest Regression 

To understand the contribution of demographic and socioeconomic variables to 𝛻ு஽் in 

each MSA, we first perform a Pearson correlation to reveal the bivariate correlation 

between 𝛻ு஽்  and each individual demographic/socioeconomic variable. We test the 

Pearson’s 𝑟 at three significance levels: 𝛼 = 0.05, 0.01, 0.001. Numerous studies have 

suggested that variables describing demography and socioeconomic status tend to present 



 

 

high multicollinearity (Wen et al. 2003; Leal et al. 2012; Gayer 2000), which violates the 

underlying assumption of independence in many regression approaches (e.g., multiple 

regression). Besides, the impact of those variables on 𝛻ு஽் might not be linear. Given the 

above considerations, we chose the Random Forest Regressor because of its capability in 

handling non-linear parameters while preventing overfitting, tolerance to outliers, and 

scaling-free nature. Random Forest is a bagging-based algorithm that applies an ensemble 

learning technique by constructing a multitude of decision trees at training time (Liaw 

and Wiener 2020). For each MSA, we divide its CBGs into a training set (70%) and a 

testing set (30%). The Random forest model takes the following summarized steps (with 

𝑛௧௥௘௘ and 𝑚௧௥௬ as two major hyperparameters): 

(1) A total of 𝑛௧௥௘௘  bootstrap samples, i.e., 𝑆ଵ, 𝑆ଶ … 𝑆௡೟ೝ೐೐
, are drawn with 

replacement from the training set in that MSA. A bootstrap subset contains 

approximately one-third of the records in the training set. The elements not 

included in a bootstrap subset are referred to as out-of-bag (OOB) data. 

(2) The bootstrap samples are used to grow an unpruned regression tree: at each 

node, a total of 𝑚௧௥௬ predictor variables are randomly selected, and the best 

split is chosen from among these variables. A prediction function is therefore 

formed for each bootstrap subset:  𝑌ଵ
෡ = 𝑓መ(𝑋, 𝑆ଵ), 𝑌ଶ

෡ = 𝑓መ(𝑋, 𝑆ଶ),… 𝑌௡೟ೝ೐೐
෣ =

𝑓መ(𝑋, 𝑆௡೟ೝ೐೐
). 

(3) The OOB data are predicted by averaging the predictions from 𝑛௧௥௘௘ trees. 

𝑌෠ =
ଵ

௡೟ೝ೐೐
∑ 𝑓መ

௡೟ೝ೐೐
௞ୀଵ (𝑋, 𝑆௞ ). The importance of each predictor is further 

measured by calculating the percent increase in Mean Square Error (MSE).  

For each MSA, the hyperparameters (𝑛௧௥௘௘ and 𝑚௧௥௬) of its Random Forest model 

are fine-tuned via the Grid Search approach (Bao and Liu 2006). The search space for 

𝑛௧௥௘௘ is confined in [10,1000] with the value of 10 as the interval, while 𝑚௧௥௬ ∈ {𝑆,
ௌ

ଶ
,

ௌ

ଷ
, √𝑆, 𝑙𝑜𝑔ଶ(𝑆)}. After fine-tuning, the Random Forest model with the best parameter 

setting for a certain MSA is applied to its testing set for evaluation. The goodness-of-fit 

(𝑅ଶ) is reported for each Random Forest model to reflect how closely the predicted 𝛻ு஽் 

matches the observed 𝛻ு஽். In each MSA, the 𝑅ଶ of its Random Forest model is defined 

as: 



 

 

𝑅ଶ = 1 −
∑ (ఇಹವ೅

೔ ିఇಹವ೅
ഢ෣ )మ೙

೔సభ

∑ (ఇಹವ೅
೔ ିఇಹವ೅

ഢതതതതതതത)మ೙
೔సభ

                                       (2) 

where 𝑛 denotes the number of CBGs in the testing set, 𝛻ு஽்
ప෣  denotes the predicted 

value of 𝛻ு஽்
௜ , and 𝛻ு஽்

పതതതതതത denotes the mean of all 𝛻ு஽்
௜  within that MSA.  

