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A B S T R A C T   

Play benefits childhood development and well-being, and is a key factor in sustainable city design. Though 
previous studies have examined the effects of various urban features on how much children play and where they 
play, such studies rely on quantitative measurements of play such as the precise location of play and the duration 
of play time, while people's subjective feelings regarding the playability of their environment are overlooked. In 
this study, we capture people's perception of place playability by employing Amazon Mechanical Turk (MTurk) 
to classify street view images. A deep learning model trained on the labelled data is then used to evaluate 
neighborhood playability for three U.S. cities: Boston, Seattle, and San Francisco. Finally, multivariate and 
geographically weighted regression models are used to explore how various urban features are associated with 
playability. We find that higher traffic speeds and crime rates are negatively associated with playability, while 
higher scores for perception of beauty are positively associated with playability. Interestingly, a place that is 
perceived as lively may not be playable. Our research provides helpful insights for urban planning focused on 
sustainable city growth and development, as well as for research focused on creating nourishing environments 
for child development.   

1. Introduction 

Play is a crucial component of childhood growth and well-being. 
Children of all ages develop their abilities to interact with others and 
practice their social skills as they play, while learning resilience and 
confidence in the process (Ginsburg et al., 2007). Parents and children 
bond and learn to communicate when they play together in their 
neighborhoods (Ginsburg et al., 2007; Henry, 1990; Tamis-LeMonda, 
Shannon, Cabrera, & Lamb, 2004). Regarding physical and mental 
health, children develop and maintain healthy minds and bodies 
through play. Increased physical activity has also been associated with a 
lower prevalence of obesity in children (McCurdy, Winterbottom, 
Mehta, & Roberts, 2010; Summerbell et al., 2005). Such physical ac-
tivity also helps build and maintain healthy bones and muscles, and has 
been associated with greater coordination and strength, as well a lower 
body mass index (Lämmle, Ziegler, Seidel, Worth, & Bös, 2013). 

Given the myriad benefits of play for children's growth and devel-
opment, many researchers have studied where and how children play. In 
a seminal work The Death and Life of Great American Cities (1961), Jacobs 

identifies sidewalks as the central location of play, as sidewalks at the 
time enhanced safety, contact, and the assimilation of children into a 
place (Jacobs, 2016). From this framework, play arises from a variety of 
attributes of a given place, not merely from the presence of a single play 
feature such as a playground. Hence, it is necessary to construct places 
that are conducive to play for children. Designing such spaces in cities 
also meets the 11th Sustainable Development Goal (SDG), as outlined by 
the United Nations, to “make cities and human settlements inclusive, 
safe, resilient and sustainable”.1 Such a goal provides a series of 
measurable targets and blueprints for future cities, including universal 
access to basic public services. In particular, children need playable 
places that are accessible and safe. Therefore, examining and designing 
playable places benefits sustainable city development (Duarte & 
Alvarez, 2021). 

Societal changes throughout the past several decades, however, have 
led to changes in where and how children play. 

In rural areas, lack of transportation, lack of nearby friends and 
things to do, and the guarding of privately-owned natural areas 
discourage play (Spencer, 2006). In urban areas, lack of maintenance in 
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parks and playgrounds, boringly-safe play equipment, and ever- 
increasing traffic speeds reduce how much children play (Wridt, 2010). 

Though more prevalent in families where the parents are highly 
educated, parents today are generally more concerned about safety than 
in previous generations (Ginsburg et al., 2007). As a result, they are 
more likely to schedule activities for their children, relegating play to 
organized activities that are frequently indoors and deprive children of 
important contact with nature. Play in natural areas and green spaces 
provides both physical and mental benefits. Recent studies have found 
that proximity to a variety of natural features is associated with lower 
body mass index (BMI), suggesting that greater physical activity occurs 
in such areas (Dadvand et al., 2014; Lee, Heo, Jayaraman, & Dawson, 
2019). Features such as trees, gardens, and nature trails in “green” 
school grounds have been shown to encourage play in a wider variety of 
students when compared to schools with only grass and concrete, since 
such natural features allow for various forms of non-competitive exer-
cise (Dyment & Bell, 2008). In two studies using remotely sensed im-
agery to calculate a greenness index, greater greenery (e.g. more trees 
and grass) was associated with lower BMI in children living nearby, 
suggesting greater physical activity (Bell, Wilson, & Liu, 2008; Grigsby- 
Toussaint, Chi, & Fiese, 2011). For mental health, play in and even just 
passive exposure to natural areas has been shown to improve psycho-
logical health in children (McCurdy et al., 2010). Taken all together, 
there are many reported benefits of such natural areas for children. 

In summary, a variety of attributes of the built environment and 
society contribute to how and where children play. We consider such 
attributes as affordances of a place which contribute to its “playability”. 
Increasing place playability, then, allows children to receive more of the 
benefits of play as individuals. We synthesize this conceptual framework 
in Fig. 1. 

Within the conceptual framework shown in Fig. 1, various aspects of 
the built environment contribute to playability. Therefore, studying the 
built environment is a critical part of understanding how to create 
playable places. Having a method for scoring or evaluating playability 
itself, therefore, is also necessary. Recently, research focused on char-
acterizing the built environment has flourished due to the availability of 
rich data sources, such as street view images, and recent advances in 
deep learning models. In particular, such models have been used to learn 
the features in street view images that are associated with various as-
pects of human perception, and produce accurate predictions of human 
perception on unseen images. This methodology is more scalable than 
traditional surveys that link human perception to the built environment, 
allowing researchers to study human perception at the scale of cities and 
larger. Furthermore, this methodology allows human perception to be 
what is evaluated, rather than using proxies for human perception. In 
the case of playability, for example, human perception of place 

playability could be quantitatively predicted at scale by a trained deep 
learning model, rather than using a proxy for place playability such as 
playground count. 

The ability of such deep learning models to predict human percep-
tion of street view images has two particular advantages in the fields of 
Geography and Urban Planning. First, the geographic location of the 
street view images evaluated by the model can be used to produce maps 
of human perception across cities, which can provide intuitive under-
standing as to the spatial nature of the phenomena being studied. Sec-
ond, the model predictions and their associated locations can be used in 
geographic regression models, which allow researchers to gain insights 
into how various features contribute to human perception, and how 
their relative contributions vary across space. 

In this paper, we propose a framework that quantitatively and 
comprehensively measures the playability of neighborhoods and ex-
amines its determining geographic and environmental factors. Within 
this framework, we ask the following two research questions: 1) how can 
playability scores be generated for neighborhoods in different cities 
across the United States? Is harnessing crowd-sourced labelled street 
view images viable as a new data source for evaluating human percep-
tion of playability? 2) what features are associated with playability and 
how do their effects change across space? By using multi-source big data 
such as street view images along with deep learning methods, we are 
able to take full advantage of all of the features visible in street view 
images. 

Regarding the use of deep learning models and street view images to 
audit the urban environment, our contribution in this work is twofold: 
First, our research demonstrates the utility of emerging data sources and 
methodologies for understanding playability on a much larger and more 
detailed scale than what has been done in previous playability research. 
Second, the theoretical contribution of this study is to explore play-
ability at multiple spatial scales through the use of spatial regression 
models. To the best of our knowledge, no previous studies have exam-
ined playability using this approach at scale. 

The remainder of this article is organized as follows. We provide a 
comprehensive literature review regarding playability-related research 
and using emerging data sources in auditing the urban environment in 
Section 2. In Section 3 we present the study area and the various data 
sources collected and used for conducting the experiments. In Section 4 
we introduce the methods used, including crowd-sourced neighborhood 
playability labelling, advanced deep learning methods, and various 
regression approaches including ordinary least squares regression, 
geographically weighted regression, and multiscale geographically 
weighted regression. We highlight the results and discoveries in Section 
4, showing the computed playability scores and associated factors. In 
Section 6 we discuss important findings and limitations of the study. 
Finally, in Section 7, we present our conclusions and vision for future 
research. 

