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Abstract

Analyzing large volumes of big geo-data through social sensing provides new research opportunities 
in urban studies. Such big geo-data include mobile phone records, social media posts, vehicle 
trajectories, and street view images. They can be used to extract human behavior patterns and infer 
the geographical characteristics of cities. This chapter discusses a number of analytical methods 
for big geo-data in social sensing studies, such as temporal signature analysis, text analysis, and 
image analysis. These methods can be used for various applications such as estimating urban 
vibrancy, formalizing place semantics, and modeling intraurban human mobility patterns. 
We structure the chapter sections from a perspective of first- and second-order properties in 
spatial statistics.
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72 Chapter 4 Methods of Social Sensing for Urban Studies

4.1 INTRODUCTION
The emergence of various types of big geo- data provides new opportunities to understand 
individual mobility, urban dynamics, and the complex socioeconomic environment. Social 
sensing refers to using user- generated spatiotemporal data and corresponding analytical 
methods to better understand human dynamics and human–environment interactions (Liu 
et al., 2015b). While remote sensing has traditionally been used to extract physical character-
istics of the Earth’s surface, social sensing complements remote sensing by revealing human 
dynamics and the underlying socioeconomic characteristics. Data from social sensing can be 
used to extract both individual- level characteristics and collective- level features of urban sys-
tems. As shown in Figure 4.1, on the one hand, social sensing can uncover individual- level 
human behavior patterns, such as particular activities and movements, emotions and percep-
tions, and social ties. On the other hand, it can also reveal geographic environmental patterns, 
such as land uses, spatial interactions, and place semantics. More discussions on these per-
spectives are given in this chapter.

Due to the high penetration rate of mobile phones, actively and passively collected mo-
bile phone data are a major data source for modeling human activity behaviors in social sens-
ing studies (Gonzalez et al., 2008; Song et al., 2010; Pei et al., 2014; Gao, 2015; Xu et al., 2015; 
Jiang et al., 2017; Peng et al., 2019). An example of passively collected mobile phone data is 
call detailed records (CDRs). CDRs are only generated when a user initiates or receives a 
phone call or a text message, so these datasets often have a low temporal resolution (Kang 
et  al.,  2012a; Yuan et  al.,  2012a; Gao et  al.,  2013). Unlike CDRs, actively collected mobile 
phone data, such as mobile signaling data, are continually produced by mobile devices through 
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F IGURE 4 .1  Social sensing framework at the individual and geographical aggregation levels.
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the automatic generation of telematic logs. The telematic logs include data on communica-
tions, regular ping updates, cellular handovers, power- ons, and power- offs (Zhao et al., 2016; 
Xu et al., 2016; Li et al., 2019a). Actively collected mobile phone data are updated more regu-
larly. Both active and passive mobile phone data include locations of the connected cell tower, 
so they can be used to geo- locate mobile phone users. Based on mobile phone data, three cat-
egories of research have drawn much attention in the field: (i) identifying large volumes of 
individual trajectories and investigating the underlying human mobility patterns; (ii) 
connecting human activity patterns with urban land uses and urban structures; and (iii) con-
structing social networks from phone records and investigating how geographic factors affect 
the formation of such social networks.

Geotagged social media data are another prominent data source for social sensing. 
Many social media platforms (e.g. Facebook, Twitter, Weibo, Foursquare, Flickr, Yelp, and 
Instagram) provide a geotagging function that allows users to attach GPS locations or place 
names to their posts or enable locations for searches (Sui and Goodchild, 2011; Li et al., 2013; 
Liu et al., 2014a; Ye et al., 2016; Yuan et al., 2020). Therefore, it is feasible to extract the loca-
tions of social media users and analyze their movement patterns. Social media data often 
have data sparsity and representativeness issues, which may affect the generalizability of 
the results. Additionally, we can also extract semantics and sentiments of places based on 
social media data using natural language processing (NLP) and content- based image anal-
ysis techniques.

In addition, transportation smart card transactions (Gong et al., 2012; Yue et al., 2014; 
Long and Thill, 2015; Gao et al., 2019a) and vehicles equipped with GPS and cameras also 
 provide rich trajectory-  and vision- based datasets to study urban environments (Liu 
et al., 2012a,b, 2015a; Gebru et al., 2017; Zhu et al., 2017; Zhang et al., 2019a,b).