We also present the feature importance to shed light on each selected variable's 

relative importance when a MSA’s optimized Random forest model makes the prediction. 

The ranking of variables based on the importance score suggests the different degrees of 

contribution in the Random Forest model. The partial dependence is further presented to 

reveal the dependence between the 𝛻ு஽் and the most dominant variable, marginalizing 

over the values of all other variables, which allows us to gauge how a change in the most 

dominant variable affects the change in 𝛻ு஽். 

5 Results 

5.1 The distribution of 𝜵𝑯𝑫𝑻 

To understand how different MSAs respond to the stay-at-home orders, we apply the 

kernel density estimation (analogous to a histogram) to reveal the distributing pattern of 

𝛻ு஽்  (Figure 4). The shape of the distribution of 𝛻ு஽்  generally reflects the CBGs’ 

demographic and societal characteristics within the MSA. In general, a dominant number 

of CBGs present a positive 𝛻ு஽், indicating a general trend of increased home-dwelling 

time under the stay-at-home orders. The distribution of 𝛻ு஽் in twelve selected MSAs 

generally presents considerable normality and low skewness, except that Philadelphia 

MSA, San Francisco MSA, and Los Angeles MSA show a slight tendency towards 

bimodal distribution (Figure 4). Such a tendency presumably results from the differing 

strictness in mitigation measures due to their administrative-polycentric nature and 

heterogeneity. Despite that stay-at-home orders and social distancing guidelines have 

been issued in all MSAs, the effectiveness of these orders show notable discrepancies, 

evidenced by the varying median and mean values in 𝛻ு஽் . As expected, New York 

MSA, the first-wave epicenter of COVID-19, shows the highest 𝛻ு஽். The mean 𝛻ு஽் 

among all CBGs in New York MSA reaches 369.7 mins, suggesting that residents spend 

six hours more on average under the stay-at-home order. San Francisco MSA and 

Philadelphia MSA also present relatively high 𝛻ு஽்  (above 300 mins), indicating the 



 

 

strong impact of stay-at-home orders on the out-of-home activities of their residents. In 

contrast, Phoenix MSA presents the lowest 𝛻ு஽் with both mean and the median less than 

200 mins. A similar weak response to the stay-at-home orders can also be found in 

Houston MSA and Chicago MSA. The revealed disparity in 𝛻ு஽்  at the MSA level 

presumably results from the heterogeneity among MSAs, such as the varying strictness 

in mitigation measures, varying political affiliations, and varying level of risk awareness.  

 

 



 

 

 

Figure 4. The distribution of ∇ு஽் in twelve selected MSAs.



 

 

5.2 Pearson Correlation Between 𝜵𝑯𝑫𝑻 and Demographic/Socioeconomic Variables 

We first evaluate the bivariate correlation between 𝛻ு஽்  and each individual 

demographic/socioeconomic variable via Pearson correlation. Table 3 presents Pearson's 

𝑟  in all twelve MSAs, tested at three significance levels: 𝛼 = 0.05, 0.01, 0.001. The 

correlations between 𝛻ு஽் and variables that describe economic status (% low income, % 

high income, % unemployment, and median hhinc) are significant at 𝛼 = 0.001 in all 

MSAs. Variables that include % high income and median hhinc show a strong positive 

correlation (𝑟 > 0.5) in most MSAs, suggesting that the group of people in CBGs with a 

higher percentage of wealthy residents and with a higher general income level tend to 

spend more time at home under the stay-at-home orders. This finding coincides with other 

studies in the U.S. at different scales, pointing out the luxury nature of social distancing 

guidelines (Huang et al. 2020a; Weill et al. 2020). Variables relating to educational level 

also present a strong and statistically significant correlation with 𝛻ு஽் , with the 

percentage of low/high education in CBGs showing a contrasting direction in correlation. 