2. Literature review 

Traditionally, studies examining the links between features of the 
built environment and active play in children have relied on a combi-
nation of two aspects: 1) surveys, in which children and/or parents 
respond with an estimation of play times and locations, and 2) the 
presence of urban physical attributes like open space and playgrounds 
(Aarts, de Vries, Van Oers, & Schuit, 2012; Laxer & Janssen, 2013). 
Similarly, some studies have used GPS trackers to monitor the duration 
and location of free play in children (Almanza, Jerrett, Dunton, Seto, & 
Pentz, 2012; Fjørtoft, Löfman, & Halvorsen Thorén, 2010; Loebach & 
Gilliland, 2016). While survey methods can quantify how long and/or 
how frequently children play, such methods are costly and are thus 
generally limited to a particular time and place. Spatial representations 
of various urban features are useful for inference on play survey data, 
but typically only a handful of relevant features are available in such a 
format. Some researchers have also attempted to use satellite data as a Fig. 1. A conceptual framework of playability.  
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new source for studying physical activity in children (Almanza, Jerrett, 
Dunton, Seto, & Pentz, 2012; Grigsby-Toussaint et al., 2011), but big 
data sources like this still only capture features of the physical envi-
ronment (e.g. tree count and coverage). Finally, the amount of play-time 
spent outdoors by children has also been shown to decrease significantly 
with higher parent education (Aarts et al., 2012), suggesting that the 
playability of an environment can not necessarily be judged solely based 
on surveys of play-time and the presence or absence of physical features 
nearby. 

Overall, these methods capture objective rather than subjective as-
pects of play. However, subjective experience of place is an important 
factor influencing what people do, and that includes play. For parents, 
perceived safety is an important determinant in allowing their children 
to play outside, while children might only want to play in attractive or 
fun-looking areas. Though some studies have used questionnaires to 
consider perception of safety with regards to play (Nguyen, Borghese, & 
Janssen, 2018), such studies have the same limitations regarding cost 
and extendability as other survey methods. To address this research gap, 
we propose to capture people's perception of the playability of neigh-
borhoods by labelling street view imagery rather than by answering 
questionnaires, and then to extend the acquired knowledge to other 
areas by use of a (deep) machine learning model. 

Recently, advances in big data, high-performance computing, and 
classification accuracy with deep neural networks have allowed re-
searchers to study the urban environment at fine spatio-temporal scales, 
and in ways that capture elements of human perception not typically 
captured by traditional methods (Huang et al., 2020; Li, Zhang, & Li, 
2015; Middel, Lukasczyk, Zakrzewski, Arnold, & Maciejewski, 2019; 
Yang, Huang, Li, Liu, & Hu, 2017; Yao et al., 2019; Yeh, Yue, Zhou, & 
Gao, 2020; Zhang et al., 2018). At the same time, street view images 
have arisen as a rich data source to comprehensively capture the envi-
ronment from a human perspective. This data source, combined with the 
state-of-the-art deep learning models, allows researchers to describe 
entire cities at a sampling density of only a couple of meters by using the 
multiple view angles captured with street view images. Studies using 
this method have described various aspects of the urban physical envi-
ronment, including place perception, housing prices, public health, and 
walkability (Gebru et al., 2017; Helbich et al., 2019; Hu et al., 2021; 
Kang et al., 2020; Li, Zhang, & Li, 2015; Zhang, Zhang, Liu, & Lin, 2018; 
Zhou, He, Cai, Wang, & Su, 2019). Furthermore, several similar studies 
have demonstrated how physical attributes of the built environment 
display substantial spatial heterogeneity, i.e. spatial variation in the 
feature, while other studies have shown spatial heterogeneity in per-
ceptions of urban areas (Gao et al., 2017; Zhang, Fan, Kang, Hu, & Ratti, 
2021; Zhang, Zhou, et al., 2018). Hence, we use this valuable data 
source to comprehensively audit the urban physical environment and 
relate it to the perception of playability, and then to examine associa-
tions between the derived playability scores and various geographical 
factors. Such an analysis allows a spatial understanding of playability at 
a city scale. 

3. Data 

The workflow of this paper is shown in Fig. 2, and has three com-
ponents: data collection, scoring playability, and analysis between 
playability and geographic features. Two datasets are used in this 
research: 1) labelled street view imagery that represents the physical 
appearance and human perception of neighborhood playability, and 2) a 
multi-source dataset that includes a range of geographic features to 
represent the built environment, which enables us to examine associa-
tions between diverse urban features and neighborhood playability. 

3.1. Study area 

We take the cities of Boston, Seattle, and San Francisco as study 
areas, and data are collected in each city. These three cities are chosen as 

they are large cities that represent different geographic areas of the 
contiguous United States, including both the East and West coasts. We 
aim to find general conclusions among different cities. Using these three 
cities also allows us to demonstrate the potential generalizability of the 
deep learning model. 

All data layers are aggregated to the census block group (CBG) level. 
We use CBGs as the spatial analysis unit for two reasons: 1) all datasets 
are available or can be aggregated at the CBG level, and 2) the intended 
audience for this analysis is geographers, policy makers, city planners, 
and neighborhood residents, such that a finer spatial analysis might be 
too detailed. 

3.2. Measuring the built-environment using street view images 

Street view images that capture detailed scenery along road net-
works from a human perspective are collected in each city for scoring 
place playability. In total, 142,715 street view images for Boston, 
255,293 images for Seattle, and 146,228 images for San Francisco are 
collected. With recent developments in computer vision and artificial 
intelligence techniques, street view images have become an effective 
data source for describing the real-world physical environment. Existing 
studies have already not only extracted elements and objects, but also 
understood human perceptions of streetscapes (e.g. lively, safe) from 
street view images (Helbich et al., 2019; Kang, Zhang, Peng, et al., 2020; 
Li, Zhang, & Li, 2015; Yao et al., 2019; Zhang, Zhou, et al., 2018). Such 
studies provide good foundations for both data sources and analytical 
techniques. Hence, street view images are used to comprehensively 
capture the built environment along streets as the basis for assigning 
playability scores. 

To collect street view images, geo-referenced points are first gener-
ated every 100 m along the streets in three cities, Boston, Seattle, and 
San Francisco, respectively, using road networks downloaded from 
OpenStreetMap.2 Utilizing the Google Street View API, view angles of 0, 
90, 180, and 270 degrees are captured at each point, i.e. at least four 
images are downloaded for each geo-referenced point. Given that each 
point might have street view images from multiple years, only the most 
recent image for each location is used in our model training process. 

3.3. Geographic features 

A multi-source dataset of geographic features is constructed to 
analyze the relationships between playability and various urban fea-
tures. In particular, we use 1) street speed limit and the number of crime 
incidents to represent neighborhood safety, 2) the number of trees and 
play areas nearby to represent the built environment of each neigh-
borhood, and 3) human perceptions of the urban physical environment 
of a neighborhood. Attribute maps for each city can be seen in Figs. 3, 4, 
and 5, respectively. 

