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Abstract
The nowadays ubiquitous location-aware mobile devices 
have contributed to the rapid growth of individual-level 
location data. Such data are usually collected by location-
based service platforms as training data to improve their 
predictive models' performance, but the collection of 
such data may raise public concerns about privacy issues. 
In this study, we introduce a privacy-preserving location 
recommendation framework based on a decentralized col-
laborative machine learning approach: federated learning. 
Compared with traditional centralized learning frameworks, 
we keep users' data on their own devices and train the 
model locally so that their data remain private. The local 
model parameters are aggregated and updated through se-
cure multiple-party computation to achieve collaborative 
learning among users while preserving privacy. Our frame-
work also integrates information about transportation infra-
structure, place safety, and flow-based spatial interaction 
to further improve recommendation accuracy. We further 
design two attack cases to examine the privacy protection 
effectiveness and robustness of the framework. The results 
show that our framework achieves a better balance on the 
privacy–utility trade-off compared with traditional central-
ized learning methods. The results and ensuing discussion 
offer new insights into privacy-preserving geospatial artifi-
cial intelligence and promote geoprivacy in location-based 
services.
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1  | INTRODUC TION

The prevalence of mobile devices and communication network infrastructure connects people worldwide, leading 
to a boom in location-based services and location-based social networks (Cho, Myers, & Leskovec, 2011; Gao, 
Janowicz, & Couclelis, 2017; Huang, Gartner, Krisp, Raubal, & Van de Weghe, 2018). Such location-based networks 
enable people to share their social activities, preferences, and online reviews for different types of places (e.g., 
points of interest [POIs]), all of which are highly valuable for location-based marketing. According to a report by 
Fortune Business Insights (https://www.fortu​nebus​iness​insig​hts.com/indus​try-repor​ts/locat​ion-based​-servi​ces-
marke​t-101060), the market value of location-based services was $18.54 billion in 2019, and is predicted to reach 
$66.61 billion by 2026. Although location data benefit business analysis (Liang, Gao, Cai, Foutz, & Wu, 2020), POI 
recommendation (Bao, Zheng, Wilkie, & Mokbel, 2015; Gao, Tang, Hu, & Liu, 2015; Ye, Yin, & Lee, 2010), urban 
informatics and human dynamics research (Cho et  al., 2011; Gao & Mai, 2018; Huang et  al., 2018; McKenzie, 
Janowicz, Gao, Yang, & Hu, 2015; Shaw & Sui, 2020; Sun, Fan, Li, & Zipf, 2016), it also raises public concerns 
about privacy issues (Armstrong & Ruggles, 2005; Keßler & McKenzie, 2018; McKenzie, Keßler, & Andris, 2019; 
Seidl, Jankowski, & Tsou, 2016). For example, user data are usually collected and stored in centralized databases 
owned by enterprise platforms. Users worry that someone may re-identify them by analyzing their check-in his-
tory and mobility behavior, which can be done with location clustering or data mining algorithms (Huang, Cao, 
& Wang, 2014; Liu, Huang, & Gao, 2019). Furthermore, users worry that their home location and other private 
locations may be disclosed, thus making them vulnerable. Privacy protection techniques such as de-identification, 
geomasking, and differential privacy are commonly used by the platforms to add more uncertainty (e.g., noise) 
to the data (Duckham & Kulik, 2005; Gruteser & Grunwald, 2003; Krumm, 2009; Kwan, Casas, & Schmitz, 2004; 
Seidl et al., 2016; Xiao & Xiong, 2015). Still, the trade-off between privacy and data utility is hard to control (Rao, 
Gao, Kang, & Huang, 2020). Besides, privacy exposure risks also exist in the process of uploading and storing user 
data (Bertino, Thuraisingham, Gertz, & Damiani, 2008).

To this end, we present a novel privacy-preserving framework for location recommendation based on feder-
ated learning, a decentralized collaborative machine learning technique. It keeps users' check-in data on their own 
devices rather than on a centralized database so that users' data will not be uploaded or shared. A location recom-
mendation model is then deployed on each user's device to locally train the data and model location preferences. 
Apart from the users' profiles and check-in POI category, we also integrate the spatio-temporal features (i.e., 
check-in location and time-stamp) and auxiliary public data (i.e., transportation infrastructure, place safety, and 
flow-based spatial interaction) to further improve the location recommendation accuracy. The weighted average 
of all local model parameters is derived through secure multiple party computation to support privacy-preserving 
collaborative learning among users.

The following two research questions are investigated in this research.

RQ1 From the privacy perspective, how and to what extent can the proposed decentralized collab-
orative learning framework protect users' privacy?

RQ2 From the utility perspective, what is the performance of the proposed framework in the loca-
tion recommendation task on the premise of preserving privacy?

In RQ1, privacy represents users' right to prevent the disclosure of their private data (e.g., private user profiles, 
private check-in history) and the information that can be derived from the data (e.g., home locations of users). In RQ2, 
performance means the accuracy of the recommendations made by the model. The contribution of our work is four-
fold. First, we propose a privacy-preserving framework for location recommendation based on federated learning, 
which keeps users' data on their own devices and performs collaborative learning in a decentralized manner. Second, 
we introduce a data encoding module based on spatial indexing to encode various continuous and discrete data. Third, 

https://www.fortunebusinessinsights.com/industry-reports/location-based-services-market-101060
https://www.fortunebusinessinsights.com/industry-reports/location-based-services-market-101060
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we evaluate the framework on a real-world social media check-in data set and explore the trade-off between privacy 
protection effectiveness and model utility. Fourth, we design two attack cases to further verify the framework's abil-
ity to protect location privacy and examine its robustness.

The remainder of the article is organized as follows. Section 2 introduces related work, including some privacy 
protection techniques and privacy-preserving recommendation frameworks. Section 3 describes the structure 
and components of our framework, including a data encoding module, a private modeling module, a secure aggre-
gation module, and a multi-source public database. In Section 4 we evaluate the performance of our framework 
using a real-world social media check-in data set and conduct two attack cases to examine both the effectiveness 
of privacy protection and the utility of the model. In Section 5 we explore the factors affecting model perfor-
mance, the privacy–utility trade-off, and the limitations of our framework. Finally, Section 6 summarizes the re-
search and outlines our future work.