The group of people in CBGs with higher percent of master, professional, or doctoral 

degrees had a higher compliance level and stayed at home longer. The correlation 

between 𝛻ு஽் and racial and ethnic variables are generally in agreement in the selected 

MSAs, but with several exceptions. For instance, in Miami MSA, the percentage of 

Hispanic shows a positive correlation with 𝛻ு஽், contradicting the negative correlations 

found in other MSAs. The percentage of Asian shows a statistically significant positive 

correlation in all MSAs, except Boston MSA. Car ownership generally shows a stronger 

correlation with 𝛻ு஽் compared to other transportation-related variables. In most MSAs, 

the correlation between Gender (% female) and 𝛻ு஽் is not significant. Even in MSAs 

that Gender presents significance (e.g., New York MSA and Los Angeles MSA), its 

strength is found rather weak. 



 

 

Table 3. Pearson correlation coefficient (Pearson's 𝑟) between selected demographic/socioeconomic variables and ∇ு஽். 

Variables 

Top twelve MSAs with most population 

Atlanta Boston Chicago Dallas Houston 
Los 
Angeles 

Miami 
New 
York 

Philadel
-phia 

Phoenix 
San 
Francisc
o 

D.C. 

median hhinc 0.64*** 0.43*** 0.53*** 0.66*** 0.61*** 0.55*** 0.51*** 0.45*** 0.53*** 0.56*** 0.59*** 0.58*** 
% female -0.04 0.00 -0.01 0.01 0.07** 0.04** 0.05* -0.06*** -0.04 0.02 0.07* 0.00 

% child -0.12*** -0.04 -0.05** -0.13*** -0.10*** -0.14*** -0.08*** -0.11*** -0.13*** 0.03 -0.09** -0.11*** 
% schooler 0.16*** 0.22*** 0.15*** 0.10*** 0.04** -0.02 0.15*** 0.10*** 0.11*** 0.27*** 0.11*** 0.25*** 

% elderly 0.12*** 0.04 0.04** 0.11*** 0.10*** 0.30*** 0.01 0.11*** 0.12*** -0.20*** 0.22*** 0.06** 
% white 0.26*** 0.14*** 0.16*** 0.09*** 0.09*** 0.22*** 0.30*** 0.29*** 0.31*** 0.10*** 0.17*** 0.15*** 
% black -0.29*** -0.12*** -0.19*** -0.20*** -0.20*** -0.20*** -0.32*** -0.33*** -0.32*** -0.06** -0.35*** -0.20*** 
% asian 0.27*** 0.02 0.25*** 0.35*** 0.36*** 0.20*** 0.18*** 0.19*** 0.12*** 0.23*** 0.25*** 0.37*** 

% hispanic -0.22*** -0.17*** -0.21*** -0.44*** -0.34*** -0.49*** 0.14*** -0.31*** -0.25*** -0.26*** -0.53*** -0.25*** 
% low edu -0.57*** -0.33*** -0.46*** -0.59*** -0.53*** -0.51*** -0.44*** -0.39*** -0.45*** -0.44*** -0.53*** -0.53*** 

% grad edu 0.52*** 0.33*** 0.49*** 0.54*** 0.51*** 0.49*** 0.43*** 0.38*** 0.43*** 0.41*** 0.52*** 0.51*** 
% unemployment -0.19*** -0.07** -0.20*** -0.16*** -0.16*** -0.19*** -0.24*** -0.20*** -0.22*** -0.21*** -0.21*** -0.20*** 

% low income -0.37*** -0.23*** -0.26*** -0.41*** -0.37*** -0.34*** -0.31*** -0.32*** -0.33*** -0.36*** -0.33*** -0.28*** 
% high income 0.64*** 0.42*** 0.56*** 0.64*** 0.60*** 0.55*** 0.49*** 0.45*** 0.53*** 0.53*** 0.61*** 0.59*** 