The three different aspects of the urban environment listed above are 
modelled for the following reasons (which were also outlined in the 
conceptual framework of playability in Fig. 1). A place for children to 
play should be absolutely safe, with high traffic safety and a low crime 
rate. On the one hand, street speed limit might have a significant impact 
on determining if a place is suitable for children to play in. Road traffic 
crashes where an automobile hits a pedestrian are one of the leading 
causes of death for children worldwide (Stevenson, Sleet, & Ferguson, 
2015). In such crashes, speed limit is an important factor since small 
increases in vehicle speed cause disproportionately large increases in 
mortality risk (Richards, 2010; W.H.O., 2015). Speed limit data, in km/h 
along a given segment of street, are acquired from the Boston Street 
Address Management system,3 Seattle GeoData,4 and the San Francisco 

2 https://www.openstreetmap.org/  
3 https://data.boston.gov/dataset/boston-street-segments  
4 http://data-seattlecitygis.opendata.arcgis.com/datasets/seattle-streets 
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OpenData portal,5 respectively. 
On the other hand, potential danger from threatening people is an 

important consideration for parents when determining if they should 
allow their children to play outside, and for children when looking for a 
place to play (Brussoni et al., 2020). Here, we model such risk as total 
crime incidents within 100-m of a given image location, using data from 
2018 as provided by Boston Police Department,6 and the open data 
portals for the cities of Seattle7 and San Francisco,8 respectively. 

We also calculate both play area count and tree count, as both are 
valuable factors that influence playability. Children need outdoor play 
spaces in which to play. To capture how such play areas might 
contribute to the playability of a place, we consider both parks and 
playgrounds available in a given location. Specifically, we count the 
number of such areas within a 200-m radius of the location of each street 
view image. Similarly, trees have been shown to be an affordance of play 
spaces, and have also been positively correlated with well-being in 
children (Kang, Zhang, Gao, Lin, & Liu, 2020; Kim, Lee, & Sohn, 2016). 

Here, the number of trees along streets and in parks are counted 
within a 50-m radius of the location of each image, with only trees of 
significant size and under public management (i.e. city government) 
counted. Open space data were collected by searching for “park” and 

“playground” in the open data portals for Boston,9 Seattle10 and San 
Francisco,11 respectively. Tree data were collected from OpenTrees12 for 
all cities. 

In addition, we measure human perception of places by adopting the 
dataset and models described in Zhang, Zhou, et al. (2018). Human 
perception of places reflects the feelings people have when they expe-
rience (in this case, “see”) the urban physical environment, which here is 
captured by street view images. People have such perceptions when they 
consider the playability of places, as children are expected to play in 
places that are safe, comfortable, and fun. The MIT Place Pulse13 dataset 
captures various aspects of human perception with 110,988 labelled 
street view images from different locations across the globe, with labels 
provided by people from around the world. The results of the model 
trained on this dataset have been shown to be consistent and unbiased 
by demographics. We use this pre-trained model to evaluate our 
collected street view images for the beautiful, boring, depressing, and lively 
aspects of place perception in Boston, Seattle, and San Francisco. 

4. Methods 

As shown in Fig. 2, there are two parts of our methodology. The first 
part is scoring place playability. To do so, Amazon Mechanical Turk 
(MTurk) is employed for image labelling. Next, the images are used to 
train a deep neural network, which learns place playability from the 
labels and then scores all of the remaining street view images in three 

Fig. 2. Overview of our Workflow: (1) Data collection; (2) Scoring playability; (3) Analysis of playability and geographic features.  

5 https://data.sfgov.org/Transportation/Speed-Limits/3t7b-gebn  
6 https://data.boston.gov/group/public-safety  
7 https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/t 

azs-3rd5  
8 https://data.sfgov.org/Public-Safety/Police-Department-Incident-Repor 

ts-Historical-2003/tmnf-yvry 

9 https://data.boston.gov/dataset/open-space  
10 http://data-seattlecitygis.opendata.arcgis.com/datasets/seattle-parks  
11 https://data.sfgov.org/Geographic-Locations-and-Boundaries/San-Francis 

co-Open-Space-for-Shadow-Study-Analysis/xk8z-bcqz  
12 https://opentrees.org/  
13 https://www.media.mit.edu/projects/place-pulse-new/overview/ 
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cities to get a full description of neighborhood playability. The second 
part is analyzing associations between geographic features and play-
ability. To do so, ordinary least squares (OLS) regression, geographically 
weighted regression (GWR), and multiscale GWR (MGWR) models are 
used to estimate the importance of several geographic variables on the 
playability values produced by the trained model. Most analyses are 
performed with the Microsoft Azure Cloud computing platform using 
Python 3.8 and the following statistical and machine learning packages: 
scikit-learn (Pedregosa et al., 2011), statsmodels (Seabold & Perktold, 
2010), and mgwr-PySAL (Oshan, Li, Kang, Wolf, & Fotheringham, 
2019). Additionally, the lctools package (Kalogirou, 2020) in R Studio 
version 4.1.0 is used to determine the optimal bandwidth for GWR. 

4.1. Scoring playability 

In this study, scoring the playability of places at a city scale is per-
formed by asking volunteers to participate in a perception experiment, i. 
e. rating the playability of the scenery captured by street view images. 
To do so, the MTurk website is used for acquiring labelled playability 
data. MTurk is a crowd-sourcing marketplace that breaks down manual 
jobs, e.g. image classification labelling, into small tasks that can be 

completed by workers from around the world.14 Recently, researchers 
have increasingly turned to MTurk for data labelling as it is fast, 
convenient, and low-cost compared to traditional survey methods; the 
accuracy is also good in place-based human intelligence tasks (Yan, 
Janowicz, Mai, & Gao, 2017). Given that human participants do the 
labelling in MTurk, approval from the University of Wisconsin Institu-
tional Review Board was gained before the MTurk labelling was 
initiated. 

For this study, workers on MTurk are asked: “Choose the category 
that most accurately describes how playable the scene in the image is for 
children.” By doing so, workers are able to consider how playable the 
scene in a street view image would be for children, and then choose the 
appropriate label from among five choices: very unplayable, unplayable, 
neither playable nor unplayable, playable, very playable. The web interface 
for workers to label street view images is shown in Fig. 6. In total, 3011 
street view images are randomly picked from the entire collection of 
Boston street view images and used for collecting workers' perceptions. 
Playability is not defined in the MTurk portion of the study because we 
want to get people's general understanding of neighborhood playability, 
rather than relying a precise, technical definition. Such an approach 
allows for different individual and cultural understandings of playable 

Fig. 3. The spatial distributions of the means of geographic features for Boston, including speed limit, play area count, crime count, and tree count.  

14 https://www.mturk.com/ 
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Fig. 4. The spatial distributions of the means of geographic features for San Francisco, including speed limit, play area count, crime count, and tree count.  

Fig. 5. The spatial distributions of the means of geographic features for Seattle, including speed limit, play area count, crime count, and tree count.  
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places, which is important given that there can be significant variation 
within and between groups of people regarding their perception of 
places (Gao et al., 2017; Yao et al., 2019). To arrive at a consensus 
understanding of playability, each of the images collected is labelled by 
nine workers, with a total of 210 workers contributing to the labelling of 
the entire training set. We assign scores for different labels ranging from 
very unplayable (score = 1) to very playable (score = 5), and the average 
of the nine labels for each image is used as the playability score. 

4.2. Deep learning model 

After collecting the playability scores of the selected 3,011 street 
view images described above, a pre-trained ResNet18 deep neural 
network model (He, Zhang, Ren, & Sun, 2016) is used to learn charac-
teristics of playability from the labelled street view images and then to 
score all of the unlabelled street view images. The training process was 
formulated as a five-category classification task, i.e. to classify each 
image as very unplayable, unplayable, neither playable nor unplayable, 
playable, or very playable. High dimensional visual features that contain 
meaningful semantics for representing neighborhood playability are 
extracted by the deep neural network. Cuda and PyTorch in Python 3.8 
are used to perform the training and evaluate the model. Once the model 
is fully trained, it is used to evaluate the collected thousands of street 
view imagery dataset for Boston, San Francisco, and Seattle, the scores 
of which are then used as the predicted playability values in regression 
analysis. After calculating the playability scores for all of the street view 
images, the average playability scores are aggregated to the CBG level. 
An average value of playability can potentially reduce spatial non- 
stationarity and the standard deviation of scores to derive the com-
mon perception trend of a neighborhood. 

