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ABSTRACT
Trajectory data is among the most sensitive data and the society
increasingly raises privacy concerns. In this demo paper, we
present a privacy-preserving Vehicle Trajectory Simulation and
Visualization (VTSV) web platform (demo video: https://youtu.be/
NY5L4bu2kTU), which automatically generates navigation routes
between given pairs of origins and destinations and employs a deep
reinforcement learning model to simulate vehicle trajectories with
customized driving behaviors such as normal driving, overspeed,
aggressive acceleration, and aggressive turning. The simulated
vehicle trajectory data contain high-sample-rate of attributes
including GPS location, speed, acceleration, and steering angle,
and such data are visualized in VTSV using streetscape.gl, an
autonomous driving data visualization framework. Location privacy
protection methods such as origin-destination geomasking and
trajectory k-anonymity are integrated into the platform to support
privacy-preserving trajectory data generation and publication.
We design two application scenarios to demonstrate how VTSV
performs location privacy protection and customize driving
behavior, respectively. The demonstration shows that VTSV is able
to mitigate data privacy, sparsity, and imbalance sampling issues,
which offers new insights into driving trajectory simulation and
GeoAI-powered privacy-preserving data publication.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computing
methodologies → Artificial intelligence; • Human-centered
computing → Visualization systems and tools.
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1 INTRODUCTION

Figure 1: The web interface of VTSV.

The prevalence of nowadays location-aware devices and the
ubiquitous Internet enables us to record and collect massive large-
scale individual location trajectory data. Such big data bring novel
opportunities for understanding and evaluating transportation,
urban planning, human dynamics, and so forth [8], while raising
privacy concerns [2]. As an important source of trajectory data,
vehicle trajectory data can be recorded by either the sensors
embedded in drivers’ mobile phones or vehicle-mounted devices. A
prominent property of vehicle trajectory data is that, unlike social
media check-in data or mobility tracking data, they usually contain
not only GPS locations but also many other attributes that can
be used to better describe vehicle driving status, such as speed,
acceleration, and steering angles [6]. Such enriched trajectory data
support various application scenarios such as driving behavior
profiling, Usage-Based Insurance (UBI), and traffic simulation.
Although promising in these applications, vehicle trajectory data
face three main challenges.

Challenge 1: Privacy concerns. Many people, especially private
car drivers, may not agree to service providers for collecting or
sharing their driving data since they worry that others may be able
to identify their sensitive locations (e.g., home/work locations)
from their trajectory data, such as through location clustering
algorithms. Such concerns result in the fact that there are few
private car trajectory datasets available.

Challenge 2: Data sparsity. Many existing trajectory datasets
have relatively sparse sample rates (e.g., 2 ∼ 10 seconds or even 2
minute per point), leading to data sparsity issues. Such sparse data
are usually not sufficient to support some application scenarios
such as travel time estimation, driving behavior extraction and lane
change detection [1].

Challenge 3: Data imbalance. Most of the existing vehicle
trajectory datasets are taxi trip datasets. Regardless of data
quality, these data are not very representative for reflecting traffic
characteristics or the driving behavior of private car drivers. Also,
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in the real world, trajectories with normal driving behavior account
for the vast majority, while the trajectories with other driving
behaviors (e.g., aggressive driving) may be more valuable for
analyzing accidents or adjusting insurance premiums.

To this end, we present the VTSV, a privacy-preserving Vehicle
Trajectory Simulation and Visualization platform that simulates
vehicle trajectories using deep reinforcement learning with
customized driving behaviors and supports privacy-preserving data
generation. The web interface of VTSV is shown in Figure 1. Users
can pick up pairs of origin and destination locations on the map,
and the driving routes between them (shortest paths by default)
along the road network will be planned. Privacy protectionmethods
such as geomasking and trajectory k-anonymity are enabled here
to protect location privacy of individual routes. A reinforcement
learning model will then simulate high-sample-rate (e.g., 10 Hz)
vehicle trajectory data (including GPS locations and sensor data
such as speed, acceleration) along the planned routes, and several
parameters can be set to simulate trajectory data with different
driving behaviors (overspeed, aggressive acceleration, etc.). The
simulated data are visualized on the platform as autonomous driving
trips and can also be downloaded so that users can better understand
and analyze driving behaviors comprehensively. To the best of our
knowledge, our work is the first platform to simulate and visualize
high-sample-rate privacy-preserving vehicle trajectory using deep
reinforcement learning with customized driving behaviors, which
offers new insights into driving trajectory simulation and GeoAI-
powered privacy-preserving data publication.

2 OVERALL ARCHITECTURE

Figure 2: The overall architecture of VTSV.

Figure 2 shows the overall architecture of VTSV, which consists
of the following five modules:

• Route Planning Module: given a pair of coordinates
(origin and destination), this module will plan a route from
the origin to the destination.

• PrivacyProtectionModule: thismodule integrates several
location privacy protection techniques such as geomasking
and trajectory k-anonymity to protect location privacy of
vehicles.