% car commuter -0.11*** 0.03 -0.12*** -0.17*** -0.01 0.15*** 0.07*** 0.15*** 0.11*** 0.03 0.05 0.08*** 
% transit commuter -0.14*** -0.03 0.08*** -0.14*** -0.06** -0.28*** -0.20*** -0.13*** -0.16*** -0.18*** -0.05 -0.16*** 
% work from home 0.41*** 0.17*** 0.28*** 0.40*** 0.24*** 0.26*** 0.20*** 0.15*** 0.27*** 0.20*** 0.23*** 0.29*** 
% short commuter -0.11*** -0.09** -0.10*** -0.12*** -0.11*** 0.04* -0.08*** 0.00 -0.02 -0.12*** -0.03 -0.13*** 
% long commuter 0.08*** 0.14*** 0.09*** 0.05** 0.13*** 0.03 0.17*** 0.06*** 0.06** 0.02 0.07* 0.03 

% 0car -0.28*** -0.20*** -0.19*** -0.28*** -0.30*** -0.30*** -0.31*** -0.30*** -0.29*** -0.28*** -0.25*** -0.27*** 
% single parent -0.38*** -0.25*** -0.32*** -0.40*** -0.35*** -0.35*** -0.33*** -0.37*** -0.36*** -0.33*** -0.42*** -0.33*** 

*. Correlation significant at 0.05 level. 
**. Correlation significant at 0.01 level. 
***. Correlation significant at 0.001 level. 
Pearson's 𝑟 > |0.5| is highlighted in bold. 



 

 

5.3 Performance of the Optimized Random Forest Regressors 

After the parameter fine-tuning process, the Random Forest model with the best 

parameter setting for each MSA is applied to the testing set for evaluation. Figure 5 

presents the predicted ∇ு஽் and observed ∇ு஽் of CBGs in twelve selected MSAs with 

their goodness-of-fit (𝑅ଶ ). In general, the optimized Random Forest regressors well 

predict the ∇ு஽்  based on provided demographic/socioeconomic variables without 

notable systematic bias, as the regression line (red) is well aligned with the 1:1 reference 

line (black dashed) (Figure 5). It suggests that selected variables are potentially 

responsible for the ∇ு஽் and are able to explain the variance in ∇ு஽் via an ensemble 

tree-based regression design. However, the performance of the model varies considerably 

in different MSAs. Dallas MSA shows the highest 𝑅ଶ = 0.53, followed by Atlanta MSA 

( 𝑅ଶ = 0.49 ), D.C. MSA ( 𝑅ଶ = 0.43 ), and Houston MSA ( 𝑅ଶ = 0.41 ). The good 

performance of the optimized Random Forest model implies the prominent contribution 

of selected variables in predicting ∇ு஽் especially in these MSAs. In comparison, Boston 

MSA, the only MSA that shows 𝑅ଶ below 0.3, presents the lowest 𝑅ଶ = 0.21. The low 

𝑅ଶ in Boston MSA partly results from its small sample size, as Boston MSA has the 

lowest number of available CBGs after preprocessing (Table 2). It can also be explained 

by the existence of many outlying CBGs with a negative ∇ு஽். The abnormal pattern in 

CBGs with decreased home-dwelling time under the stay-at-home order fails to be 

explained by the variables in the model, leading to inaccurate predictions.  

 

 

 

 



 

 

 

Figure 5. Predicted ∇ு஽் and observed ∇ு஽் of CBGs in twelve selected MSAs. 



 

 

5.4 Feature Importance and Partial Dependence 

The feature importance of variables is produced by the optimized Random Forest 

structure of each MSA. It is computed based on the rule of variance reduction that guides 

the selection of internal nodes within a tree structure (Altmann et al. 2010). For a Random 