4.3. Regression 

After computing the place playability scores, we examine the asso-
ciations between playability and collected geographic features in cities. 
To understand where and how these geographic features affect neigh-
borhood playability, three different regression models are used 
including ordinary least squares (OLS) linear regression, geographically 
weighted regression (GWR), and multiscale GWR (MGWR). 

Linear regression using ordinary least squares (OLS) as an parameter 
estimation method has been widely used to examine the associations 
between dependent and independent variables. OLS linear regression is 
a global model that estimates unknown parameters (ak) in a linear model 
by minimizing the sum of squared differences between predicted values 
and observed values in the dataset. The equation is as follows: 

Yi = α0 +
∑m

k=1
akXk + εi (1) 

With the OLS linear regression model, spatial stationarity is assumed, 

meaning that neither the distance between data points nor the location 
of data points is assumed to impact the values of those data points. As it 
includes all data points in parameter estimation, the resulting co-
efficients (including ak and the intercept a0) are global averages. Many 
phenomena, however, do vary across space, i.e. the effects might be 
distinct at different places, and thus are better modelled by spatial 
models. A popular model that takes spatial heterogeneity into consid-
eration is geographically weighted regression (GWR). GWR is a spatial 
regression technique that takes spatial non-stationarity into account by 
building a number of local regression models using the following 
equation from Fotheringham, Brunsdon, and Charlton (2003): 

Yi = α0(ui ,vi) +
∑m

k=1
ak(ui ,vi)Xk(ui ,vi) + εi (2)  

where Yi refers to the playability score i with its coordinates (ui,vi); α0(ui, 

vi) denotes the intercept; ak(ui,vi) indicates the local regression coefficient 
for the kth independent variable at location (ui,vi); Xk(ui,vi) refers to the kth 

attribute of location i; and εi is the random error. By using this model, the 
derived coefficients can vary across different sub-areas, and we are able 
to understand how the effects of geographical features on playability 
change across space. 

Since GWR uses a number of local models, the neighborhood, i.e. 
what points will be included in each model, must be determined. With 
the assumption that all of the parameters being estimated vary on the 
same spatial scale, a single bandwidth is used to define the neighbor-
hood. To allow for interpretability, the distance-based bandwidth is 
presented in terms of meters. By using a bi-square kernel, all points 
within the bandwidth distance are inversely weighted with the distance 
from the center of the local area, and points outside of the bandwidth are 
assigned a weight of zero. The optimal bandwidth is chosen via cross- 
validation with the lctools package in R Studio (Kalogirou, 2020), 
while all other regression-related tasks are performed in Python with the 
mgwr package (Oshan et al., 2019). 

For model evaluation, we use a golden section search optimization 
routine with a corrected Akaike information criterion (AICc) as the 
model criterion. For interpretation of the model, local R2 and global 
AICc are considered for goodness-of-fit. Finally, the parameter estimates 
for the predictors at each location are then mapped across the region of 
study, showing how parameters values vary across space. 

While GWR can improve goodness-of-fit when modelling spatial 
processes, it does so by applying a universal bandwidth to all of the 
parameters being estimated. While the spatial scale of all considered 
variables may be the same in some cases, there are many cases in which 
the processes generating the data may differ from variable to variable. 
To deal with this problem, multiscale (M)GWR allows the bandwidth to 
vary locally for each variable, such that the bandwidth for each variable 
is adjusted to the spatial scale of that variable. Allowing variables to use 
different spatial scales reduces bias in the parameter estimates, over- 

Fig. 6. Amazon Mechanical Turk (MTurk) User Interface for Classification.  
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fitting, and concurvity. The equation from Fotheringham, Yang, and 
Kang (2017) is as follows: 

Yi = α0(ui ,vi) +
∑m

k=1
abwk(ui ,vi)Xk(ui ,vi) + εi (3) 

The equation is adapted from the GWR equation by the addition of 
bw bandwidth term for the kth attribute. Different from GWR, we use an 
adaptive, nearest-neighbor bandwidth kernel, which specifies the 
number of neighbors that must be included in each local regression 
model. Such an approach better handles edge effects and non-uniform 
spatial distributions (Oshan et al., 2019), which may be more promi-
nent given that each variable has its own spatial scale in MGWR. Like 
with GWR, a bisquare distance-weighting function is used. For param-
eter optimization, we use a golden section search optimization routine 
for parameter optimization, with AICc as the model goodness-of-fit 
criterion. R2 and AICc are used for the model fit evaluation, and 
parameter estimates are mapped as with GWR. 

5. Results 

5.1. Playability score 

We first introduce the results of playability labelling by MTurk (in 
Fig. 7). The average image labels supplied by MTurk are mostly 
concentrated in the range of very unplayable through playable, with the 
playable category having the highest number of images and very playable 
having the fewest. For each category, the percentage of total training 
data is as follows: 23% very unplayable, 20% unplayable, 20% neither 
playable nor unplayable, 26% playable, and 12% very playable. For the 
model output category distribution, the percentage of each class is as 
follows: 23% very unplayable, 21% unplayable, 13% neither playable nor 
unplayable, 37% playable, and 6% very playable. As seen in Fig. 7, the 
distributions of the training data and the model output for Boston are 
very similar, suggesting that the sampling method effectively captured 
the Boston street view imagery, and that the deep learning model 
effectively learned playability features. Since the deep learning model 
indeed learns characteristics that represent the playability of a neigh-
borhood, it can be used to score the playability of scenes captured in 
street view images. 

To quantify the reliability of our results and the ability of the model 
to generalize, we present here the classification accuracy for each city. In 

each city, the top-2 classification accuracy is used, such that if the 
ground-truth label is either the highest or second highest probability 
label as predicted by the trained ResNet model, a value of 1 is assigned to 
the image, and a value of 0 if otherwise. The mean accuracy is then taken 
over all images with ground truth data to produce classification accu-
racy. We consider top-2 accuracy to better capture model performance 
compared to top-1 accuracy, since the playability labels are ordinal and 
people have variability in their perceptions, especially for the two 
similar categories such as “playable” and “very playable”. Top-2 accu-
racy for Boston is produced from the validation set for the training epoch 
associated with the highest-performing model, since the model was 
trained on labelled street view images from Boston, while a separate 
MTurk data-labelling workflow following that described in the Methods 
section is used to provide ground-truth labels for Seattle and San Fran-
cisco. The resulting top-2 classification accuracy for Boston, Seattle, and 
San Francisco is 79%, 70%, and 65%, respectively. These results indicate 
that the methods used can generalize fairly well between the cities 
studied, though some accuracy is lost when evaluating images from 
cities not represented in the training set. The fact that the classification 
accuracy is so high for the cities not represented in the training data 
speaks to the similarities in human conceptions of playability even 
across different cities. To verify that the training sample size is suffi-
ciently large, we also test the top-2 accuracy in Boston for the model 
trained on a subset of only 2000 images from the Boston image data set. 
The resulting top-2 accuracy for Boston is 74%, compared to 79% with 
the full training set, suggesting that additional training samples over 
3000 would only marginally improve the model accuracy. 

To demonstrate the similarity between human-assigned labels and 
model-assigned labels, we present Fig. 8, which shows some samples of 
street view images that are classified into different categories. Street 
view images which are classified as very unplayable feature large roads 
and little green space, while images classified as very playable are pri-
marily from suburbs with trees, narrow roads, houses, and sidewalks. As 
expected, images labelled neither playable nor unplayable have a mix of 
features from both very unplayable and very playable images, and the 
features present are not as pronounced: roads are medium-sized, yards 
are present but small, and relatively few trees are close by. Analysis with 
explanatory variables is described in the section 5.2. 