Given that social sensing provides an alternative and complementary approach to mod-
eling geographical environments in addition to remote sensing methods, researchers have 
proposed various methods to analyze big geo- data in social sensing studies. A related concept 
is “semantic signatures” proposed by McKenzie et al. (2015b) and Janowicz et al. (2019). It 
represents high- dimensional features extracted from places and helps to understand how 
humans interact with places. Semantic signatures include three types of features: spatial, 
temporal, and thematic. This chapter discusses in detail the analytical methods and applica-
tions of big geo- data in social sensing studies.

The following sections are organized as follows. Section 4.2 focuses on the first- order 
effect (spatial heterogeneity) of human activities and its applications in understanding place 
characteristics. In Section  4.3, we discuss the second- order effect (spatial dependency and 
spatial interactions) of human activities in social sensing studies. Section 4.4 addresses the 
relation between place characteristics and spatial interactions in urban studies. Section 4.5 
concludes this chapter and discusses future research directions.

4.2 SENSING FIRST- ORDER PLACE CHARACTERISTICS
The geographic distribution of human behaviors can be modeled as a mapping between attrib-
utes and locations: y  =  f(x), where x denotes a location, and y represents the value of a 
particular attribute. In spatial statistics, first- effect properties refer to the attributes directly 
associated with a location. Social sensing data make it possible to quantify first- order attrib-
utes of places from a human perspective. Recently, many analytical methods are available to 
derive urban land- use types and vibrancy, understand urban environments and human per-
ceptions, and sense human sentiments and emotions toward places.
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4.2.1 SENSING URBAN LAND USES AND VIBRANCY
As mentioned in Section 4.1, the availability of big geo- data allows us to investigate various 
first- order characteristics of places, such as population distributions, land- use types, and 
urban vibrancy. This subsection introduces two main categories of methods for extracting 
first- order place characteristics, temporal signature analysis and topic modeling techniques.

4.2.1.1 Temporal Signature Analysis
As shown in Figure 4.2, different land uses (e.g. residential, commercial, and working places) are 
associated with varying temporal rhythms of human activities under different timescales (e.g. 
hourly, daily, and weekly). Researchers define such temporal patterns as temporal signatures that 
are indicative to certain place types (Ye et al., 2011; McKenzie et al., 2015a,b; Janowicz et al., 2019). 
Therefore, temporal signature analysis is crucial for understanding human dynamics and how 
different place types or land- use types affect the spatiotemporal distributions of human activities.

Temporal signatures of human activities can reflect population distribution, diurnal 
movement patterns, and urban structures. Kang et al. (2012a) analyzed a CDR dataset that con-
sists of nearly two million mobile subscribers and found a linear relationship between the 
number of calls and the number of active mobile subscribers. They further estimated urban 
population distributions based on mobile phone user activities. One important component of 
estimating population distribution is to identify users’ home and work locations through visit 
frequency or a density- based spatial clustering technique in different time windows (Xu 
et al., 2015). We can also infer other types of activity anchor points (e.g. shopping, recreation, 
and entertainment) using points of interest (POI) data and social media data (Huang and 
Wong, 2016; Tu et al., 2017). Liu et al. (2012b) investigated the temporal variations of taxi pickups 
and drop- offs in Shanghai and found an association between taxi pickups/drop- offs and differ-
ent land- use types (e.g. commercial, industrial, residential, institutional, and recreational) using 
k- means clustering. Pei et al. (2014) applied a semisupervised fuzzy c-   means clustering approach 
to infer the land- use types in Singapore using mobile phone data. They also found that the accu-
racy rate of land- use detection decreases as the spatial heterogeneity of land uses increases; 
however, the accuracy rate increases with the rise of the spatial density of cell phone towers. Jia 
et al. (2019) used individual trajectories extracted from mobile phones to measure the vibrancy 
of urban neighborhoods based on the movement patterns of residents. In addition, temporal 
signatures may also help improve the quality of location-   based services, such as place recom-
mendations. For example, we can improve the accuracy of reverse geocoding by incorporating 
the temporal signatures of places in different cities (McKenzie and Janowicz, 2015).
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F IGURE 4 .2  The generation of temporal signatures in social sensing.
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In addition, one trending topic in sensing urban land uses and vibrancy is to propose a 
 multisource or multisensor- fusion social sensing framework. By incorporating remote sensing 
images, POI data, and real- time social media data, Zhang et  al. (2019c) proposed a cross -
correlation-   based urban land- use model to infer urban functions. Tu et al. (2019) combined mul-
tisource urban sensing data and proposed an entropy- based vibrancy index to investigate the 
heterogeneous spatial patterns of urban vibrancy in Shenzhen, China. They also investigated the 
demographic, socioeconomic, and environmental factors that may affect the level of urban vibrancy.