Forest model, the impurity decrease from each variable can be averaged over all trees, 

and the variables are therefore ranked according to this measure. Appendix Figure C 

presents the ranked feature importance (in descending order) of selected 

demographic/socioeconomic variables in each MSA, showing their relative importance 

in each MSA when the model makes the prediction. Figure 6 presents the integrated 

feature importance summarizing the importance scores from all MSAs. Despite the fact 

that MSA’s Random Forest Regressors are optimized independently, the distribution of 

their feature importance shows a similar pattern, especially for variables with a high 

importance score. In most MSAs, median household income (median hhinc) is the 

variable with the highest feature importance. For MSAs where median household income 

is not the highest, i.e., Chicago MSA, New York MSA, and Los Angeles MSA, the 

percentage of high income (% high income) is with the highest importance. The integrated 

feature importance for all MSAs also points out the dominant contribution of economic 

variables in predicting 𝛻ு஽்  (Figure 6). Coupled with the identified strong positive 

correlation between economic variables and 𝛻ு஽் (Table 3), we conclude that stay-at-

home orders are with a unique luxury nature that low-income groups, to some degree, can 

not afford. Educational variables contribute to the prediction of 𝛻ு஽் with relatively high 

importance, as the percentage of low education (% low edu) and the percentage of 

graduate education (% grad edu) rank the third and the fifth, respectively, within the 

twelve MSAs (Figure 6). The percentage of schoolers (% schooler) also plays an 

important role, ranking the fourth in feature importance (Figure 6). 

The partial dependence shows the marginal effect one variable has on the 

predicted outcome of a machine learning model (Friedman 2001), which facilities our 

understanding of the causal relationship between the investigated variable and the 

prediction. Here, we present the partial dependence of median household income (median 

hhinc), the most dominant variable, to gauge how its changes affect the changes in 𝛻ு஽் 

(Figure 7). A general pattern can be observed that 𝛻ு஽் increases with the increase of 

median hhinc, which is also confirmed by their positive bivariate correlation presented in 



 

 

Table 3. Despite the similarity in the general tendency, however, the partial dependence 

is rather complex, and the trend differs among MSAs. In Boston, 𝛻ு஽்  increases 

remarkably when median hhinc increases from $100,000 to $120,000. Similar jumps of 

𝛻ு஽் can be found in Dallas MSA and Atlanta MSA when median hhinc increases from 

$80,000 to $100,000, in D.C. MSA when median hhinc increases from $110,000 to 

$120,000, and in New York MSA when median hhinc increases from $40,000 to $50,000. 

Such non-linear partial dependence between 𝛻ு஽்  and meidan hhinc suggests the 

changing importance of income in varying income intervals, and the dynamics of the 

importance of median hhinc is place-dependent.  

 



 

 

 

Figure 6. Integrated feature importance plot by combining importance scores in all selected MSAs. Variables are ranked in a descending order 

based on their median values. 



 

 

 

 

Figure 7.  Partial dependence plot between median household income and ∇ு஽் . 



 

 

6 Discussion 

6.1 What do we learn? 

This study examines the stay-at-home compliance at the CBG level in twelve selected 

Metropolitan Statistical Areas (MSAs) via fine-grained home-dwelling records collected 

from millions of mobile devices. Despite the similarity in the general increasing trend of 

home-dwelling time under stay-at-home orders, each MSA presents its unique pattern, 

revealing the discrepancy in mitigation measures and the inconsistency in responses 

following these measures. Before we illustrate the role of variables and present reasonable 

explanations of their correlation with 𝛻ு஽்  and their general feature importance from 

those optimized Random Forest models, we need to acknowledge that demographic and 

socioeconomic variables are intrinsically intertwined and may not be viewed as 

completely independent variables.  

We find statistically significant correlations between the increase in home-

dwelling time (𝛻ு஽்) and variables that describe economic status in all MSAs, revealing 

that the poor communities tend to show less compliance evidenced by their less dwelling 

time at home under the stay-at-home orders than the wealthy communities. The optimized 

Random Forest models also confirm this finding, as median household income and 

percentage of high income are the top two most important variables in predicting 𝛻ு஽், 

pointing out the unique luxury nature of stay-at-home orders in all MSAs with which 

lower-income groups may not afford to comply. The partial dependence between median 

household income and 𝛻ு஽் suggests that the contribution of income to 𝛻ு஽் is place-

dependent, non-linear, and different given varying income intervals. It is reasonable to 

assume that the disparity in home-dwelling time between lower-income and upper-

income groups leads to disparate exposures to the risk from the COVID-19. As lower-

income communities already experience worse health outcomes and have a lower 

capacity to cope with economic and health shocks (Weill et al. 2020), their less 

compliance with stay-at-home orders might further exacerbate the situation.  