The distributions of average playability values per CBG in three cities 
are shown in Fig. 9. According to the maps, Boston playability values are 
highest in the southern part of the city, and lowest near the downtown 
and airport areas in the northern part of the city. In San Francisco, scores 
are highest in the geometric center of the city and in the large park on 
the northern shore, while being relatively low in the rest of the city. In 
Seattle, the most playable areas are in the north and on the perimeter of 
the city. 

5.2. Regression results 

Six experiments are performed using three models (OLS, GWR, and 
MGWR) to examine associations between neighborhood playability and 
different geographic features in three cities, respectively:  

1) M1: OLS model with only speed limit, crime rate, tree count, and play 
area count.  

2) M2: OLS model with all variables, including place perception 
variables.  

3) M3: GWR model with only speed limit, crime rate, tree count, and 
play area count.  

4) M4: GWR model with all variables, including place perception 
variables.  

5) M5: MGWR model with only speed limit, crime rate, tree count, and 
play area count.  

6) M6: MGWR model with all variables, including place perception 
variables. 

Fig. 7. Distributions of playability labels. Green: labels from Amazon Me-
chanical Turk (MTurk); Cyan: labels from the trained Resnet18 model. On the x- 
axis: 1, 2, 3, 4, and 5 correspond to very unplayable, unplayable, neither playable 
nor unplayable, playable, and very playable, respectively. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Using cross-validation, the optimal bandwidths for the GWR models 
in each city are as follows. For Boston GWR models without and with 
place perception variables: 14201.76 m and 13,506.89 m, respectively. 
For San Francisco GWR models without and with place perception 
variables: 4489.18 m and 4337.99 m, respectively. For Seattle GWR 
models without and with place perception variables: 10175.22 m and 
16,301.80 m, respectively. The optimal GWR bandwidths for Seattle and 
Boston have similar spatial scales, while that of San Francisco is sub-
stantially smaller. This suggests that variables considered in Seattle and 
Boston operate on a larger spatial scale than the same variables in San 
Francisco, which might link to their underlying urban built 

environments. 
Overall, playability values are best modelled with the full set of 

variables and with models that account for spatially-heterogeneous 
processes (Tables 1, 2, 3). Model goodness-of-fit (R2) improves signifi-
cantly when taking spatial heterogeneity into consideration with GWR 
and MGWR, compared to OLS regression. 

The inclusion of place perception variables improves the R2 as well, 
which suggests that modelling with place perception variables captures 
more environmental factors that are associated with playability. In 
Boston, for instance, the R2 increases from 0.33 to 0.63 for the OLS 
model with the inclusion of the place perception variables. Regarding 

Fig. 8. Samples of labelled street view images classified by the deep learning model. Left: street view images that represent very unplayable environments; Middle: 
street view images that represent neither unplayable nor playable environments; Right: street view images that represent very playable environments. 

Fig. 9. Playability scores from the model prediction at the census block group scale for Boston (Left), San Francisco (Center), and Seattle (Right).  

Table 1 
Boston regression results.   

OLS Coefficients GWR Coefficients MGWR Coefficients  

M1 M2 M3  M4  M5  M6  

Variables Mean Mean Mean Min, Max Mean Min, Max Mean Min, Max Mean Min, Max 
Intercept 0.00 0.00 − 0.08 (− 0.96, 0.70) − 0.05 (− 0.74, 0.86) − 0.04 (− 1.44, 0.86) − 0.07 (− 0.92, 0.72) 
Speed Limit − 0.34*** − 0.25*** − 0.26 (− 0.60, 0.05) − 0.17 (− 0.39, 0.02) − 0.22 (− 0.40, − 0.08) − 0.14 (− 0.24, − 0.10) 
Crime − 0.35*** − 0.11*** − 0.35 (− 1.31, 0.22) − 0.26 (− 1.14, 0.26) − 0.29 (− 0.63, − 0.11) − 0.24 (− 0.72, 0.02) 
Tree Count − 0.06 − 0.04 − 0.02 (− 0.27, 0.16) − 0.02 (− 0.11, 0.28) − 0.02 (− 0.03, − 0.01) − 0.03 (− 0.03, − 0.03) 
Play Area Count − 0.17*** − 0.09** − 0.02 (− 0.50, 0.20) − 0.02 (− 0.43, 0.16) 0.01 (− 0.07, 0.06) 0.00 (− 0.12, 0.22) 
Beautiful  0.37***   0.16 (− 0.18, 0.44)   0.13 (0.02, 0.25) 
Boring  − 0.23***   − 0.16 (− 0.50, 0.41)   − 0.10 (− 0.13, − 0.09) 
Depressing  − 0.28***   − 0.24 (− 0.42, 0.06)   − 0.26 (− 0.26, − 0.25) 
Lively  − 0.46***   − 0.18 (− 0.59, 0.38)   − 0.01 (− 0.21, 0.03) 
Observations 558 558 558  558  558  558  
R2 0.33 0.63 0.76  0.86  0.79  0.88  
AICc 1371.47 1048.42 885.14  664.53  817.67  571.90  

R2 and Adj R2 were nearly identical, and so only R2 is reported. 
*** denotes significance at the 0.1% level, ** at the 1%, and * level 5% level. 
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the two spatial models, the goodness-of-fit improved from 0.76 to 0.86 
and from 0.79 to 0.88 for GWR and MGWR, by without considering or 
with considering the place perception variables, respectively. Regres-
sion results are similar for both San Francisco (Table 2) and Seattle 
(Table 3), suggesting that similar factors are associated with playability 
in different parts of the United States, at least in our selected cities of 
comparable size. 

Using the AICc (Hurvich & Tsai, 1993) as an estimator of prediction 
error is better suited to handle small sample sizes and account for model 
complexity; the smaller the AICc value the better the model. The MGWR 
for Boston yields a value of 571.90, compared to 664.53 from GWR 
(Table 1), when place perception variables are included, suggesting that 

MGWR does produce a better fit when compared with GWR, while not 
significantly increasing model complexity. Similar AICc values are 
produced from GWR and MGWR models in Seattle and San Francisco. 
However, given the high goodness-of-fit from the inclusion of the place 
perception variables and the relative ease of interpretation of GWR 
compared to MGWR, further discussion will only consider the GWR 
model constructed with the place perception variables. 

Local R2 results for the GWR model constructed for Boston show that 
highest model goodness of fit is achieved near the downtown area, 
though the R2 is relatively high throughout the city (Fig. 10). Seattle and 
San Francisco, similarly, have high accuracy over the whole area of 
study, though with some spatial variation. 

Table 2 
San Francisco regression results.   