4.2.1.2 Topic Modeling
Textual data analyses based on NLP techniques have been widely used in geospatial semantics 
analysis (Hu, 2018). Among NLP techniques, topic modeling methods were widely adopted to 
discover and model the structure of latent thematic characteristics when analyzing a large 
number of textual documents (Papadimitriou et al., 2000; Hofmann, 1999; Blei et al., 2003). 
Latent Dirichlet Allocation (LDA), a popular topic modeling method, uses a bag- of- words 
approach to construct topics. The key idea of LDA is that documents can be represented as a 
joint probability distribution over latent topics, and each topic is characterized by a distribu-
tion over words (terms) (Blei, 2012).

Researchers applied a similar idea to analyze the geospatial semantics of our living envi-
ronment. They view POIs (e.g. restaurants, parks, and bars) as terms; regions or neighbor-
hoods that contain those POIs as documents; and the functions or land- use types of urban 
regions as topics representing the thematic characteristics of places (Gao et al., 2017; Yuan 
et  al.,  2012b). By applying the LDA topic modeling technique, we can find thematic place 
topics (e.g. shopping areas and art zones) and a probability distribution over place types for 
each topic. We can also infer the semantics of a place based on its associated topics. For 
example, one would assume that a shopping area would more likely have high colocation 
probabilities of clothing stores, cosmetics shops, shoe stores, and cafes (Papadakis et al., 2019). It 
is worth noting that human activity patterns play an essential role during the generation of the 
region (document)–POI type(term) frequency matrix. Therefore, researchers have incorpo-
rated location- based social network data (representing place popularity) (Gao et al., 2017) and 
taxi GPS trajectory data (representing human mobility) (Yuan et al., 2012b) into the LDA topic 
modeling process to derive urban functional regions. Previous studies also utilized sequence 
features and word embeddings from NLP domain with augmented spatial contexts to better 
infer place types (Yan et al., 2017) and urban land uses and regionalization (Yao et al., 2017; 
Zhai et al., 2019; Li et al., 2019b). Inspired by the idea of LDA, a street segment can be viewed 
as a word in topic modeling, and the street network can be viewed as a document (Zhu 
et al., 2017). A typical case study is to apply LDA topic modeling to identify spatial interaction 
patterns of vehicle movements in urban road networks (Liu et al., 2019).

4.2.2 SENSING PLACE LOCALE CHARACTERISTICS 
FROM STREET VIEW IMAGES
In addition to urban land uses and human activities, we can extract other characteristics of 
places, such as place locale, from social sensing data. Locale is one of the three basic elements 
of a place (i.e. location, locale, and sense of place) (Agnew, 2011). It refers to the physical set-
tings where everyday life activities take place. Locale is composed of visible and tangible ele-
ments of a place, such as buildings, streets, and parks (Cresswell, 1992). Place locales have an 
impact on human activities and can reflect the socioeconomic attributes of neighborhoods. 
Although images include rich information about various environmental features, automating 
the extraction of such information used to be difficult. Recent advances in artificial intelligence 
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provide new and efficient solutions for such tasks. A series of deep learning models have shown 
outstanding performances in various computer vision tasks (LeCun et al., 2015). These models 
can produce results comparable to or even better than human performance. The success of 
deep convolutional neural networks (DCNNs) is mostly attributed to its powerful ability to 
learn effective and interpretable image features (Karpathy et al., 2014). Compared with tradi-
tional computer vision features, DCNN is able to learn high- level cognitive information in 
images, such as complex visual concepts in different scenes. This helps us better capture the 
cultural and historical styles of places in street- level images. With the help of deep learning, 
researchers can look beyond the physical appearance of places to understand the culture, emo-
tions, and semantics associated with a place.