2  | REL ATED WORK

2.1 | Privacy protection techniques

The increasing public concern about privacy issues has prompted the emergence of a number of privacy pro-
tection techniques. An intuitive method is de-identification, in which the data are anonymized by deleting or 
masking users' identity from the data set (i.e., identifiers such as name or ID). This common practice ensures the 
de-identified data set does not contain any identifiers, but other attributes in the data set may still serve as strong 
“quasi-identifiers” (gender, date of birth, check-in location and time, etc.) which can still be used to re-identify 
users and result in serious privacy disclosure (Chow & Mokbel, 2011). Even though such quasi-identifiers are also 
sanitized, one may link the data set to some external data sets to de-anonymize the data and re-identify users 
(Narayanan & Shmatikov, 2008). To further enhance the effectiveness of privacy protection, many privacy guar-
antees and protection methods are proposed, such as k-anonymity (Niu, Li, Zhu, Cao, & Li, 2014; Zhu, Yang, Wang, 
Wang, & Lee, 2019), ℓ-diversity (Machanavajjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007), t-closeness (Li, Li, 
& Venkatasubramanian, 2007), and differential privacy (Dwork, 2008). Among them, k-anonymity is particularly 
popular in protecting location privacy (Gruteser & Grunwald, 2003; Palanisamy & Liu, 2011). The key idea of k
-anonymity is to ensure the information for each user cannot be perceived from at least k − 1 users whose infor-
mation shows up in the data set (Jain, Gyanchandani, & Khare, 2016). Another group of techniques, geomasking, 
focuses more on the spatial dimension. They mask or blur the locations so that the original locations of the data 
will not be revealed, while still preserving some spatial characteristics (Gao et al., 2019; Hampton et al., 2010; Rao 
et al., 2020; Swanlund, Schuurman, Zandbergen, & Brussoni, 2020). A common practice is to directly aggregate 
the locations into geographic or administrative units. However, many recent studies point out that in many scenar-
ios the aggregation (to fine units) is proved to provide only little anonymity (De Montjoye, Hidalgo, Verleysen, & 
Blondel, 2013), and some important information can still be revealed from the aggregated results (Xu et al., 2017). 
Increasing the level of the aggregation geographic unit to make it a coarser unit may mitigate such a situation, but 
this will in turn result in loss of spatial resolution for analytics, resulting in limited data utility (Gao et al., 2019). 
Other commonly used geomasking techniques include random perturbation (Kwan et al., 2004; Seidl et al., 2016) 
and Gaussian geomasking (Gao et al., 2019).

The aforementioned techniques were originally designed for centralized data sets. In this mode, users have to 
share their data to a central server in some way, running the risk of leaking privacy (Vaudenay, 2020). While these 
techniques can mitigate the privacy risk to a certain degree, they cannot fundamentally address this issue with a 
centralized data storage and processing mechanism. Hence, another group of methods utilizes decentralization 
to mitigate the privacy leakage risk. The key idea is to keep users' data on their own devices and prevent access 
from others. The decentralized data set greatly preserves privacy, while the decentralized nature of data may 
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complicate data usage and model updates (Kaissis, Makowski, Rückert, & Braren, 2020). As a decentralized collab-
orative learning technique, federated learning is able to collaboratively train a model on the data set distributed 
over a large number of devices (Konečnỷ et al., 2016). Each device computes an update based on its local data, 
sends the update to a central server, and receives the aggregated new parameters from the server. Federated 
learning provides an infrastructure for privacy protection, but it does not guarantee privacy (Kaissis et al., 2020). 
Common privacy techniques for federated learning include differential privacy, secure multi-party computation 
(SMPC), and homomorphic encryption (HE) (Yang, Liu, Chen, & Tong, 2019). In this research, our framework uti-
lizes SMPC and HE to achieve secure aggregation and privacy-preserving location inference capability.

2.2 | Privacy-preserving recommendation

Recommendation systems have been widely applied in plenty of real-world industrial scenarios. These systems 
make personalized recommendations based largely on users' profiles, preferences, check-in, and browsing history, 
which raises public concerns about privacy issues. Thus, some of the above-mentioned privacy protection tech-
niques are integrated into recommendation systems to make privacy-preserving recommendations. For instance, 
some recommendation systems utilize random perturbation (Polatidis, Georgiadis, Pimenidis, & Mouratidis, 2017), 
k-anonymity (Casino, Domingo-Ferrer, Patsakis, Puig, & Solanas, 2015; Zigomitros, Papageorgiou, & Patsakis, 2016), 
and differential privacy (McSherry & Mironov, 2009; Meng et al., 2018) to preserve privacy. While these meth-
ods are straightforward, the trade-off between the privacy protection and model utility is hard to control (Rao 
et al., 2020). Some studies utilize cryptography-based techniques such as SMPC and HE to preserve privacy ef-
fectively. For instance, Nikolaenko et al. (2013) present a privacy-preserving protocol that combines SMPC and 
HE for efficient matrix factorization on user ratings. Although the utilized privacy protection techniques vary, 
what these methods have in common is that they are designed for centralized training. Instead, our framework is 
designed for a decentralized collaborative learning environment, in which users' data are kept only on their local 
devices.

An early work similar to ours is PriRec (Chen et al., 2020), where they propose a distributed privacy-preserving 
POI recommendation framework. However, our work differs from PriRec in at least four ways. First, our frame-
work follows the classic federated learning procedure, distributing users' data and models to their own devices 
and using the server to perform secure aggregation after the local model training process. PriRec divides the 
model into two parts and deploys them on the client side and server side, respectively, and the secure aggregation 
protocol and procedure it utilizes are also different. Second, our framework introduces a spatial-indexing-based 
data encoding module to encode and integrate georeferenced features and spatio-temporal features. Auxiliary 
public data such as transportation infrastructure, place safety, and flow-based spatial interaction are also encoded 
and integrated into our modeling process. PriRec, by contrast, utilizes user–POI interaction and a geographic adja-
cency network. Third, our framework does not collect or store any user data. PriRec collects user–POI interaction 
data from users, although the data are processed by a local differential privacy technique. Fourth, and finally, we 
design two attack cases to further examine the effectiveness of privacy protection and the robustness of our 
framework, which are not investigated in PriRec.

