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Abstract
In this study, we aim to reveal hidden patterns and con-
founders associated with policy implementation and ad-
herence by investigating the home-dwelling stages from 
a data-driven perspective via Bayesian inference with 
weakly informative priors and by examining how home-
dwelling stages in the USA varied geographically, using 
fine-grained, spatial-explicit home-dwelling time records 
from a multi-scale perspective. At the U.S. national level, 
two changepoints are identified, with the former corre-
sponding to March 22, 2020 (9 days after the White House 
declared the National Emergency on March 13) and the 
latter corresponding to May 17, 2020. Inspections at U.S. 
state and county level reveal notable spatial disparity in 
home-dwelling stage-related variables. A pilot study in the 
Atlanta Metropolitan area at the Census Tract level reveals 
that the self-quarantine duration and increase in home-
dwelling time are strongly correlated with the median 
household income, echoing existing efforts that document 
the economic inequity exposed by the U.S. stay-at-home 
orders. To our best knowledge, our work marks a pioneer-
ing effort to explore multi-scale home-dwelling patterns 
in the USA from a purely data-driven perspective and in a 
statistically robust manner.
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1  | INTRODUCTION

The outbreak of coronavirus disease in 2019 (COVID-19) caused by SARS-CoV-2 has led to an unprecedented 
global crisis, posing a wide range of health, economic, and social challenges. As of May 6, 2021, 32,313,016 cases 
and 575,491 deaths had been reported in the USA, according to the Centers for Disease Control and Prevention 
(CDC) (CDC, 2021). While sustained transmission has continued globally, some countries have entered their sec-
ond or third wave of the epidemic (Nouvellet et al., 2021; WHO, 2021).

In response to the COVID-19 pandemic, various non-pharmacological interventions were implemented to 
restrain population movement, including social distancing, stay-at-home orders, the closing of workplaces and 
schools, and internal/external travel controls. These interventions aim to reduce the physical contact with virus 
sources and decelerate the transmission rate. Experiences from a wide range of countries have proved that 
the reduction in mobility and increase in stay-at-home duration resulting from these policy interventions are 
largely responsible for the reduced transmission of SARS-CoV-2 (Badr et al., 2020; Chang et al., 2021; Gatto 
et al., 2020; Kraemer et al., 2020; Shim, Tariq, Choi, Lee, & Chowell, 2020). Despite the wide adaptation of 
social distancing measures, ensuring people refrain from unnecessary outdoor activities in rich and/or poor 
regions, in urban and/or rural areas, and in authoritarian and/or open societies, is the ultimate human challenge 
(Van Rooij et al., 2020). As expected, the disparities in policy compliance started to be noted at different geo-
graphic scales (Cartenì, Di Francesco, & Martino, 2020; Gao, Rao, Kang, Liang, & Kruse, 2020; Huang, Li, Jiang, 
Li, & Porter, 2020; Huang, Li, Lu, et al., 2020; Li et al., 2020), and many pieces of evidence have proved that 
geographical differences in transmission and death rates are linked to how strictly social restriction policies are 
implemented (Engle, Stromme, & Zhou, 2020; Hoeben, Bernasco, Suonperä Liebst, Van Baak, & Rosenkrantz 
Lindegaard, 2021).

In the USA, mitigation measures to limit outdoor activities and large gatherings have been implemented by federal 
and local governments, with different temporal coverage, effectiveness, and stringency (Chernozhukov, Kasahara, 
& Schrimpf, 2021; Raifman et al., 2020). Furthermore, the voluntary nature of these mitigation measures (Yan et al., 
2021) exaggerated the discrepancies in policy compliance, as people with various political affiliations, socioeconomic 
statuses, and demographic backgrounds tend to respond to restrictions differently (Czeisler et al., 2020; Painter 
& Qiu, 2020). After the declaration of the National Emergency by the White House on March 13, 2020, California 
was the first state to implement a statewide stay-at-home order on March 16, 2020 (Moreland et al., 2020). In the 
following 8 days, more than 50% of the U.S. population were under stay-at-home orders, and this number grew to 
95% by April 4, 2020 (Baek, McCrory, Messer, & Mui, 2020). Despite the implementation of intensive policies by the 
state and county officials in March and April 2020, a number of studies have revealed considerably disparate policy 
adherence at various geographical scales (Chang et al., 2021; Hu et al., 2021; Huang et al., 2021; Iio, Guo, Rees, & 
Wang, 2020; Lee et al., 2020; Pan et al., 2020). The second and third waves of the COVID-19 infection in the USA 
also indicated that piled restrictions issued in March and April 2020 were not as effective as expected. Thus, it is 
necessary to revisit the compliance of social distancing policies and stay-at-home orders during the first wave of the 
COVID-19 pandemic in the USA to provide better policy implications for potential resurges.