The physical characteristics of the urban environment can be derived from street view 
images at two levels: object level and scene level. At the object level, a deep learning model is 
adopted to detect and classify each pixel in the images into an object category (Figure 4.3a). 
For instance, the PSPNet model (Zhao et al., 2017), trained using the ADE20K image annota-
tion database (Zhou et al., 2017), is able to classify 150 object categories with 81% accuracy. 
The 150 object categories cover the most common types of objects in urban scenes, such as 
buildings, sky, roads, and vehicles. An urban scene can be represented as a multidimensional 
vector, with each dimension of the vector corresponding to the presence ratio of each visual 
object in a street view image (Zhang et al., 2018b). We can also train a specialized object detec-
tion model using a customized dataset to recognize a particular type of object, such as fonts on 
street signs. For instance, researchers found that the typefaces detected from signboards of a 
neighborhood are associated with the local economy (Ma et al., 2019).

At the scene level, we can apply deep learning models to recognize two types of scene 
characteristics from street view images: scene categories and scene attributes. As shown in 
Figure 4.3b, the street view image is categorized as “crosswalk” and “downtown” with a prob-
ability of 0.886 and 0.055, respectively. Regarding scene attributes, the street view image can 
be described as “natural light,” “open area,” “man- made,” etc. Aside from scene category and 
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F IGURE 4 .3  Sensing place locale characteristics from street view images: (a) Segmenting scene 
elements using image segmentation model and (b) Recognizing scene categories and attributes using 
scene category/attribute classification model.
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scene attributes, a particular scene type, such as “street canyon” (Hu et al., 2020), can be clas-
sified using customized training datasets and DCNN models. Recently, Yan et al. (2018) found 
that spatial contexts and domain knowledge can improve the accuracy of state- of- the- art deep 
learning models such as ResNet by over 40% when classifying places.

4.2.3 SENSING HUMAN SENTIMENT AND EMOTION AT DIFFERENT PLACES
Besides physical appearances, it is also important to extract human emotions, sentiments, per-
ceptions, and in- person experiences associated with a place (Zhang et al., 2018a,c). Emotion is 
a mental state stored in our neural system that is associated with human thoughts and feel-
ings, while people may express their thoughts and feelings through (positive, negative, and 
neutral) sentiments. Researchers have examined the connections between the physical envi-
ronment and human emotions or sentiments to enrich our understanding of places.

Two data sources, geotagged texts and images, have been widely used to extract human 
emotions and sentiments. Texts can be collected from social media platforms such as Twitter 
and Weibo. Social media users share thoughts about their daily life, nearby events, and the sur-
rounding environments. When users post status updates to social media, their emotions, senti-
ments, and opinions are also revealed through these posts. Geotagged texts have been widely 
used to explore the geographic patterns of emotions, opinions, and sentiments with the support 
of NLP techniques. For instance, Mitchell et al. (2013) analyzed the distribution of emotions in 
the United States and explored potential socioeconomic factors that determine the emotions 
associated with a place. Hu et al. (2019) examined people’s perceptions toward their living envi-
ronment based on a sentiment analysis of online neighborhood reviews. Zheng et al. (2019) 
reported that high levels of air pollution may suppress users’ expressions of happiness on social 
media platforms. Yang and Mu (2015) evaluated the degree of depression expressed by Twitter 
users and explored its correlation to socioeconomic and climatic factors (Yang et al., 2015).

Compared to geotagged texts, geotagged images have attracted more attention in recent 
years because of the rapid development of computer vision technologies and deep learning 
models, which can extract and analyze high- dimensional visual semantics from images. The geo-
tagged photos uploaded to social media platforms may also contain human facial  expressions. 
Previous studies suggested that facial expressions can reflect human emotions (Levenson 
et al., 1990). For example, Kang et al. (2019) extracted human emotions from facial expressions in 
over 6 million social media photos and explored the relationship between the physical environ-
ment and human emotions at different tourist sites. Similarly, Li et al. (2020) mapped worldwide 
emotion distributions based on facial expressions to better understand the associations between 
human emotions and the built environment. Figure 4.4 shows an example of identifying smiling 
and nonsmiling faces in Disney World Magic Kingdom Park based on facial expressions extracted 
from Flickr photos. Such facial expressions can collectively measure place sentiments, which are 
correlated with the socioeconomic attributes of places (Abdullah et al., 2015).