The bivariate correlations between 𝛻ு஽்  and racial and ethnic variables are 

generally in agreement in selected MSAs. CBGs with a higher White percentage tend to 

present a higher 𝛻ு஽், while CBGs with a higher Black percentage tend to present a lower 

𝛻ு஽். The percentage of Hispanic shows a negative correlation with 𝛻ு஽் in all MSAs 



 

 

except Miami MSA. The above evidence suggests that racial/ethnic minority populations 

spend less time at home during the stay-at-home orders, thus are generally more exposed 

to COVID-19 risk. Studies found that racial/ethnic minorities and poor people in urban 

settings live in more crowded conditions and comprise a higher percentage of workers in 

essential industries (Tai et al. 2020). Coupling with their disproportionate health burden 

of underlying comorbidities (e.g., diabetes, obesity, and coronary artery disease) 

(Cunningham et al. 2017; Tai et al. 2020) and lower access to healthcare (Godley et al. 

2003; Waidmann and Rajan 2000), such exposure might contribute to disparities in 

COVID-19 outcomes that disfavor racial/ethnic minority populations. Despite the 

significant bivariate correlations between 𝛻ு஽்  and racial/ethnic variables, the feature 

importance scores suggest their trivial contribution to the prediction of 𝛻ு஽் . This 

phenomenon can be explained by the calculation of the importance score in a Random 

Forest model, which prioritizes variables with a higher contribution by suppressing the 

importance of other highly correlated variables. 

Variables relating to educational level also present a strong and statistically 

significant correlation with 𝛻ு஽், with the percentage of low/high education in CBGs 

showing a contrasting direction in correlation. They contribute to the prediction of 𝛻ு஽் 

with relatively high importance, as the percentage of low education and the percentage of 

graduate education rank the third and the fifth, respectively. Generally, the higher rate of 

people with a low education degree, the less time they spend at home, and vice versa. On 

the one hand, occupations held by people with different education levels are more often 

different in terms of demands for physical proximity (Lekfuangfu et al. 2020), meaning 

that people with lower education levels have fewer economic opportunities, and the jobs 

they acquire do not have a work-from-home option. On the other hand, higher educated 

people report greater self-control and are more likely to have higher risk awareness (Ross 

and Wu 1995), which also indirectly makes higher educated people less likely to engage 

in out-of-home activities during the stay-at-home orders.  

Interestingly, the percentage of school-age children (aged 5-17) presents high-

level importance (ranking the fourth) in the Random Forest models of twelve selected 

MSAs, indicating its strong contribution to the prediction of 𝛻ு஽். In most MSA, the 

increase in home-dwelling time during the stay-at-home orders tend to be larger in CBGs 

with a higher share of schoolers. School closures are one of the most consistent non-

pharmaceutical interventions regarding the pandemic in the United States – all 50 states 



 

 

closed K-12 (kindergarten to 12th grade) schools over ten days in March (Donohue and 

Miler 2020). As a consequence, school-age children had to study at home all the time 

under the stay-at-home orders. Remote learning challenges and childcare duties forced 

parents to spend more time at home, which is a reasonable interpretation of our findings. 

Evidence shows that many parents spent a large amount of time with their child(ren) while 

schools were closed, and many of them were struggling with balancing their employment 

demands and childcare (Craig and Churchill 2020; Garbe et al. 2020; Wu and Xu 2020). 

It should also be noted that school closures could be a driver of increased unemployment 

during the pandemic (Kong and Prinz, 2020). This may be associated with the increased 

parenting time and workload at home caused by school closures. Commuting modes and 

travel time (% car commuter, % transit commuter, % short commuter, and % long 

commuter) are found trivial to the prediction of 𝛻ு஽் , evidenced by their low feature 

importance in MSAs’ optimized Random Forest models. Their correlations with 𝛻ு஽் are 

weak and inconsistent (pointing to different directions with varying strength) among the 

twelve MSAs.  