3  | METHODS

Figure 1 depicts the overall workflow of the proposed framework, which consists of four components: a data en-
coding module; a private modeling module; a secure aggregation module; and a multi-source public database. Our 
method aims to learn user location preferences from users' check-in data and auxiliary public data (e.g., transpor-
tation infrastructure, place safety, and flow-based spatial interaction) without disclosing privacy. Check-in data in 
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this study are data that contain location information and are purposefully recorded by the user. Such check-in data 
could be traditional social platform check-ins (e.g., Twitter check-ins) or any other data following our definition 
(e.g., Yelp online reviews). One property of such data is that they can be either public or anonymous. For example, 
some people do not want others (even the platform) to know some places they visit, but they still write online 
anonymous reviews for these places and may also need similar venue recommendations when traveling to new 
places. In such cases, their check-in data are private and their identity needs to be protected, and thus our frame-
work is beneficial to such users. When users visit some specific locations, the check-in data will be encoded by 
the data encoding module and stored in users' local devices privately. After collecting sufficient data, the private 
modeling module deployed on users' local devices acquires auxiliary public data from a multi-source public data-
base and then merges them with users' private data to train the local model. During the model update, local model 
parameters among all users are aggregated through the secure aggregation module so that the models are in fact 
trained on all the data while no one is able to see the data or model parameters of others. This training process will 
repeat until the models converge to the optimum (i.e., minimizing the inference errors).

3.1 | Data encoding module

As shown in Figure 1, the data encoding module is used to convert certain data attributes to valid numerical 
representations. Such representations, especially the spatial representations for the location attribute, can serve 

F I G U R E  1   The overall workflow of the proposed framework
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as the model input for downstream machine learning tasks and pave the way for many geospatial applications 
(Mai et al., 2020). For the location attribute, we use Uber's H3 hexagonal hierarchical spatial index (https://eng.
uber.com/h3/) to aggregate and encode the latitude and longitude. As a grid indexing system, H3 divides the 
target area into contiguous hexagonal cells of the same size based on a specific resolution level. By transforming 
latitude–longitude pairs into a 64-bit index (i.e., a string), H3 can be easily used for indexing locations. One nice 
property of the H3 is that, compared with other grid systems such as a triangle or square grid system like Geohash, 
the distance between the center point of a hexagon and its neighbors is consistent, making the H3 suitable for 
preserving the spatial relationship.

As to the time attribute, we encode it into high-dimensional binary vectors based on their vocabulary sizes 
using one-hot encoding (OHE, a representation process using dummy variables) so that it can serve as the input 
for the model. For example, one week has seven days, and thus one day of the week can be encoded into a seven-
dimensional binary vector (e.g., (1, 0, 0, 0, 0, 0, 0) represents Monday). Similarly, we can also encode the hour attri-
bute into 24-dimensional binary vectors. We can also use OHE to encode categorical attributes, such as gender 
and POI category, based on their vocabulary sizes. In addition, for attributes with continuous values (e.g., friend 
count, bus stop density in transportation infrastructure), we first reclassify them into five different classes (levels) 
based on the data range and distribution and then encode them using OHE. The encoded data structure is shown 
in Figure 2. Details of the auxiliary public data are introduced in Section 3.4.

In general, OHE introduces data sparsity issues when storing data, which could be quite heavy for a mobile 
device. To handle such issues, in practice we only store the index of “1” in an OHE vector as a dense representation 
of that vector; it can still be used for further computation, but saves storage space.

3.2 | Private modeling module

The private modeling module learns users' location preferences from their profiles and check-in information and 
recommends the POI locations that users will most likely visit. We regard location recommendation as a classic 
task in a recommendation system: click-through rate (CTR) prediction—estimating the probability that a user will 
click on a recommended item (Zhou et al., 2019) (In our context, it is the probability that a user will visit a recom-
mended location.) In this research we use a CTR prediction model named Deep Factorization Machine (DeepFM; 
Guo, Tang, Ye, Li, & He, 2017) to make location recommendations. A simplified structure diagram of the DeepFM 
model is shown in Figure 3.

F I G U R E  2   The encoded data structure

https://eng.uber.com/h3/
https://eng.uber.com/h3/
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The DeepFM model consists of two components: the factorization machine (FM) component and the deep 
component, which share the same input. The FM component in the model is the factorization machine proposed 
by Rendle (2010). The model equation of a factorization machine is given by:

where xi is the ith feature variable, w0 is the bias item, wi is the weight of the ith feature variable (order-1 feature 
interactions), and < vi, vj > is the weight of the interaction between the ith and jth feature variables (order-2 feature 
interactions), where vi and vj are the latent feature vectors of the ith and jth feature variables, respectively. As is 
shown in Equation (1), the factorization machine captures higher-order (i.e., order-2, pairwise) feature interactions by 
considering the inner product of the feature latent vectors. Compared with a linear regression model, the factorization 
machine can better model the feature interactions and also better handle the data sparsity issue.

The deep component is a feedforward deep neural network. The high-dimensional sparse input vectors are 
first embedded as low-dimensional dense real-value vectors by an embedding layer, and then fed into the hidden 
layer for learning higher-order feature interactions. The DeepFM model combines the FM and deep components 
together as an end-to-end deep learning structure, which improves the feature learning ability and makes it able to 
learn both low-order and high-order feature interactions. The private modeling module is deployed on each user's 
local device and run locally, and thus private user data are not uploaded or exposed.