Since the outbreak of COVID-19, commercial companies (e.g., Google, Apple, Baidu, SafeGraph, Cuebiq, 
and Descartes Labs) have released aggregated, anonymized mobility reports to assist the acquisition of human 
mobility information regarding how people actively lowered their exposure to COVID-19 by reducing traveled 
distances or by increasing home-dwelling time. One notable mobility dataset is SafeGraph's Social Distancing 
Metrics (detailed in Section 2), which provides human movement and home-dwelling time records collected from 
roughly 10% of mobile devices in the USA (SafeGraph, 2019). Because of its high penetration ratio, SafeGraph 
becomes the preferred data source used by many COVID-19-related studies that require accurate, fine-scale, 
representative mobility records (e.g., Banerjee, Nayak, & Zhao, 2021; Chang et al., 2021; Charoenwong, Kwan, 
& Pursiainen, 2020; Huang et al., 2022; Sun, Pan, Zhou, Xiong, & Zhang, 2020). Some recent works modeled 
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the increase in home-dwelling time using selected socioeconomic variables in the 12 largest U.S. city clusters 
by comparing situations before and under stay-at-home orders (e.g., Huang et al., 2022). However, the defini-
tion of stages (i.e., “before the stay-at-home order” and “under the stay-at-home order”) is often purely policy 
driven (i.e., policy implementation), neglecting the hidden patterns associated with different policy adherence 
levels. To our best knowledge, few efforts have been made to identify social distancing stages in the USA 
revealed from home-dwelling time records from varying spatial scales and in a data-driven and statistically 
robust manner.

To fill the gaps, this study aims to reveal how multi-scale social distancing compliance in the USA varied 
geographically by determining stages in home-dwelling time from a data-driven perspective, using fine-grained 
home-dwelling time records from SafeGraph, and via a robust Bayesian inference approach. Specifically, the con-
tributions of this work are summarized as follows:

•	 We document the multi-scale spatial disparity in social distancing compliance in the USA, revealed by the 
home-dwelling time records collected from massive mobile devices.

•	 We identify different social distancing stages by performing an automatic changepoint detection on U.S. home-
dwelling time records via Bayesian inference with weakly informative priors.

•	 We investigate and reveal social distancing compliance in the USA from a multi-scale perspective by exploring 
the spatial patterns of derived stage-related variables.

•	 We discuss policy compliance, spatial disparity of derived stage-related variables, exposed inequity, and what 
policies can be suggested for the COVID-19 pandemic and future epidemics.