OLS Coefficients GWR Coefficients MGWR Coefficients  

M1 M2 M3  M4  M5  M6  

Variables Mean Mean Mean Min, Max Mean Min, Max Mean Min, Max Mean Min, Max 
Intercept 0.00 0.00 − 0.02 (− 0.68, 0.43) − 0.07 (− 0.43, 0.35) − 0.26 (− 1.00, 0.38) − 0.21 (− 0.63, 0.07) 
Speed Limit − 0.28*** − 0.36*** − 0.30 (− 0.51, 0.09) − 0.39 (− 0.56, − 0.11) − 0.33 (− 0.97, 0.23) − 0.39 (− 0.98, − 0.04) 
Crime − 0.46*** − 0.26*** − 0.52 (− 1.71, 0.91) − 0.53 (− 1.3, − 0.10) − 0.79 (− 2.30, 0.35) − 0.67 (− 2.16, 0.16) 
Tree Count 0.38*** 0.29*** 0.37 (0.10, 0.59) 0.25 (− 0.17, 0.46) 0.32 (− 0.06, 0.76) 0.24 (0.10, 0.37) 
Play Area Count 0.11*** 0.06* 0.13 (− 0.24, 0.57) 0.10 (− 0.11, 0.53) 0.21 (− 0.48, 1.01) 0.13 (− 0.16, 0.57) 
Beautiful  0.30***   0.23 (− 0.12, 0.70)   0.21 (0.01, 0.47) 
Boring  0.06   0.09 (− 0.40, 0.23)   0.11 (0.10, 0.13) 
Depressing  − 0.35***   − 0.37 (− 0.70, 0.06)   − 0.30 (− 0.31, − 0.29) 
Lively  − 0.44***   − 0.31 (− 0.93, 0.25)   − 0.16 (− 0.57, 0.15) 
Observations 563 563 563  563  563  563  
R2 0.46 0.65 0.67  0.78  0.84  0.87  
AICc 1260.95 1022.95 1035.57  859.18  831.20  729.74  

R2 and Adj R2 were nearly identical, and so only R2 is reported. 
*** denotes significance at the 0.1% level, ** at the 1% level, and * level 5% level. 

Table 3 
Seattle regression results.   

OLS Coefficients GWR Coefficients MGWR Coefficients  

M1 M2 M3  M4  M5  M6  

Variables Mean Mean Mean Min, Max Mean Min, Max Mean Min, Max Mean Min, Max 
Intercept 0.00 0.00 − 0.22 (− 4.83, 1.20) − 0.12 (− 0.60, 0.25) − 0.28 (− 1.3, 0.36) − 0.03 (− 0.37, 0.29) 
Speed Limit − 0.46*** − 0.31*** − 0.46 (− 1.50, 1.02) − 0.33 (− 0.72, − 0.12) − 0.46 (− 0.91, − 0.19) − 0.32 (− 0.66, − 0.11) 
Crime − 0.59*** − 0.23*** − 1.00 (− 9.44, 1.17) − 0.47 (− 1.83, 0.01) − 0.94 (− 1.84, − 0.26) − 0.36 (− 0.69, − 0.10) 
Tree Count 0.02 0.00 0.13 (− 0.89, 1.71) 0.01 (− 0.23, 0.26) 0.16 (− 0.25, 0.97) 0.03 (− 0.02, 0.07) 
Play Area Count − 0.03 − 0.03 0.04 (− 0.31, 0.69) 0.00 (− 0.14, 0.24) 0.05 (− 0.03, 0.16) 0.02 (0.01, 0.03) 
Beautiful  0.43***   0.39 (0.10, 0.82)   0.33 (0.07, 0.73) 
Boring  0.07   0.03 (− 0.35, 0.40)   − 0.04 (− 0.14, 0.04) 
Depressing  − 0.27***   − 0.27 (− 0.69, 0.32)   − 0.33 (− 0.48, − 0.19) 
Lively  − 0.17***   − 0.19 (− 0.47, 0.52)   − 0.29 (− 0.43, − 0.10) 
Observations 479 479 479  479  479  479  
R2 0.62 0.814 0.86  0.91  0.85  0.93  
AICc 906.07 573.10 672.96  426.01  663.06  311.83  

R2 and Adj R2 were nearly identical, and so only R2 is reported. 
*** denotes significance at the 0.1% level, ** at the 1% level, and * level 5% level. 

Fig. 10. Local R2 for GWR model in Boston (Left), San Francisco (Center), and Seattle (Right).  
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Here we present the model coefficients for the GWR models with 
place perception variables. Within Boston, the place perception vari-
ables are the most predictive variables, with average coefficient values 
of 0.16, − 0.16, − 0.24, and − 0.18 for the beautiful, boring, depressing, 
and lively variables, respectively (Table 1). Intuitively, beautiful is 
positively correlated with playability, while boring and depressing are 
negatively correlated with playability. In San Francisco (Table 2) and 
Seattle (Table 3), coefficient values for beautiful, depressing, and lively 
are all similar to those of Boston, while boring has small but positive 
average coefficient values in both cities. 

While it is intuitive that boring or depressing would be negatively 
associated with playable places, the negative relationship between lively 
and playable is more surprising. Liveliness is generally considered to be 
a positive attribute of place, so here we explore where and why liveliness 
and playability scores are negatively correlated. The negative relation 
between lively and playable suggests that the activities, and thus places, 
which are associated with liveliness are adult activities, not child ac-
tivities, and vice-versa. To visualize where differences between play-
ability and liveliness are greatest, we perform the following operations: 
1) normalize scores for liveliness and playability to be between 0 and 1, 
and 2) take the difference between the two attributes by subtracting 
normalized playability scores from normalized liveliness scores at the 
CBG level (Fig. 11). Values closer to − 1 have relatively low liveliness 
and relatively high playability while values closer to +1 have relatively 
high liveliness and relatively low playability. In particular, we find that 
downtown areas in the three cities all have relatively high liveliness 
scores and relatively low playability scores. As seen in Fig. 11, the most 
negative areas in Boston are in the southern, more residential part of the 
city, indicating relatively low liveliness and high playability. The 
opposite is true for the northern half of the city, which is generally more 
commercial and industrial. In San Francisco, low liveliness and high 
playability are seen in the large park on the north side (in white color). 
In Seattle, commercial and industrial areas (in downtown) generally 
have high liveliness and low playability (in purple color), but other areas 
in the city show no clear patterns following predominate land-use pat-
terns, similar to San Francisco. 

Speed limit in all three cities has a strong, negative correlation with 
playability (see Fig. 12), with average coefficient values of − 0.17, 
− 0.39, and − 0.33 in Boston, San Francisco, and Seattle. Crime, simi-
larly, has a strongly negative correlation (− 0.26, − 0.53, − 0.47, 
respectively) with playability in all cities. 

Average coefficient values for tree count within 50 m range from 
positive to negative in their association with playability (and the spatial 
variability is shown in Fig. 13), with average coefficients of − 0.02, 0.25, 
and 0.01 for Boston, San Francisco, and Seattle. Generally, positive co-
efficients for tree count are located on the periphery of each of the cities, 
perhaps coinciding with more suburban neighborhoods and parks, 
though that is not the case in southern Boston and southern Seattle, 
which both have many parks and suburbs yet still have negative co-
efficients. It demonstrates the spatial heterogeneous impact of tree count 

on playability. 
GWR coefficient values for play area count are generally close to zero 

(Fig. 14), varying between slightly positive and slightly negative. Areas 
with positive associations between play area count and playability are 
located along the periphery of the three cities. It also shows the spatial 
heterogeneous impact of play area count on playability. 

5.3. Spatial variability testing results 

To assess if the models are truly capturing spatial heterogeneity, a 
Monte Carlo simulation-based statistical significance test is performed 
wherein the locations of the attributes are shuffled a specified number of 
times and regression models are built on each set of shuffled data, 
allowing for the construction of a pseudo p-value for each parameter 
estimate distribution. Using a 95% confidence level, a p-value of 0.05 or 
less for a given parameter indicates that the variable has a significant 
level of spatial variability, i.e. a non-random spatial distribution, while 
values greater than 0.05 indicate that the spatial arrangement is possibly 
random. 