3.3 | Secure aggregation module

The secure aggregation module, deployed on a cloud computing server, guarantees a privacy-preserving col-
laborative machine learning process. The module collects model parameters from each local model, calculates the 
weighted average, and then iteratively returns the aggregated parameters to each local model as new parameters. 
Here we further explain how the module works. Assume that there are K users in total, and they produce and 
keep their private data on their own devices, respectively. If the size of the kth user's private data is denoted by 
Nk

s
, then the size of all the data among all users is Ns =

∑

K
k= 1

Nk

s
. We assign the kth user a weight �k based on the 

(1)�y = w0 +

n
∑

i=1

wixi +

n
∑

i=1

n
∑

j= i+1

< vi, vj > xixj

F I G U R E  3   The structure of the DeepFM model (simplified from Zhou et al., 2019)
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size of their private data, which can be calculated as �k = Nk

s
∕Ns, �k ∈

[

0, 1
]

. The more data the user has, the larger 
weight the user is assigned. Before the kth user sends the model parameters wk =

{

�0, �1, �2,…, �Tk

}

 (where Tk is 
the size of the kth user's model parameters) to the server for aggregation, the assigned weight should be multiplied 
by each value in the parameters. Thus, the weighted model parameters are ŵk

= �kw
k =

{

�k�0, �k�1, �k�2,…, �k�Tk

}

. On the server side, all the weighted parameters collected from the users are aggregated (i.e., averaged), and the 
aggregated parameters w =

∑

K
k= 1

ŵ
k are returned to each local device as new model parameters. Such a process 

will be repeated until the global model (i.e., the model with the aggregated parameters) converges.
The above process can be summarized as a weighted averaging formula:

where K is the number of users, wk is the model parameters of the kth user, and Ns and Nk

s
 represent the sample size of 

all the users and of the kth user, respectively.
In practice, we use SMPC, a technology that allows multiple parties to jointly perform computation over their 

input data while keeping the data private, to protect the parameter transfer between local devices and the server. 
Specifically, we use the additive secret sharing (ASS) scheme to break the parameter data (i.e., secret) into many 
shares, so that others cannot infer the data without knowing all its parts (Xiong, Zhou, Xia, Gu, & Weng, 2020). 
ASS is an additively homomorphic encryption approach, which ensures that we can derive the parameters' aver-
age value using all the shares without knowing what value each parameter is, thereby avoiding parameter leakage 
and better preserving user privacy.

3.4 | Multi-source public database

The multi-source public database, also deployed on the cloud server, hosts auxiliary public data such as trans-
portation infrastructure, place safety, and flow-based spatial interaction. Recent studies reveal that these data 
are of great importance to users' travel preferences and destination choices (Xu, Li, Belyi, & Park, 2021; Yan & 
Zhou, 2019; Yao, Peng, Xiao, & Guan, 2017; Zhu & Diao, 2020). The transportation infrastructure includes the dis-
tribution of subway stations, bus stops, and parking lots. The place safety data we use are the complaint records 
released by the local police department. The flow-based spatial interaction reflects people's travel preference 
between places and can be extracted from multiple sources such as transportation surveys and aggregated taxi 
trip records (Liu, Gong, Gong, & Liu, 2015).

For the transportation infrastructure data and the place safety data, we first use the H3 spatial index to aggregate 
them into corresponding hexagonal cells. Then the size of each type of data aggregated in each cell is a density value 
(e.g., the number of parking lots in each cell). For each type of data, we reclassify the density values into five levels 
based on their data range and distribution. For example, the density values of subway stations across the cells vary 
from 0 to 31 (mostly less than 20), and we use an arithmetic sequence {5, 10, 15, 20} as the breaking points to reclas-
sify the values into five levels. After the reclassification, the data can be further encoded using OHE.

For the flow-based spatial interaction data, we calculate the transition probability from one hexagonal cell 
to another hexagonal cell based the flow data. We take taxi trip records as an example. We first aggregate the 
pick-up locations and drop-off locations into hexagonal cells using the H3 index, and then we derive the origin–
destination (OD) flow matrix among the hexagonal cells. Thus, the transition probability Pij from hexagonal cell i  to 
hexagonal cell j can be represented as the total amount of flows from hexagonal cell i  to hexagonal cell j divided 
by the total amount of outflows of hexagonal cell i . The formula is:

(2)w =

K
∑

k=1

Nk

s

Ns

wk

(3)
Pij =

fij
∑

K
k= 1

fik
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where Pij is the transition probability from hexagonal cell i  to hexagonal cell j, K is the total number of hexagonal cells, 
and fij stands for the OD flow from hexagonal cell i  to hexagonal cell j. Finally, we get a transition probability matrix 
that reveals the flow-based spatial interaction among all the hexagonal cells. Since OD flow data at different times 
of the day usually have different patterns (Ahas, Aasa, Silm, & Tiru, 2010; Xu et al., 2016), in practice we divide the 
OD flow data into two time periods: stay-at-home time (before 7 a.m. and after 8 p.m.) and stay-outside time (7 a.m. 
to 8 p.m.). We then deal with these two parts of flow data and produce two transition probability matrices, one for 
stay-at-home time and the other for stay-outside time. In different time periods, the spatial interaction data that users 
inquire will be different.

4  | E XPERIMENTS AND RESULTS

4.1 | Data set

We choose New York City (NYC) as the experiment area and extract the check-in data in NYC from the Foursquare 
global-scale social media check-in data set collected from April 2012 to September 2013 (Yang, Zhang, & Qu, 
2016; Yang, Zhang, Chen, & Qu, 2015). We perform data cleaning to ensure that each user has at least ten check-
in records, and each location has at least 10 visits. We then link the data with the user profile data set (Yang, Qu, 
& Cudré-Mauroux, 2018; Yang, Zhang, Qu, & Cudré-Mauroux, 2016) and select the data of the top 500 active 
users as our experiment data set. A summary of the processed social media check-in data set is shown in Table 1. 
There are 118,316 check-in records in the NYC data set, containing 3,628 unique POIs, 500 users, and 294 POI 
categories. Figure 4 shows the geographic distribution of the check-in data.

In the multi-source public database, we store the distribution of subway stations, bus stops, and parking 
lots in NYC as transportation infrastructure data (https://data.cityo​fnewy​ork.us/), and the complaint report in 
2011 and 2012 released by the New York Police Department as the place safety data (https://catal​og.data.gov/
datas​et/nypd-compl​aint-data-historic). For the flow-based spatial interaction, we acquire the Taxi and Limousine 
Commission trip record data in September 2013 from the NYC government website (https://www1.nyc.gov/site/
tlc/about/​tlc-trip-recor​d-data.page).