• Driving Simulation Module: this module includes a pre-
trained reinforcement learning model that can simulate
customized driving behavior along a given route.

• Data Visualization Module: the planned route, simulated
driving data, and the driving process are visualized using a
driving data visualization framework.

• Data Export Module: the simulated data can be exported
and downloaded from the module. Comma-separated values
(CSV) file and the XVIZ binary file are supported.

2.1 Route Planning Module
The first step for vehicle trajectory simulation is to determine
a driving route from an origin to a destination. A driving route
𝑅 consists of a set of connected road segments S and a set
of intersections I. We record intersections and the centerlines
of road segments using GPS points (𝑙𝑛𝑔, 𝑙𝑎𝑡) and polylines
[(𝑙𝑛𝑔1, 𝑙𝑎𝑡1), (𝑙𝑛𝑔2, 𝑙𝑎𝑡2), ...]. The goal of the Route Planning
Module is to plan such a driving route between the origin and
the destination picked up by users. Specifically, we use the Open
Source Routing Machine (OSRM), an open-source route planning
engine based on OpenStreetMap data, to plan driving routes. OSRM
uses contraction hierarchies and the multilevel Dijkstra shortest
path algorithm [3], which results in fast and flexible routing and
thus suitable for web-based routing applications.

OSRM plans shortest-path routes by default, and it also accepts
options for customizing route planning. For example, option
“steps" allows returning route steps for each road segment; option
“overview" defines the fineness of the route (e.g., complete or
simplified).

2.2 Privacy Protection Module
Privacy Protection Module processes origins, destinations, and
routes using location privacy protection methods and produces
privacy-preserving routes that do not disclose location privacy or
identification of mobile users or vehicles. The methods we currently
use in VTSV are Origin-Destination Geomasking and Trajectory
K-anonymity.

Origin-Destination Geomasking: Geomasking displaces
locations in uncertain ways so that original locations are concealed,
which has been broadly used in public health and spatial analysis [2].
In the VTSV, we implement random perturbation, one of the popular
geomasking methods, to randomly blur origins and destinations
based on a user-customizable threshold (e.g., 1,000 m. The best
threshold value varies among different scenes). The planned routes
based on blurred origins and destinations reduce the chance of
disclosing actual departure and arrival locations of users.

Trajectory K-anonymity: The idea of trajectory k-anonymity
is to mix k number of similar trajectories so that no one can
distinguish one unique trajectory from the others. In VTSV,
we integrated a simplified version of the generalization-based
approach [5] that allows planning multiple alternative routes to
achieve k-anonymity, where k can be customized by users.

2.3 Driving Simulation Module
We use the Driving Simulation Module to simulate high-sample-
rate vehicle trajectory data along given routes. This module first
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Table 1: Parameters in the kinematic vehicle model

Parameter Description

Length The length of the vehicle (4m by default)
Position The position of the vehicle center

Orientation The direction where the vehicle heads to
Steering Angle The current steering angle of the vehicle

Velocity The current velocity of the vehicle

Table 2: Parameters for customizing driving behaviors

Parameter Example

Speed Limit Higher -> overspeeding
Acceleration Limit Higher -> sudden acceleration/brake
Turning Speed Limit Higher -> aggressive turning

Deviation to Centerline Higher -> dangerous lane changing

trains a deep reinforcement learning model to simulate the driving
agent with customized driving behaviors, and then it puts the
driving agent into a virtual environment built upon given routes.
The driving agent observes the environment and simulates the
driving process along the route from the origin to destination, and
its real-time GPS locations, acceleration, speed, and steering angle
are recorded at a customized sample rate (i.e., 10 Hz). There are
four important concepts in this module, namely deep reinforcement
learning, driving agent, driving behavior, and virtual environment.

Deep Reinforcement Learning: Reinforcement Learning (RL)
is a subarea in machine learning that focuses on guiding an agent
to take expected actions in an environment so as to maximize
the cumulative reward. Deep Reinforcement Learning (DRL)
incorporates deep learning models into RL so that the agent learns
to make right decisions without manual feature engineering. In this
work, we use the Deep Deterministic Policy Gradient (DDPG), a
model-free DRL algorithm for learning continuous actions [4].

Driving Agent: A driving agent represents a simulated driver
driving a vehicle – it observes the environment, makes decisions,
takes actions, updates its state, and makes new observations. The
decision-making process is supported by DDPG. To naturally
sample vehicle trajectories, we use a simplified kinematic vehicle
model to represent the vehicle. This model regards the vehicle as an
object moving in space and uses kinematic variables (e.g., velocity,
acceleration) to describe and control it without understanding the
internal mechanism of the vehicle. Some key parameters used in
the model are introduced in Table 1.

Driving Behavior: Driving behavior reflects a driver’s driving
habits and styles, which has a great impact on travel safety.
Generally, driving behavior can be classified into aggressive
behavior, normal behavior, etc. Specifically, driving behaviors can
be quantitatively described by a series of driving-related indicators.
Table 2 shows a series of indicators in the VTSV and how they can
be customized to produce different driving behaviors.