Due to the intense computational requirements for such a test, the 
spatial variability test for GWR on each set of variables is performed 
with 200 iterations, while MGWR is performed with 100 iterations on 
each set of variables. Results for the spatial variability tests with the 
GWR models built with and without the place perception variables 
indicate statistically significant spatial variability, i.e. non-randomness, 
with all variables having a p-value of ≤ 0.05 (Table 4). For MGWR 
without place perception variables, tree count and play space count are 
not significant in Boston, while all other variables are. Using MGWR 
with all variables, the following variables have significant spatial vari-
ability at p-value ≤ 0.05: 1) in Boston, crime, beautiful, and lively; 2) in 
San Francisco, speed limit, crime, play area count, beautiful, and lively; 
3) in Seattle, speed limit, crime, beautiful, depressing, and lively. These 
results suggest that with more variables and different bandwidths for 
each variable, the interaction between each predictor and the dependent 
variable becomes smaller relative to the variation in value across the 
study area, resulting in insignificant spatial variability for some 
variables. 

6. Discussion 

Here we summarize key findings from the regression analyses of 
playability in the three cities, then discuss limitations of the study. 

6.1. Factors related to playability 

The results described above are generally consistent both with pre-
vious studies and common sense. For instance, our results suggest that 
places that are perceived as beautiful are generally perceived as play-
able. However, previous research has identified trees as being associated 
with more play (Dyment & Bell, 2008), while our results suggest that the 

Fig. 11. Lively and playability differences in Boston (Left), San Francisco (Center), and Seattle (Right). Golden stars are placed in the downtown commercial districts 
to give an indication of the respective city centers, rather than to comprehensively describe cognitive place. 
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relationship between tree count and playability varies geographically, 
though this could be a result of only including publicly-managed trees 
along roads and in parks in our tree count dataset. 

While previous studies have found different conclusions regarding 
traffic calming features and vehicle speed (Lambert, Vlaar, Herrington, 
& Brussoni, 2019; Nguyen et al., 2018), we find here that higher road 
speeds have a strongly negative association with playability in all places. 
Higher road speed may affect playability in several ways: 1) increase the 
risk of a fatal collision between an automobile and a child, such that 
parents would prevent children from playing for safety reasons, 2) in-
crease the noise level from traffic, thereby making play in such areas 
undesirable, and 3) indirectly, roads with higher speed limits may be 
associated with smaller or non-existent sidewalks rendering them less 
playable. 

Crime count also has a strong, negative association with playability 
and may affect playability in several ways. Since crime count here is 
merely the sum total number of crimes in the vicinity of each street view 
image, the type of crime is obscured. For example, petty crimes or crimes 
that occur at night might not affect playability, while crimes that 

directly affect the safety of children might have a stronger impact. For 
both road speed and crime, targeted approaches to improve playability 
in a given neighborhood would need to consider such distinctions. 

Generally, the play area count data set used here has a weak rela-
tionship with playability. Common sense, however, says that access to 
play areas is essential in being able to play. This discrepancy may due to 
the lack of some informal places, such as cul-de-sacs and empty lots, in 
our data set, as data is downloaded from the VGI platform OSM. More 
data sources may be obtained to have a more comprehensive description 
of place. 

Regarding place perception factors, higher place perception attribute 
scores for depressing and lively are both negatively associated with 
playability, while boring varies from negative to positive in its associ-
ation with playability. 

6.2. Differences between playability and liveliness 

We continue here the discussion based on the differences between 
lively and playable scores, as initially described in Section 5.2. 

Fig. 12. Speed limit GWR coefficients for Boston (Left), San Francisco (Center), and Seattle (Right).  

Fig. 13. Tree count GWR coefficients for Boston (Left), San Francisco (Center), and Seattle (Right).  

Fig. 14. Play area count GWR coefficients for Boston (Left), San Francisco (Center), and Seattle (Right).  
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Referencing the land use maps in three cities15,16,17 we discuss reasons 
that might cause such differences, and explore common themes. 
Generally, the difference maps suggest that liveliness and playability 
both stem from land-use policies but are generally impacted in opposite 
ways. In all three cities, there are clear geographic patterns in the 
relative strength of each score, but the patterns vary by city. However, 
one consistent finding across all three cities is high liveliness and low 
playability in the downtown area, which we mark with a golden star in 
each city in Fig. 11. Stars are placed in the downtown commercial dis-
tricts to give an indication of the respective city centers, rather than to 
comprehensively describe cognitive places (Gao et al., 2017; Montello, 
Goodchild, Gottsegen, & Fohl, 2003). 

While lively downtowns may be desirable for affluent young adults 
and tourists, they do not necessarily cater to all people. Studies by Gil-
liland, Holmes, Irwin, and Tucker (2006) and Whitzman and Mizrachi 
(2012) found low access to play spaces and a sense of entrapment by 
children in downtown areas. A study by Quercia, O'Hare, and Cramer 
(2014) that used crowd-sourcing and image-processing techniques to 
quantitatively understand the built environment found that tall resi-
dential buildings are negatively associated with beauty and happiness, 
while tall office buildings and landmarks are positively associated with 
beauty, while also providing a visual cue of city structure. In the cities 
examined in this study, the downtown areas are composed of many tall 
office buildings, suggesting that they may provide beauty and orienta-
tion cues, which could be useful to adults using the downtown for work 
and night-life activities, but fail to create places that generate a sense of 
playability. For another aspect of urban vibrancy, a study by Zhou et al. 
(2019) found that walkability scores produced with a street view image 
and deep learning method did not have a strong relationship with urban 
density. Finally, De Nadai et al. (2016) found that the perceived safety of 
an area modulates the human activity there, with females and people 
older than 50 being particularly sensitive to the level of perceived safety. 
While the same study does not examine the effects of perceived safety on 
the behavior of children, we note that our results show a strongly 
negative relationship between playability and crime, with crime counts 

being highest in all cities near the downtown area (Figs. 3, 4, and 5). As 
far as the authors are aware, our study is the first that attempts to use 
human perception and deep-learning techniques to evaluate playability 
at a city scale. 

Given that the downtown area of many cities provides differential 
benefits to people based on age and gender, among other factors, more 
inclusive city planning, such as outlined by the 8 to 80 cities project,18 

might be targeted at such areas. Liveliness and playability are not 
necessarily exclusive in downtown areas, and some urban planning 
approaches such as more parks and green space as well as reduced traffic 
volume and velocity could benefit both liveliness for adults and play-
ability for children. While a negative correlation between playability 
and liveliness for downtown areas is inline with previous research, city- 
wide results may suffer from issues related to the underlying data. In 
particular, the question framed in MTurk during data collection for 
playability scores makes no distinction as to time of day when the scenes 
in the street view images would be used for play. In the case of a 
downtown area, for example, people scoring the images may assume 
that they should evaluate playability when downtown is busy, i.e. when 
it is most lively, when in fact playing and downtown activities such as 
dining frequently occur at different times. In such cases, lively and 
playable places may not actually be spatially exclusive, as long as the 
temporal difference is accounted for. 

Similarly, lively scores may reflect vagueness in the question posed 
during data collection. In the place perception dataset, lively scores were 
obtained by asking participants to choose the most lively street view 
image from two presented street view images. Since no definition of 
lively was provided, different participants may have made different 
assumptions about liveliness, such as time of day considered and the 
demographics of the users (e.g. age, gender). Furthermore, a recent 
study by Yao et al. (2019) found that global-coverage urban perception 
datasets produced by machine learning techniques may not be very 
accurate at the local scale, casting some doubt on the veracity of local 
perception results in this study. For future research, we advise further 
exploration of how lively and playability scores vary geographically in 
various cities, and how they are tied to land use. The use of CBGs here as 
the spatial analysis unit may be obfuscating finer-grain land use, and as 
such a smaller spatial unit might be advisable for such research. 