Our next step is to determine the spatial resolution (i.e., the Uber H3 spatial indexing level) for encoding. 
Figure 5 shows the comparison between different spatial resolution settings when encoding the NYC check-in 
data using Uber H3. As seen in the figure, when level = 8 (or greater) the encoding results are too sparse to cover 

TA B L E  1   The attributes in the NYC social media check-in data set

Attribute Type Description

VenueId String Unique ID for the POI

UserId Integer Unique ID for the user

Gender String Gender of the user

Friend Integer Twitter friend count of the 
user

Follower Integer Twitter follower count of 
the user

Latitude Float The latitude of the POI

Longitude Float The longitude of the POI

Timestamp String The time when the user 
checks in at this POI

Category String The category of the POI

https://data.cityofnewyork.us/
https://catalog.data.gov/dataset/nypd-complaint-data-historic
https://catalog.data.gov/dataset/nypd-complaint-data-historic
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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the entire NYC area, since there are lots of “holes” that contain no check-in data. For level = 6 (or less), the hex-
agonal cell size is too large and many locations that are far away from each other are contained in the same cell, 
losing some location details. Compared with level = 6 and level = 8, in our case, the encoding results with level = 
7 cover basically the entire NYC area (i.e., dense representations) while preserving a relatively small cell size (i.e., 
preserving location details). Thus, we find that H3 level 7 (5.161 km2 per hexagonal cell) better balances the trade-
off between the spatial coverage and location details than other H3 indexing levels. We then encode the data via 
the data encoding module based on that indexing level. In particular, for the flow-based spatial interaction data, 
we derive the OD flow matrix among all the hexagon cells, and then calculate the transition probability from one 
arbitrary cell to another. Since our check-in data set does not contain users' previous locations before checking 
in, we extract the two most frequently visited locations in different time periods (i.e., stay-at-home time and stay-
outside time) for each user. We are then able to retrieve the transition probability from these locations to the rec-
ommended locations. Figure 6 shows the geographic distribution and hexagonal cell density of the transportation 

F I G U R E  4   (a) Geographic distribution; and (b) check-in frequency statistics

F I G U R E  5   Comparison between the encoding results of NYC check-in data using Uber H3 with different 
indexing levels: (a) level = 6; (b) level = 7; and (c) level = 8
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infrastructure data and place safety data. The visualization of NYC taxi trip OD flow can be seen in Figure 7. From 
these figures, we can see obvious spatial heterogeneity of flow distributions.

Since each check-in record represents a positive sample (e.g., a user checks in at the recommended location), 
we randomly generate negative samples (e.g., a user does not check in at the recommended location) so that the 
ratio between positive and negative samples is 1: 1, which establishes a more balanced data set. Specifically, for 
each user, we create a POI set that contains all the POIs (including the category and location) that the user never 
visits historically. Then we randomly sample a group of POIs with a sample size equal to the size of the user's 
check-in records. These sampled POIs are labeled as negative samples and their other attributes such as check-in 
day and hour information will be randomly generated. After preprocessing, the data set contains 236,632 records 
in total. We randomly split the data set into a training set, validation set, and test set in the ratio 8: 1: 1.

4.2 | Training and evaluation

We set up a federated learning environment for the location recommendation task using PySyft, a Python library 
for secure and private deep learning. PySyft implements the SPDZ secure protocol (Damgård, Pastro, Smart, & 
Zakarias, 2012) multiparty, which achieves secure multiple party computation. For each user, we initialize one 
worker for storing private data and deploying the private modeling module (with DeepFM model) for local train-
ing. Another worker is created to serve as the secure aggregation module. Each model's parameters are sent to the 
secure aggregation module using the SPDZ protocol after each training epoch. The parameters are aggregated and 
then returned to each local model. For training the hyperparameters, we set the training epoch number as 200 and 
batch size as 4,096. For the DeepFM model, we set the embedding dimension as 16, the multi-layer perception 
dimension as (16, 16), the dropout rate as 0.2, and the learning rate as 0.001, the weight decay as 10− 6, and the 
optimizer as Adam (Kingma & Ba, 2014).

We use the area under the receiver operating characteristic (AUC) as the accuracy metric. The receiver op-
erating characteristic (ROC) curve demonstrates the classification ability of a binary classifier given different 

F I G U R E  6   Geographic distribution and hexagonal cell density (deeper colors represent higher density) of 
transportation infrastructure data and place safety data: (a) and (b) bus stops; (c) and (d) subway stations; (e) and 
(f) parking lots; (g) and (h) complaint records
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discrimination thresholds. The x-axis of an ROC curve is the false positive rate (FPR), and the y-axis is the true 
positive rate (TPR, also known as the sensitivity). The FPR and TPR can be defined as follows:

where TP, FP, TN, and FN are respectively the numbers of true positive, false positive, true negative, and false neg-
ative test results of recommended POI locations. For each discrimination threshold, we can calculate a pair of FPR 
and TPR, and accordingly draw a ROC curve given a series of thresholds. The area under the ROC curve is the AUC, 
revealing the probability that a classifier ranks a randomly chosen positive sample higher than a randomly chosen 
negative sample. The AUC is a common metric for evaluating the CTR prediction. The higher the AUC value, the better 
the model can distinguish between two classes.

Since CTR prediction is a binary classification problem, we use binary cross-entropy (BCE) as the loss metric 
during the neural network model training. The BCE is defined as:

(4)FPR =
FP

FP+TN

(5)TPR =
TP

TP+FN

(6)BCE = −
1

N

N
∑

i=1

[yilog2(ŷi) + (1 − yi)log2(1 − ŷi)]

F I G U R E  7   Visualization of NYC taxi trip OD flow between hexagonal cells, September 2013
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where N is the total number of samples, yi is the ground-truth label (0 or 1) for the ith sample, and ŷi is the predicted 
result of the ith sample, showing its probability of being 1.

4.3 | Performance comparison

In our experiment, we train two models on the data sets and compare their recommendation accuracy. One model 
is based on our privacy-preserving framework (referred to as FL-DeepFM), where we deploy the DeepFM model 
on users' local devices (i.e., decentralization) and use federated learning to collaboratively train the model. The 
other model is an original DeepFM model, and we train this original model on a centralized data set (e.g., all users' 
private data are stored in one data set) as a baseline. By comparing the recommendation accuracy of the two mod-
els, we can see how much impact the switch from centralized learning to decentralized learning has on accuracy. 
we also investigate how the different features (apart from the basic features, i.e., user profiles and POI category) 
in the data set affect the recommendation accuracy. Specifically, we consider the influence of the spatial and 
temporal features (denoted by ST, i.e., location and time-stamp) and the auxiliary public data (TS represents the 
transportation infrastructure and place safety features; SI represents the flow-based spatial interaction features). 
By combining different features, we can see how much impact a specific set of features has on accuracy.