In addition to geotagged photos from social media sites, street view images can also 
capture real- world scenery and thereby may reflect people’s emotions and perceptions of the 
urban environment. For instance, Zhang et al. (2018c) employed deep learning methods to 
measure six human perceptual and emotional indicators (i.e. safe, lively, beautiful, wealthy, 
depressing, and boring) to help understand “a sense of place.” Furthermore, Yao et al. (2019) 
proposed a human- machine adversarial framework to assess users’ perceptions and emotions 
in the urban environment. Zhang et  al. (2020) uncovered “inconspicuous- nice” places in 
 Beijing, such as beautiful but rarely visited parks or popular restaurants without an upscale 
ambiance, by combining street view images and Weibo check- in records. All these studies 
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show the potential of geotagged images as data sources to illustrate human emotions 
toward a place.

Both text-  and image- based approaches have pros and cons in detecting human emo-
tions and sentiments associated with a place. Translation and multicultural challenges may 
occur for textual information because there is not a universal language used by every culture, 
whereas facial expressions are relatively universal and consistent cross- culture (Kang 
et al., 2017). However, compared to abundant geotagged texts, photos on social media plat-
forms are relatively sparse, so the low sampling rate may cause data biases (Huang et al., 2020). 
Moreover, there are privacy concerns when extracting facial expressions from photos. Combing 
text data and images may provide a more holistic view of human emotions and sentiments at 
different places.

4.3 SENSING SECOND- ORDER SPATIAL DEPENDENCY 
AND INTERACTIONS
In addition to the first- order properties of places (e.g. activity count, land- use patterns, and 
place semantics) (Fu et al., 2018; Marti et al., 2017; Jenkins et al., 2016), previous studies also 
addressed the necessity to investigate the correlation and interactions between places (Liu 
et  al.,  2016). Unlike first- order properties that measure the characteristics of individual 
entities, second- order properties measure the dependency and correlation between two or 
more entities, such as the clustering of crime incidents over space (Adepeju et al., 2016; Gel-
fand et al., 2010). This dependency over space is often quantified by calculating the magnitude 
of spatial autocorrelation, a classic measurement for understanding spatial patterns in urban 
systems. Meanwhile, the availability of big geo- data, such as taxi trajectories and social media 
check- in data, provides valuable information to reevaluate the classic question of spatial auto-
correlation with the help of new multidimensional data sources (Gao et al., 2019b).

Spatial interaction, on the other hand, refers to a dynamic flow process between pairs of 
locations. Spatial interactions have been widely studied in many fields such as immigration, 
tourism, and transportation (Kerkman et al., 2017; Liu et al., 2016; Yuan et al., 2017). Although 
in general spatial dependency and spatial interactions are two distinct processes (Griffith 
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F IGURE 4 .4  Sensing human emotions based on facial expressions using Flickr photos and tags: an 
example of identifying smiling and nonsmiling faces in the Disney World Magic Kingdom Park, 
Orlando, USA. Source: Esri, DigitalGlobe, GeoBye, Earthstar Geographics, CNES/airbus DS, USDA, 
USDS, AeroGRID, IGN, and other GIS user community.
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et al., 2017), Getis (1991) proposed a generalized cross- product statistic to demonstrate that 
spatial interaction models are a special case of a general model of spatial autocorrelation. 
Spatial interaction focuses on a link between places i and j caused by different flows, whereas 
in spatial autocorrelation models, this “link” is quantified by the similarity of characteristics 
between i and j. In this section, we adopt the definition from Getis (1991) and view spatial 
dependency (autocorrelation) and spatial interactions, two related yet different cases, when 
sensing second- order properties of urban spaces.

4.3.1 METHODS FOR SENSING SPATIAL DEPENDENCY
Measuring spatial autocorrelation is a traditional research question in the field of geographic 
information sciences. Classic literature on spatial statistics proposed various global and local 
measures for quantifying spatial autocorrelation under different geographic scales, such as 
Moran’s I, Getis- Ord General G, and Local indicators of spatial association (LISA) (Anse-
lin, 1995; Fischer et al., 2010). The increasing availability of big geo- data provides abundant 
resources to adopt and improve these methods for investigating spatial dependency in an 
urban system.