6.2 Limitations and Future Directions 

It is important to acknowledge the limitations and provide guidelines for future studies. 

First, despite the widely recognized advantages of Random Forest models, several 

drawbacks need to be acknowledged and considered when the results of our study are 

interpreted. Hyperparameter settings play an important role in the performance of 

machine learning models, and tree-structure based Random Forest Regressor is no 

exception. To fine-tune the hyperparameters in each MSA’s Random Forest Regressor, 

we use the Grid Search approach to find the optimal parameter settings from a designed 

parameter space. However, we might miss the best parameter settings as they may fall 

out of the designed parameter space. Studies are needed to further improve the 

optimization process by expanding the parameter searching space, despite the fact that a 

bigger search space can lead to more computational demand. We also need to 

acknowledge that the feature importance revealed by the Random Forest model tends to 

prioritize variables with a higher contribution by suppressing the importance of other 

highly correlated variables. Future studies can investigate the potential of other 

computationally costly importance measurements, such as permutation importance 

(Gregorutti et al. 2017) and drop-column importance (Parr et al. 2020). We use partial 

dependence to reveal potential causality existed between 𝛻ு஽் and variable with the most 



 

 

importance, i.e., median household income. However, partial dependence might hide the 

heterogeneous effects as it only shows the average marginal effects.  

Second, the designed ∇ு஽்  represents the amount of increased home-dwelling 

time under stay-at-home orders, reflecting the general impact of COVID-19 on outdoor 

activities as well as the compliance of the stay-at-home order. It quantifies the increase 

in home-dwelling time during and before the stay-at-home orders, nonetheless neglecting 

the dynamics in the recovering phase (after reopening). Although the response window 

we construct is defined as a time interval that extends seven days before and after the 

duration when the stay-at-home order is effective, the long-term effects after reopening 

and the dynamics in time-series patterns are not thoroughly investigated in this study. 

Numerous studies have adopted trend-based time-series analytics to COVID-19 studies 

(Huang et al. 2020c; Chen et al. 2020). A possible future direction is to explore the 

potential of these approaches in better distinguishing the varying patterns in home-

dwelling time.    

Third, twenty-one variables are selected from five major categories in this study 

to explain ∇ு஽்  under stay-at-home orders, as numerous studies have proved their 

association with the participation of out-of-home activities. However, we need to 

acknowledge the potential contribution from the missing demographic/socioeconomic 

variables and other intangible factors that are hard to be quantified, such as risk awareness 

and belief in science. The inclusion of massive demographic/socioeconomic in regression 

inevitably introduces multicollinearity. One possible solution is to select uncorrelated and 

important components via Principal Component Analysis (PCA), a popular approach for 

dimensional reduction. Besides the demographic/socioeconomic perspective, future 

studies need to consider other underexplored aspects in order to better understanding the 

driving factors that lead to the disparity in compliance with stay-at-home orders. 

Fourth, this study views each MSA as a spatial entity with a high degree of 

economic and social integration. However, we should acknowledge that mitigation 

measures might differ within a certain MSA, especially for urban and suburban regions. 

Such differences in measures may introduce a certain level of uncertainty into our study. 

In addition, we removed CBGs with insufficient device counts to ensure the credibility 

of the aggregated home-dwelling time. We observe that this proprocessing step excluded 

varying proportions of CBGs in different MSAs (see Table 2). Although the remaining 

CBGs are statistically enough for correlation analysis and training the Random Forest 



 

 

models, the missing CBGs deserve further investigation to rule out the potential 

systematic bias in this data cleaning process. 

Finally, the Random Forest model for each MSA is optimized without considering 

the inner spatial variation. Studies have revealed that built-up environment, 

socioeconomic activities, and demographic structure tend to vary substantially across 

densely populated urban fabrics (Nasri and Zhang 2012; Huang and Wong 2016), 

presumably leading to geographically-varying contribution of 

demographic/socioeconomic variables to the compliance with stay-at-home orders. 