Figure 8 shows the AUC values on the validation data set and test data set over the training epochs. We find 
that the validation and test AUC values all increase as training proceeds, and all the models converge after around 
100 epochs, indicating a successful training process. The original DeepFM model trained on the basic training data 
set (including only user profiles and POI category) reaches a test AUC of 0.761. After involving the ST features (e.g., 
DeepFM+ST), the test AUC is increased to 0.952. Further involving the TS and SI features increases the test AUC 
to 0.954 and 0.963, respectively. Likewise, the FL-DeepFM model trained on the basic training data set reaches a 
test AUC of 0.651. Further integrating the ST, TS, and SI features brings the test AUC to 0.834, 0.840, and 0.879, 
respectively. Overall, we can see the original centralized DeepFM model outperforms the privacy-preserving FL-
DeepFM model on recommendation accuracy. In fact, such an accuracy decrease by our framework is expected 
since the original DeepFM model is completely trained on the centralized data set while the FL-DeepFM model 
is trained locally on each device. Although local model parameters can be aggregated via the secure aggregation 

F I G U R E  8   (a) Validation; and (b) test AUC values by epoch
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module, data insufficiency and imbalance issues may still exist on each local side. Nevertheless, the FL-DeepFM 
model with all features involved can still achieve a competitive test AUC value of 0.879.

4.4 | Attack cases

Having carried out a performance comparison, we design two attack cases against the proposed privacy-preserving 
framework to further investigate the aforementioned research questions of privacy protection effectiveness and 
model utility. One case is a type of inference attack (Krumm, 2007), which is designed to examine the privacy pro-
tection effectiveness of our framework, especially for location privacy. The other is a type of distributed poisoning 
attack (Cao, Chang, Lin, Liu, & Sun, 2019), designed to examine the robustness of the federated learning model, 
that is, how stable the recommendation accuracy is when under poisoning attack.

4.4.1 | Home location clustering attack

The potential exposure of sensitive locations (e.g., home location) and personal identities through a unique con-
nected string of locations raises public concerns about location privacy (De Montjoye et al., 2013). Our framework 
is based on a decentralized data set, and the check-in data are locally distributed in users' devices. In principle, no 
one is able to cluster the home location of specific users without access to their devices, which guarantees loca-
tion privacy. Nevertheless, in our framework, users need to retrieve the corresponding auxiliary public data (with 
location information) from the multi-source public database according to their historical check-in locations. One 
potential threat is that when an attacker hijacks the network pipeline and monitors the requested auxiliary public 
data, the attacker will be able to know the rough activity zone of users and be able to try to identify the home loca-
tions from such information. Here we investigate whether and to what degree our framework can prevent users' 
home location from being identified, and how our framework outperforms the traditional centralized methods 
(e.g., the original DeepFM) in protecting location privacy.

For comparison, we first evaluate the location privacy protection effectiveness on the centralized data set as 
a baseline. For the traditional centralized methods, all the users' data are stored in a centralized server, making 
home location clustering easy to carry out. We involve three kinds of privacy protection techniques that are com-
monly used on centralized data sets, namely de-identification, random perturbation, and Gaussian geomasking. 
De-identification directly removes all the labels from the data set; Random perturbation and Gaussian geomasking 
further blur the latitude and longitude of each location using random values following uniform and Gaussian distri-
butions, respectively. The parameter for random perturbation is the maximum perturbation threshold, which is set 
to 1,000 (1 km) in our experiment. The two parameters for Gaussian geomasking are the mean and standard devia-
tion of the displacement from the original location, which are set to 0 and 1 km in our experiment, respectively. We 
choose 1 km as the perturbation threshold and the Gaussian geomasking standard deviation since a previous work 
investigated the relationship between the displacement distance and the underlying population density and found 
that the majority of masked points were displaced within 1 km (Hampton et al., 2010). A threshold of 1 km is also 
used in our recent works as a baseline (Gao et al., 2019; Rao et al., 2020). We then evaluate the location privacy 
protection effectiveness of our framework on a decentralized data set. Our framework requests auxiliary public 
data that contain location information, so we conduct the attack on such location information. The granularity of 
the request (also the returned data), however, is at the whole historical check-in data set level, and such data do 
not contain the check-in time and frequency for each location, which greatly reduces the chance to identify users' 
home/work location using spatial clustering algorithms.

We employ density-based spatial clustering with noise (DBSCAN; Ester, Kriegel, Sander, & Xu, 1996) to iden-
tify users' home location from the check-in locations. As a spatial clustering algorithm, DBSCAN has been used 
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frequently in human activity location identification (Huang & Wong, 2015; Luo, Cao, Mulligan, & Li, 2016). The 
accuracy metrics we use are overall accuracy, precision, recall, and F1 score. Overall accuracy is the ratio between 
the number of correctly identified home and not-home locations and the total number of locations. Precision is 
the ratio between the number of correctly identified home locations and the number of the locations that are 
identified as home locations. Recall is the ratio between the number of correctly identified home locations and the 
number of the true home locations. F1 score, which provides a balance between precision and recall, shows how ef-
fective a method is at detecting a user's home location. We also use the centroid shift and medoid shift to measure 
the shift distance from the representative centers of the home location clusters to ground-truth home locations.

We extract the nighttime (8 p.m. to 7 a.m.) check-in records and run the DBSCAN algorithm on them to detect 
home locations. For the location data from the requested auxiliary public data, we run DBSCAN directly on all of 
them since they do not contain time attributes. For the parameters of DBSCAN, we set the minimum number of 
points (MinPts) to 4 and set the search radius in the range 50–1,000 m in steps of 50 m. The boxplots of F1 score 
and overall accuracy using different privacy protection techniques are shown in Figure 9. We can see that these 
metrics change as the service radius (Eps) changes, and overall our framework produces the lowest accuracy 
metrics, indicating the best privacy protection effectiveness. We report and analyze the mean or median of the 
accuracy metrics in Table 2 (Eps = 300 m) as is suggested by Huang and Wong (2015), Luo et al. (2016).