First, data from social sensing are extensive in nature and can therefore be aggregated to 
represent patterns in different spatial units (Long and Nelson, 2013). In other words, they are 
particularly suitable for analyzing the clustering and dispersion of spatial phenomena in geo-
graphic units, such as the hotspots of human mobility in different urban districts. For example, 
Steiger et al. (2016) conducted a hotspot analysis on home-  and work- related tweets in Lon-
don. They found a clear indication for nonrandom behaviors of semantic similarity over space 
and time, suggesting that the semantics of Twitter data can potentially reflect fine- grained 
collective human behavior over urban spaces. Louail et al. (2014) analyzed the hotspots of 
mobile phone users to better understand the dynamic properties of urban structures under a 
fine spatial granularity. Researchers also conducted similar studies based on Bluetooth and 
taxi trajectories to analyze the clustering and spread of urban mobility patterns, such as the 
congestion of street traffic during rush hours (Silva and Moreira, 2012; Zhang et al., 2017). 
These studies provide new insights for understanding the dynamic functionalities of urban 
spaces in the big data era. Another branch of studies investigated how information diffusion 
on the Internet connects to spatial dependency in the geographic space. Contrary to Cairn-
cross’s statement that spatial dependency in the physical space does not impact the diffusion 
of information in the cyberspace (Cairncross, 2001), Yang et al. (2019) found that cities with 
similar scales and population tend to have similar response behaviors on social media.

Second, in addition to adopting existing methods for measuring spatial dependency, 
researchers also proposed new methods and models to supplement traditional methods. 
Because big geo- data introduce new information that was otherwise unavailable, it naturally 
brings new challenges and opportunities for modeling spatial dependency from a methodolog-
ical perspective. For example, Gao et al. (2019b) proposed an extended Moran’s I to measure the 
spatial autocorrelation of time series data. In addition, geotagged check- ins from location-  -
based social media (LBSM) can reveal personal interests and user demographics through 
semantic analytics, making it possible to incorporate individual- level semantics and social- 
demographic information into measuring spatial dependency. For example, Steiger et al. (2016) 
proposed a self- organizing map (SOM)- based method to analyze the connection between geo-
tagged tweets from a combination of spatiotemporal and semantic perspectives. Another study 
by Radil et al. (2010) combined a person’s spatial position in a spatial contiguity matrix with 
this person’s location in a social network to identify similar patterns. Their method was proven 
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more effective than traditional spatial autocorrelation measures for identifying violence and 
gang behaviors. This branch of research was named “geosocial theories and methods” and has 
grown rapidly with the widespread of LBSM services (Luo and MacEachren, 2014).

4.3.2 METHODS FOR SENSING SPATIAL INTERACTIONS
Traditionally, spatial interactions result from the movement of physical objects, such as 
population, cargo, and vehicles. In the information age, spatial interactions can also refer to the 
flow of abstract concepts, such as information and data (Liu et al., 2014b). Analyzing the spatial 
interactions between geographic units provides an effective way for revealing the spatiotem-
poral characteristics of underlying urban structures. Because in the geographic space, distance 
plays a fundamental role in determining the connections and interactions between places, it is 
essential to explore the role of distance in understanding spatial interactions (Tobler, 1970). 
Generally, the interactions between two geographic entities decline as the distance between 
them increases, which is normally referred to as the “distance decay effect” (Griffith, 2009). 
Previous studies applied different models, such as the space–time prism (Kwan, 1998) and the 
gravitational model (Haynes and Fotheringham,  1984), to investigate how distance impacts 
spatial interactions. Many of these studies focus on deriving a distance decay function, which 
describes the relation between the distance and a response variable measuring spatial interac-
tions. For instance, two commonly used distance decay functions are exponential p i j e dij,  
and power- law p i j dij,  (Kang et al., 2012b), where dij and p(i, j) represent the distance 
and interactions between i and j, respectively, and β is the distance decay exponent. The larger 
β is, the stronger impact distance has on the magnitude of interactions.