6.3. Broader implications 

For playability, the city-scale, geographically-dependent analysis 
described here suggests that research on play can be done at larger scales 
than in traditional studies, and that the use of deep learning can allow 
researchers to utilize comprehensive underlying features from a much 
richer data source to describe neighborhood places. Generally, the use of 
street view images as a big data source for quantifying place perception 
at a city scale could be a cost-effective method for urban planners and 
geographers to quantify and describe places. Given the geographic 
variation in perception scores such as liveliness and playability, we 
suggest that such perception based metrics be used as a starting point for 
comprehensively describing places, at which point methods such as 
surveys and more in-depth evaluations can be used to describe places for 
the purposes of urban planning and development. 

For sustainable city design, this study also provides valuable insights. 
According to the regression results, more green and beautiful space, 
greater proximity to open space, and lower speed limits may be asso-
ciated with environments that are conducive to play. Such natural areas 
have many sustainability benefits to cities, and their positive impacts on 
playability provide yet more impetus for construction and maintenance 
of such areas. Similarly, reducing traffic speeds in cities could have the 
benefit of promoting sustainable forms of transportation such as biking 
and walking, while also benefiting playability. 

Table 4 
Spatial variability test results.   

Boston San Francisco Seattle  

GWR MGWR GWR MGWR GWR MGWR 

Variables p-value 

Intercept (0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

Speed Limit (0.00, 
0.00) 

(0.05, 
0.12) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

Crime (0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

Tree Count (0.00, 
0.00) 

(0.85, 
1.00) 

(0.00, 
0.00) 

(0.00, 
0.06) 

(0.00, 
0.00) 

(0.00, 
0.17) 

Play Area 
Count 

(0.01, 
0.00) 

(0.39, 
0.06) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.00) 

(0.00, 
0.54) 

Beautiful (− , 
0.00) 

(− , 
0.05) 

(− , 
0.01) 

(− , 
0.01) 

(− , 
0.01) 

(− , 
0.02) 

Boring (− , 
0.00) 

(− , 
0.57) 

(− , 
0.01) 

(− , 
0.37) 

(− , 
0.00) 

(− , 
0.09) 

Depressing (− , 
0.00) 

(− , 
0.87) 

(− , 
0.00) 

(− , 
0.80) 

(− , 
0.01) 

(− , 
0.05) 

Lively (− , 
0.00) 

(− , 
0.05) 

(− , 
0.00) 

(− , 
0.00) 

(− , 
0.00) 

(− , 
0.04) 

In each city, spatial variability tests are performed on both GWR and MGWR 
models. Additionally, each model type was constructed both with and without 
the place perception variables. 

15 https://sfgov.org/sfplanningarchive/zoning-maps  
16 http://www.bostonplans.org/3d-data-maps/gis-maps/zoning-maps  
17 http://www.seattle.gov/dpd/research/GIS/webplots/Smallzonemap.pdf 18 https://www.880cities.org/ 
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For the growth and development of children, constructing cities in 
such ways would have many benefits. Physically, children would have 
more opportunities to play and receive associated health benefits. 
Reducing traffic speeds would also provide them with safer places to 
play. Mentally, exposure to natural areas would afford children more 
focused and reduced anxiety (McCurdy et al., 2010). 

With all of these benefits, governments and urban planners should 
consider playability when planning city development. These factors not 
only benefit growth and development in children, but also help create 
environmentally-friendly cities for people to live in. 

6.4. Limitations and future work 

Although we have proposed a computational framework for scoring 
neighborhood playability and analyzing its associations with 
geographical features, there is still room for improvement in the meth-
odology used in this study. In particular, data bias may have impacted 
the results. Data bias is a common issue in the era of big data (Gao et al., 
2017; Yang et al., 2017). Regarding bias from the labellers, 210 workers 
labelled all of the Boston images. No filters limiting which workers could 
accept the MTurk task were used. The percentages of male and female 
workers were 69% and 31%, respectively, while the average age of all 
workers was 34. MTurk workers have been shown to be more highly 
educated than U.S. adults in general (Hitlin, 2016). Given that more 
educated parents are less likely to allow their children to engage in 
unstructured free play (Aarts et al., 2012), the training data may be 
biased towards unplayable, which is consistent with the data distribu-
tions in Fig. 7. Overall, the task of labelling images for perception is 
inherently one that incorporates bias, as labellers are asked to assess the 
playability of places based on their own experiences. While education 
can potentially impact people's assessment of playability, perception is 
inherently based on subjective feelings, and thus will be dependent upon 
the labellers background, to some extent. For the questions to Mturk 
workers regarding playability, no distinction is made between play-
ability for boys versus girls or children versus adolescents, both of which 
have been shown to impact the type and amount of play (Katzmarzyk 
et al., 2018). In order to tailor to the specific needs of different age 
groups, labelled datasets specific to certain age groups could be helpful 
in identifying playable and unplayable areas. Additionally, factoring in 
the perceptions of children may help make the model outputs better 
reflect the true playability of urban areas. 

Regarding the data used in the regression analyses, we attempted to 
use the most up-to-date information available for all data layers. How-
ever, some layers may incorporate data from a number of years, 
depending on when the data was collected for a given location. In the 
case of the street view images, the range in date of collection is from 
2007 to 2019, though the majority (more than 95%) are from 2018 and 
2019. On such a time scale, the built environment is relatively stable, but 
to reduce fluctuations in values resulting from differences in collection 
date at various locations, we first average each data layer at the CBG 
level. We also note that street view images have directionality, such that 
in a given location street view images taken from different angles could 
receive different playability scores. Most notably, a street view image 
taken parallel to the road would likely score lower for playability since it 
has more pixels of the road, while a street view image from the same 
location but taken perpendicular to the road would capture more of the 
community landscape and thus might receive a higher score. Presum-
ably, using the average playability score of the images from different 
angles at the same location mitigates this issue to a certain degree. In 
addition, future research might consider the standard deviations of 
playability at the same place when measuring the aggregate playability 
score. 

Another future direction is to examine the relationships between 
land use patterns and playability. Previous studies have noted how re-
lationships between the urban environment and play are specific to land 
use patterns, which are configured to serve different needs (Booth, 

Pinkston, & Poston, 2005). Similarly, in our study, we found that the 
difference between playability and lively might also be influenced by 
urban functions. Hence, taking land use patterns into account may 
enhance our understanding of neighborhood playability. 

7. Conclusion 

Play has positive effects on childhood development and well-being, 
and is necessary for sustainable city development. In this study, we 
propose a theory-informed and computational framework that in-
tegrates big data and machine learning to evaluate place playability at a 
city scale. Specifically, we capture people's perception of place play-
ability by employing Amazon Mechanical Turk to classify street view 
images. A deep learning model trained on the labelled data is then used 
to evaluate neighborhood playability for three U.S. cities: Boston, 
Seattle, and San Francisco. Finally, multivariate and geographically 
weighted regression models are used to explore how various urban 
features are associated with playability. We suggest that this method can 
be used as a cost-effective step for identifying areas of improvement for 
play at the city level, after which more studies and initiatives can be used 
to evaluate local needs. The high accuracy of spatial models in this study 
suggest that more research on play should use spatially explicit models, 
as variable importance for playability varies across space. In all cities, 
place perception variables are highly predictive of playability, suggest-
ing that the place perception variables extracted from street view images 
can well capture various aspects of human perception in urban areas. 
Finally, in line with other studies, we find that higher traffic speeds and 
crime counts are negatively associated with playability, suggesting that 
both aspects be addressed by cities seeking to make their neighborhoods 
more playable. From the human perception perspective, higher scores 
for perception of beauty are positively associated with playability. 
Interestingly, a place that is perceived as lively may not be playable. Our 
research provides helpful insights for urban planning focused on sus-
tainable city growth and development, as well as for research focused on 
creating nourishing environments for child development. 
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