As shown in Table 2, the privacy protection effectiveness of different techniques varies. When there is no 
privacy protection, one can easily identify users' home locations using labels. When using de-identification, home 
locations can be protected to some extent while the mean overall accuracy and the mean F1 score can still reach 
0.493 and 0.832, respectively. The median distance shifts to the centroid and medoid are also relatively small 
(106.014 and 0.000 m). Random perturbation and Gaussian geomasking effectively lower the accuracy and in-
crease the distance shifts, while the mean overall accuracy and the mean F1 score can still reach above 0.404 and 
above 0.642. In contrast, our framework significantly reduces the accuracy (the mean overall accuracy and the 
mean F1 score are only 0.041 and 0.316, respectively), and the distance shifts are increased to around 7 km. Such 
performance ensures that it is almost impossible to identify users' home locations under our framework, thereby 
demonstrating the powerful location privacy protection effectiveness.

4.4.2 | Model failure poisoning attack

The goal of the poisoning attack is to make the model produce incorrect predictions. A model failure poisoning at-
tack can damage the performance (e.g., accuracy) of a distributed system (e.g., a federated-learning-based frame-
work). Thus, such attacks can be used to examine the robustness of our framework. Note that in our case, the 
poisoning attack does not compromise location privacy. Instead, it tries to compromise recommendation accuracy 
(e.g., model utility). Specifically, in such an attack case, the attacker manages to take control of some devices that 
participate in the federated learning process and orders the devices to send “incorrect” model parameters (e.g., a 
set of random vectors) to the secure aggregation module, which affects the normal model training and update pro-
cess, resulting in reduced model accuracy and even making the recommendation service unavailable in practice.

Since we use the weighted averaging method to aggregate the local parameters from users, a user with a larger 
data size is assigned a larger weight and has more influence on the model update. We simulate five scenarios where 
the attacker controls a group of devices each time, and each group of devices has a different total weight (from 0.1 
to 3.3%; see Figure 10a). During each iteration, the attacker sends randomly generated model parameters from 
these devices to the server for secure aggregation (e.g., poisoning). The test AUC curves of the normal model (not 
poisoned) and the poisoned models are shown in Figure 10b. Compared with the normal model, the test AUC of 
the model poisoned by group 1 drops by 0.029 (from 0.879 to 0.850), but the model still converges. As the weight 
increases to 1.2%, the test AUC decreases successively to 0.740 while the model still converges. The model training 
starts to fail when the weight increases to 1.9% and higher. We can clearly see the total weight of the controlled 
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devices can greatly affect the poisoning efficiency. To conclude, the success of the poisoning attack depends heav-
ily on whether the attacker can control a number of devices with sufficient weight to affect the model update.

This attack case shows that our framework has some resilience to poisoning attacks with relatively lower weights. 
Our framework is proposed for location-based service providers, which usually have a large number of users (e.g., 

F I G U R E  9   Boxplots of accuracy metrics using different privacy protection techniques: (a)–(d) are the overall 
accuracy for de-identification, random perturbation, Gaussian geomasking, and our framework, respectively; 
and (e)–(h) are the F1 score for de-identification, random perturbation, Gaussian geomasking, and our framework, 
respectively
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Twitter, Yelp, and Foursquare currently have around 353, 178, and 50 million monthly active users, respectively; 
Brightkite, before shutting down, had 2 million monthly active users), making controlling sufficient devices with a total 
weight of greater than 1% on such platforms hard to achieve in practice. In fact, as long as the number of users is larger 
than 100, the attacker usually has to control multiple users' devices to ensure that they gain enough weight to affect 
the model update. In the event that the attacker manages to control enough devices, monitoring the validation accuracy 
can help detect the attack and take defensive measures (e.g., roll back to the previous model and investigate the attack).

5  | DISCUSSION

In this section we discuss the factors that may affect recommendation accuracy and privacy protection effective-
ness. We also discuss the trade-off between the privacy protection effectiveness and the model utility. Finally, 
some limitations of this research are listed.

TA B L E  2   Home location clustering accuracy metrics using different privacy protection methods

Measures None DI RP GG Ours

Mean overall accuracy 1.000 0.493 0.436 0.404 0.041

Mean precision 1.000 0.493 0.436 0.404 0.041

Mean recall 1.000 1.000 1.000 1.000 1.000

Mean F1 1.000 0.832 0.657 0.642 0.316

Median centroid shift (m) 0.000 106.014 599.710 692.777 7,065.464

Median medoid shift (m) 0.000 0.000 623.311 726.030 7,074.129

The bold values indicate the best location privacy protection effectiveness.
Abbreaviations: DI, de-identification; GG, Gaussian geomasking with 0 km mean and 1 km standard deviation; none, no 
privacy protection; ours, our privacy-preserving framework on a decentralized data set; RP, random perturbation with 
1 km threshold.

F I G U R E  1 0   (a) The total weight of different groups of devices; and (b) The test AUC values by epoch in the 
poisoning attack experiment
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5.1 | Factors affecting model performance

We first investigate how some factors affect recommendation accuracy. These factors include spatio-temporal 
attributes, auxiliary public data (transportation accessibility, place safety, and flow-based spatial interaction), ran-
dom initialization, the poisoning attack, and spatial resolution. As shown in Table 3, richer features bring higher 
recommendation accuracy. When the model trains on the basic training data that only include user profiles and 
POI category, the test AUC is only 0.651. Adding more features eventually increases the accuracy up to 0.879. 
The model parameters are randomly initialized based on a random seed. Given different random seeds, the final 
recommendation accuracy remains almost unchanged. The poisoning attack is another important factor greatly 
affecting recommendation accuracy. When the total weight assigned to the devices controlled by the attacker 
reaches 0.1%, the recommendation accuracy drops by around 0.029. As the total weight continues to increase, the 
recommendation accuracy will continue to decrease until the model fails to converge.