With the growing availability of individual- level human mobility data, we can examine 
spatial interactions from both individual and aggregated perspectives (Yue et al., 2014; Yuan 
et  al.,  2012a). At the individual level, it is feasible to investigate the distribution of travel 
distances based on the displacement of each individual trip. Studies show that this distribu-
tion is also impacted by the distance delay effect, meaning that most trips are relatively short, 
and there are very few long trips. At the aggregated level, the distance decay exponent in 
gravitational models can be fitted by various methods, such as linear programming (O’Kelly 
et al., 1995), algebraic simplification (Shen, 2004), and Monte Carlo simulation (Westerlund 
and Wilhelmsson, 2011). In addition, because of the spatial heterogeneity of urban spaces, the 
distance decay exponent obtained from fitting the distribution of individual trips can be differ-
ent from the exponent obtained by fitting a gravitational model based on aggregated measure-
ments (e.g. population count and traffic flow). Another branch of research studies the distance 
decay effect without calculating an explicit distance decay function; instead, researchers focus 
on modeling the likelihood of interactions between origins and destinations (Stouffer, 1940). 
Examples include the discrete- choice and utility- maximization models, with which researchers 
can implicitly examine the relationship between the distance and the magnitude of spatial 
intersections without an explicit distance decay function (Simini et al., 2012). Based on these 
quantitative approaches, many studies concluded that the distance decay exponents for 
human mobility in the geographic space are generally between 0 and 2, with 0 indicating no 
or very little distance decay and 2 indicating a strong distance decay of spatial interactions.

Because of the distance decay effect, geographic entities that heavily interact with others 
are often clustered spatially, such as urban communities (Ratti et al., 2010) and travel motifs 
(Schneider et al., 2013). Many quantitative methods have been developed for extracting these 
self- organized structural patterns as well as exploring the impact of distance decay in the 
formation of such patterns (Chen et al., 2015). Typical methods include graph partitioning, 
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modularity optimization, and random walks (Fortunato,  2010). Other studies focused on 
examining the factors (e.g. socioeconomic and demographic attributes) that may influence the 
forming of communities when eliminating the impact of spatial distance (Expert et al., 2011). 
Based on the existing studies, various factors, such as administrational boundaries, the dis-
tance decay effect, and social- cultural characteristics, can contribute to the formation of 
spatial structures within a group of interacted geographic entities.

Another popular research topic that goes beyond the geographic space is to compare 
spatial interactions in the physical space with social interactions in the virtual space (Shaw 
and Yu, 2009). The rationale behind this is that the interactions in both the physical and virtual 
spaces can be influenced by the distance decay effect. For instance, populations in the same 
social group often share similar activity spaces (Wang et al., 2015), whereas the activity spaces 
of different social groups can be substantially different (Shi et al., 2015). Besides, human activ-
ities in the cyberspace, such as web searching and online news reports, can also provide 
insights on the spatial interactions between geographical entities (Yuan, 2017; Yuan et al., 2017; 
Grasland, 2019). As a result, many empirical studies suggest that although the distance decay 
effect is declining in the information era, it for sure still exists.

4.4 INTEGRATING PLACE CHARACTERISTICS 
WITH SPATIAL INTERACTIONS
On the one hand, the magnitude of spatial interactions between places is often determined by 
the characteristics of places, such as their locations and socioeconomic attributes. On the 
other hand, spatial interactions also add another dimension to place characteristics, one that 
reflects the dynamics and flows between places. Because of globalization and the increased 
mobility of urban residents, more and more research has focused on how increased mobility 
leads to stronger spatial interactions as well as the impacts of spatial interactions on redefin-
ing place characteristics (Ren et al., 2019; Zhu et al., 2020).

There are several factors to consider when analyzing the spatial interactions between 
places, such as the distance between places, the direction of the interaction (i.e. one-  or two- 
way), and the intensity of the interaction. Based on Tobler’s First Law of Geography, closer 
places are likely to have more intense interactions than faraway places (Liu et al., 2014a). In 
addition, the “attractiveness” of places also affects the intensity of spatial interactions (Guo 
et al., 2012). Here, attractiveness can be defined based on the nature of the interaction itself. 
For example, in tourism studies, the “attractiveness” of a place when attracting visitors is 
determined by its tourist resources, whereas in immigration, “attractiveness” can be influ-
enced by a country’s Gross Domestic Product (GDP) and diplomatic policies (Yang and 
Zhang, 2019). Therefore, spatial interactions can help us better understand place characteris-
tics. There are many applications of using spatial interactions to enrich place characteristics in 
urban planning and policy making. For example, Kong et al. (2017) extracted the spatial inter-
actions between hospitals based on taxi data and grouped hospitals into five categories. They 
further evaluated the characteristics of the patients treated by these five categories of hospi-
tals. The findings can be used to optimize the spatial locations of public facilities.