Regression approaches that consider spatial nonstationarity, e.g., Geographically 

Weighted Regression (GWR) (Brunsdon et al. 1996), are great statistical tools to further 

explore the geographical variations within each MSA.  

7 Conclusion 

The COVID-19 pandemic has exposed, and to some degree, exacerbated the social 

inequity in the U.S. Taking advantage of the fine-grained mobile phone location tracking 

derived home-dwelling records at the U.S. Census Block Group (CBG) level and data-

driven approaches, this study reveals the correlation between 

demographic/socioeconomic variables and home-dwelling time in twelve selected MSAs 

and further investigate the contribution of these variables to the disparity in home-

dwelling time that reflects the compliance of stay-at-home orders using Random Forest 

models. The knowledge in this study deepens our understanding of social inequity issues 

exposed by the COVID-19 pandemic, greatly benefiting the decision-making of the 

Federal government and local authorities in choosing the appropriate response to the 

COVID-19 pandemic and future epidemics. 

Despite the similarity in the general increasing trend of home-dwelling time under 

stay-at-home orders, we find that each MSA presents its unique pattern, revealing the 

discrepancy in mitigation measures and the inconsistency in responses following these 

measures. We find significant correlations in all MSAs between the increase in home-

dwelling time (𝛻ு஽்) and variables that describe economic status, revealing that the poor 

communities tend to show less compliance evidenced by their less time at home than the 

wealthy communities under the stay-at-home orders. Variables relating to educational 

level also present a strong and statistically significant correlation with 𝛻ு஽் , with the 

percentage of low/high education in CBGs showing a contrasting direction in correlation. 



 

 

The correlation between 𝛻ு஽் and racial and ethnic variables are generally in agreement 

in the selected MSAs, but with several exceptions. The optimized Random Forest models 

we designed well predict the ∇ு஽்  based on provided demographic/socioeconomic 

variables without notable systematic bias. The median household income and percentage 

of high income are the top two most important variables in predicting 𝛻ு஽், pointing out 

the luxury nature of stay-at-home orders in all MSAs which lower-income groups can not 

afford. Educational variables contribute to the prediction of 𝛻ு஽்  with relatively high 

importance, as the percentage of low education and the percentage of graduate education 

rank the third and the fifth, respectively. The percentage of schoolers (age 5-17) also plays 

an important role, ranking the fourth in feature importance. The partial dependence 

between median household income and 𝛻ு஽் suggests that the contribution of income to 

𝛻ு஽் is place-dependent, non-linear, and different given varying income intervals. 

Our study reveals the geographical and social disparities in compliance with stay-

at-home orders, potentially leading to disparate exposures to the COVID-19. Such 

disparate exposure to vulnerable populations can further compound by their other 

disadvantages, such as underlying comorbidities, poor access to and low utilization of 

high-quality health care, and limited access to COVID-19 testing centers, further causing 

negative health outcomes for the vulnerable populations. Thus, it is imperative to reduce 

immediate health effects and ensure equitable allocation of health care resources and the 

proper allocation of financial resources, such as subsidies, for more vulnerable 

populations. In the long term, we must confront systemic social inequity issues and call 

for a high-priority assessment of the long-term impact of COVID-19 on socially 

disadvantaged groups. It is never too late to act. 
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Appendix

 

Figure A. Time-series density of daily home-dwelling time in twelve selected MSAs. The transparency for the time-series for each CBG is set as 

0.01 (𝛼 = 0.01). 

 



 

 

 

 

Figure B. The summarized issued dates of stay-at-home orders in the twelve selected MSAs (based on state-wide orders). The red blocks denote 

the effective dates. For a MSA that lies across multiple states, the state-wide order of the state that covers the most area of that MSA is used. 

Source: The New York Times (https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html) and Litter 

(https://www.littler.com/publication-press/publication/stay-top-stay-home-list-statewide)



 

 

 

Figure C. Feature importance scores for selected variables in twelve MSAs. Variables in each MSA are ranked in descending order based on 

their importance scores. 
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