We also investigate what impact an increase in spatial resolution has on model performance. Generally, an in-
crease in spatial resolution will result in changes in the encoding results of check-in data and auxiliary public data, 
thereby influencing the location recommendation accuracy. As shown in Figure 5 and Table 3, due to the data 
sparsity issues caused by a higher spatial resolution (level = 8), the test AUC value dropped from 0.879 to 0.808. 
We therefore conclude that for different areas and tasks, the suitable spatial resolution may vary, but in our cases 
the spatial resolution with a level of 7 is a good choice.

We also discuss how some factors affect privacy protection effectiveness. These factors include data storage, 
SMPC, and auxiliary public data. When the check-in data are uploaded and stored in a centralized data set, user 
profiles are at risk of leakage, and sensitive locations such as home locations can be identified via location clus-
tering algorithms even if the data were preprocessed with de-identification or geomasking. Decentralized data 
storage can minimize privacy leakage risk since users' private data will not be shared with anyone else. SMPC is 
the cornerstone of the secure aggregation module, which guarantees that the collection and aggregation of the 
model parameters go smoothly and privately. This is also why our framework can perform model training and up-
date under the premise of preserving privacy. Since users' check-in data are stored locally, requesting the auxiliary 
public data with location information might be the only way to leak users' location privacy. However, such data do 
not contain the check-in time and frequency for each location, which greatly reduces the chances of identifying 
users' home location using location clustering algorithms. As mentioned in the home location clustering attack 
case, running DBSCAN on the requested auxiliary public data gives a mean overall accuracy of only 0.04.

TA B L E  3   Test AUC values measured on the model trained via federated learning with different settings

Setting Influence Test AUC

Basic Data 0.651

Basic + ST Data 0.834

Basic + ST + TS Data 0.840

Basic + ST + TS + SI Data 0.879

Different random seed Initialization 0.878

Higher resolution (level = 8) Encoding 0.808

Poisoning (0.1%) Update 0.850

Poisoning (0.6%) Update 0.814

Poisoning (1.2%) Update 0.740

Poisoning (3.3%) Update Failed to converge

Note: Basic represents the basic training data set involving only users' profiles and POI category; ST represents the 
spatial and temporal features (i.e., check-in locations and time-stamps); TS represents the transportation infrastructure 
and place safety features; and SI represents the flow-based spatial interaction features.
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5.2 | Privacy–utility trade-off

This research clearly shows a trade-off between the privacy protection effectiveness and model utility. As is 
shown in Figure 8, our privacy-preserving model trained on a decentralized data set via federated learning has 
overall lower recommendation accuracy compared with the original model trained on a centralized data set, which 
reflects the fact that we sacrifice a small amount of model utility in order to preserve privacy. Further evidence 
of this trade-off is that our framework requires network transfer and cryptography techniques for collecting and 
aggregating the model parameters, and these would directly limit the training speed and affect the total time for 
training. Likewise, the price paid for the high recommendation accuracy of the original model is the high privacy 
leakage risk. According to the home location clustering accuracy metrics shown in Table 2, lots of home locations 
in the centralized data set can be correctly identified despite being processed by de-identification, random per-
turbation, or Gaussian geomasking. Compared with centralized data, our framework based on decentralized data 
storage significantly minimizes the risk of location privacy leakage.

Overall, the relationship between privacy and utility is somewhat contradictory: if we want to improve one, we 
might have to sacrifice the other, which results in a “catch-22 situation” (Rao et al., 2020). With this in mind, this 
research also explores how to improve recommendation accuracy as much as possible while preserving privacy. 
Successful attempts include involving spatio-temporal features and auxiliary public data (transportation accessi-
bility, place safety, flow-based spatial interaction). In general, our framework protects user profiles and location 
privacy by keeping users' data on their own devices while providing a competitive recommendation accuracy via 
decentralized collaborative learning, which strikes a better balance between privacy protection effectiveness and 
model utility.

5.3 | Limitations

Our framework has several limitations. First, our federated-learning-based framework collects and aggregates 
model parameters privately, which relies heavily on network communication and cryptography techniques. In 
practice, it will take a much longer time to complete model training compared with the traditional process on 
a centralized data set. Second, such a framework requires computing resources and storage while training the 
model, which may lead to higher consumption of power and storage on the local devices. Third, although our 
framework deals better with the trade-off between the privacy protection effectiveness and model utility, the 
recommendation accuracy is still sacrificed slightly and should be further improved. Finally, we do not consider 
users' current location and time when making location recommendations, due to the lack of such data. In fact, 
users' spatio-temporal context would have a great impact on the next locations they likely visit (Huang, 2017). We 
plan to explore and solve these limitations in our future work.

6  | CONCLUSIONS

This research presents a new privacy-preserving framework for location recommendation based on decentralized 
collaborative machine learning. Key innovations of this method include: keeping users' private data on their own 
devices; using federated learning to achieve decentralized collaborative learning for local models; encoding and 
utilizing the spatio-temporal features and auxiliary public data (transportation infrastructure, place safety, and 
flow-based spatial interaction) to further improve the recommendation accuracy; and designing and performing 
two attack cases to examine the location privacy protection effectiveness and model robustness. To address our 
research question RQ1, users' private data will not be shared or uploaded elsewhere, and the parameter transfer 
is protected by secure multiple party computation, which ensures that users' data and models' parameters are 
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well protected. In addition, the home location clustering attack case indicates that our framework can efficiently 
protect users' location privacy. As to RQ2, the results show that, although having slightly lower recommendation 
accuracy than the original centralized model, our privacy-preserving model still achieves reasonably high accu-
racy in the POI recommendation task and demonstrates some resilience to distributed poisoning attacks; in other 
words, our model achieves a nice balance between privacy protection effectiveness and model utility. Our method 
offers new insights into the development of privacy-preserving artificial intelligence technologies for promoting 
geoprivacy in recommendation services and geospatial data security more broadly.

Our future work will focus on improving training efficiency and mitigating the communication/computation 
overhead of the framework, improving the location recommendation accuracy by better balancing the privacy–
utility trade-off, designing a strategy to further improve the resilience to distributed poisoning attacks, and inte-
grating users' spatio-temporal context into the location recommendation modeling process.
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