Moreover, both spatial and temporal dimensions of spatial interactions can help enrich 
place characteristics and capture how places and urban structures evolve upon time. For 
example, based on the magnitude of spatial interactions between places at different times of 
day, we can calculate the average commute time and commute distances between places and 
analyze fine- scale land- use patterns (Long et al.,  2012). Another study by Liu et al. (2016) 
investigated the similarity between places by analyzing the temporal variations of activity 
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flows between different regions. Tao et al. (2019) constructed a four- dimensional probability 
tensor of time (T) × week (W) × origin (O) × destination (D) to extract spatial interactions bet-
ween different areas and reexamined the partition of urban functional regions based on 
human movement patterns at different times. At a finer scale, Zhuo et al. (2019) analyzed the 
spatial interactions between buildings with different functionalities. They found that spatial 
interactions are more helpful than temporal signatures to improve the accuracy of inferring 
building functions.

From a methodological perspective, researchers have developed various models and 
algorithms to understand place characteristics and spatial configurations based on spatial 
interactions. Ratti et al. (2010) quantified and visualized the level of interactions between dif-
ferent regions of the United Kingdom. The results showed that the spatial interactions 
extracted from the locations of two parties on a phone call are highly influenced by the 
administrative boundaries. Similarly, Liu et al. (2015a) used a network- based method and taxi 
data to reveal Shanghai’s two- tier urban polycentric structure. Yin et al. (2017) argued that 
administrative boundaries may not reflect human interactions, so they constructed a mobility 
network of Twitter users to better represent boundaries or urban regions as well as analyze 
intra-  and interregional spatial interactions. However, most of these studies focused on 
observing spatial interactions with sufficient data to understand place characteristics. When 
there is insufficient data to directly observe spatial interactions, models and auxiliary attribute 
data can help fill in the gap. Li et al. (2018) used POI data to determine the spatial distribution 
of workplaces, and they applied the gravity model to estimate the number of people using dif-
ferent commuting modes in Shanghai. This study demonstrates an effective method to model 
spatial interactions with the help of auxiliary data and mathematical models.

In sum, spatial interactions can help enrich place semantics at different spatial scales, 
from buildings, cities, regions, countries, to the entire world. Many studies proposed a variety 
of algorithms to investigate place characteristics (e.g. extracting functional regions) based on 
the spatiotemporal patterns of spatial interactions. However, the geographical context of a 
place, which can be represented by the spatial interactions between the place and other places, 
is usually uncertain and complex (Kwan,  2012). A recently proposed graph convolutional 
neural network method may shed light on this issue (Zhu et  al.,  2020). However, under-
standing the complex nature of places and the interactions between places remains a chal-
lenging research question.

4.5 CONCLUSIONS
To better understand an urban system, it is crucial to integrate both physical and socioeco-
nomic characteristics. Remotely sensed imagery already provides an effective approach to 
measuring physical features, so it is necessary to develop an efficient measure to sense the 
socioeconomic patterns of cities. Fortunately, with the development of information and com-
munications technologies (ICTs), the availability of various big geo- data enables us to mine 
human behaviors and infer the socioeconomic properties of cities. The term “social sensing” 
was proposed to describe the capability of big geo- data in capturing human activity patterns 
and urban dynamics. Because most big geo- data are generated in urban areas, social sensing 
is especially valuable for urban studies. Note that the data quality issue of social sensing has 
been well recognized and widely discussed (Yuan et al., 2020). A possible solution is to inte-
grate multisource data, including traditional survey- based small data.

This chapter summarizes the widely used big geo- data in social sensing and their appli-
cations in urban studies. Following the classic research framework in spatial statistics, we also 
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classified social sensing methods into methods for extracting first- order place characteristics 
and methods for analyzing second- order spatial dependency and spatial interactions. Because 
social sensing effectively captures the human and socioeconomic aspects of cities, it is 
necessary to construct an analytical framework that integrates social sensing and remote sens-
ing to better understand urban systems.
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