Virtual Environment: A virtual environment is established
based on the planned route and driving-related environmental
factors such as traffic information (e.g., road speed limit), weather,

etc. The goal of a virtual environment is to simulate real-world
situations as close as possible. The driving agent interacts with the
virtual environment and produces moving trajectories.

2.4 Data Visualization Module

Figure 3: The visualization of driving data.

The VTSV provides a web-based visualization interface for
simulated vehicle trajectory data using streetscape.gl, a toolkit
for visualizing autonomous and robotics data, which can help
users understand the vehicle trajectory data and the corresponding
driving behaviors. As shown in Figure 1, the origin, destination,
planned routes, and road networks are all marked and visualized on
a 3D base map, and users can freely change the camera perspective
to observe the map and route. The VTSV also puts a simplified
vehicle 3D model on the map to indicate the current location
and orientation of the driving agent. After the vehicle trajectory
simulation is completed, users can click on the “play" button
on the bottom timeline to play the 3D driving animation of the
driving agent along the route. As shown in Figure 3, the real-time
sensor information (e.g., speed, acceleration, and steering angle)
is displayed on the bottom left panel, and their changes over time
are visualized as line plots and displayed on the left side. We can
clearly see from the plots when and how much the vehicle agent
accelerates, decelerates, and makes turns, which helps users better
interpret the vehicle trajectory data.

2.5 Data Export Module
This module allows users to download the simulated vehicle
trajectory data to local storage for further analysis and down-
stream applications. By default, we support two file types: comma-
separated values (CSV) file and the binary file following Uber XVIZ
protocol. For the CSV file, the rows record trajectory location
points at different timestamps, and the columns contain attributes
including latitude, longitude, speed, acceleration, steering angle,
etc. The XVIZ binary file contains the necessary information for
real-time transfer and visualization in XVIZ-based applications.

3 IMPLEMENTATION AND APPLICATIONS
The implementation of VTSV follows classic Client/Server
architecture. On the server side, we use 𝐹𝑙𝑎𝑠𝑘 as backend web
framework and deploy our pre-trained DDPG model (in PyTorch)
and the OSRM routing engine. We also deploy an XVIZ server for
converting the simulated data into XVIZ binary file for visualization.
On the client side, we use 𝑅𝑒𝑎𝑐𝑡 as frontend web framework and
the base map fromMapbox, and utilize streetscape.gl for visualizing
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simulated vehicle trajectory data. Below we demonstrate two use
cases of VTSV. One uses VTSV to simulate vehicle trajectories with
customized driving behaviors, the other uses VTSV to generate
privacy-preserving trajectories.

3.1 Customized Driving Behaviors
Here we refer to the thresholds from [7] to distinguish between
normal and aggressive driving behaviors. Two vehicle trajectories
produced by the VTSV using different parameters are shown in
Figure 4. Figure 4A describes a trajectory with normal driving
behavior (speed within the road speed limit 25mph, about 11.18
𝑚/𝑠 ; acceleration within 0.3G gravitational acceleration, about 2.94
𝑚/𝑠2). Figure 4B, in contrast, describes a vehicle trajectory with
aggressive driving behavior (speed reaches up to 35mph, about
15.65𝑚/𝑠; acceleration reaches up to 0.4G, about 3.92𝑚/𝑠2).

Figure 4: Customized driving behaviors. A: Normal; B:
Aggressive. The units for acceleration, velocity, and wheel
in the figure are𝑚/𝑠2,𝑚/𝑠, and 𝑑𝑒𝑔𝑟𝑒𝑒, respectively.

3.2 Privacy-Preserving Trajectory Generation
Figure 5 demonstrates the origin-destination geomasking methods
to protect vehicles’ location privacy. If enabled, the origin and
destination will be randomly picked up within the circle (radius
= r) around the location users click on the map, respectively. For
example, a user may choose a neighborhood-scale radius or a city-
scale radius to displace their true locations. By doing so, the actual
origin and destination can be concealed so as to lower the risk of
privacy leakage.

Figure 5: Illustration of origin-destination geomasking.

Figure 6 shows how we use trajectory k-anonymity to protect
identity. If enabled, VTSV will generate multiple alternative routes

between given origin and destination using the aforementioned
generalization-based k-anonymity approach. Users can mix them
with the real trajectory, making it harder to distinguish the real one
from the others.

Figure 6: Illustration of trajectory k-anonymity.

4 CONCLUSIONS
In this demo paper, we present the VTSV, a web-based privacy-
preserving vehicle trajectory simulation and visualization platform.
It supports the planning of vehicle routes between origins and
destinations and utilizes a deep reinforcement learning model to
simulate vehicle trajectories with customized driving behaviors.
Origin-destination geomasking and trajectory k-anonymity are
incorporated to achieve privacy-preserving data generation. The
results show that the VTSV helps mitigating data privacy, sparsity,
and imbalance issues in vehicle trajectory data and brings novel
insights into driving trajectory simulation and privacy-preserving
data publication using GeoAI approaches.
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