2  | HOME-­DWELLING TIME RECORDS

2.1 | Data description

In this study, we collected home-dwelling time records from SafeGraph (https://www.safeg​raph.com/), a com-
mercial company that provides insights about physical places using aggregated anonymized location data de-
rived from numerous cellphone applications. SafeGraph provides locational information using a panel of GPS 
points from 45 million anonymous mobile devices, accounting for about 10% of mobile devices in the USA. 
According to SafeGraph (2019), their sampling is highly representative given its high correlation (Pearson 
correlation coefficient of 0.97 at the U.S. county level) with the actual U.S. Census data in various demo-
graphic and socioeconomic dimensions. The home locations of device users are determined based on the 
common night-time location of each mobile device over 6 weeks to Geohash-7 granularity (~153 × ~153 m) 
(SafeGraph, 2020). Further, users’ home-dwelling time is measured in minutes on a daily basis. To preserve 
users’ privacy, records are aggregated to the Census block group (CBG) level by calculating the median of 
daily home-dwelling time for all available users within each CBG. Following Huang, Li, Lu, et al.  (2020), the 
home-dwelling time records retrieved in our study span January 1, 2020 to August 31, 2020, with a total of 
244 days for 219,972 CBGs. To understand the dynamics of home-dwelling time in the USA, we presented a 
heat map by plotting raw SafeGraph home-dwelling time records from all CBGs in the USA (Figure 1), where 
high/low concentrations are marked as red/blue. The influence of social distancing policies (e.g., stay-at-home 
orders) on daily home-dwelling time is obvious, evidenced by the considerable increase of home-dwelling time 
following the U.S. National Emergency and the notable decrease in April 2020 when strict mitigation policies 
were gradually lifted. Figure 1 reveals a clear three-stage pattern. Further, we derived prior distributions of 
parameters to be modeled, considering the characteristics of home-dwelling time dynamics we observed from 
Figure 1 (details can be found in Section 3).

https://www.safegraph.com/
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2.2 | Data aggregation

Despite the high representativeness of SafeGraph data, existing studies (e.g., Huang et al., 2022) have shown 
that the daily number of captured device users is insufficient for a certain amount of CBGs to form stable and 
credible time series as the foundation for the proposed Bayesian modeling. Efforts have been made to aggregate 
SafeGraph data to spatial units at higher geographical levels to mitigate this issue (Chiou & Tucker, 2020; Kang 
et al., 2020; Li et al., 2020). In our study, we aggregated the home-dwelling time records at the CBG level to the 
U.S. Census Tracts, U.S. counties, U.S. states, and the USA as a whole, aiming to document the multi-scale spatial 
disparity in social distancing compliance. For a spatial unit with a higher geographic level, we performed a weight-
ing operation by averaging the CBG-level home-dwelling time weighted by the number of available devices within 
that spatial unit. For example, supposing a Census Tract contains two CBGs, CBG A (800 min from 600 devices) 
and CBG B (700 min from 400 devices), the home-dwelling time for this Census Tract is 760 min 

(
800× 600+ 700× 400

600+ 400

)
 . 

Such an aggregation approach is capable of providing reasonable estimations for coarser geographic scales by 
considering the heterogeneity of sample distributions.

3  | METHODOLOGY

3.1 | Bayesian inference concept

As a statistical inference method, Bayesian inference applies Bayes’ theorem (Bayes, 1958) to update the probabil-
ity for a hypothesis when more evidence/information becomes available. The original Bayes’ theorem expresses 
the “posterior probability” (or conditional probability) of an event A after event B is observed in terms of the 

F I G U R E  1 Heat map of raw SafeGraph home-dwelling time records of 219,972 U.S. CBGs (modified from 
Huang, Li, Lu, et al., 2020). This heat map reveals the density of all available (day, home-dwelling time) pairs 
within the investigated timeframe for all available CBGs in the USA. Important dates were retrieved from AJMC 
(https://www.ajmc.com/view/a-timel​ine-of-covid​19-devel​opmen​ts-in-2020)

https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020
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“prior probability” of A, the prior probability of B, and the posterior probability of B given A (Box & Tiao, 2011): 
(A|B) = (B|A)(A)

(B)
. From a modeling perspective, we can replace B with observations  = {x1, x2,⋯, xN} and A with 

parameter set �:

where (�) denotes the set of prior distributions of parameter set � before  is observed (the priors). On certain occa-
sions, � is determined by �, a group of hyperparameters [i.e., � ∼ (�|�)]. (�| ) denotes the posterior distribution of � 
after taking into account the priors and . (|�) denotes the likelihood that suggests the distribution of  conditional 
on �.

3.2 | Bayesian changepoint detection

Evolving from the basic Bayes’ theorem, Bayesian inference has been adopted to address changepoint detec-
tion tasks and has achieved great performance (Niculita, Skaf, & Jennions, 2014; Ray & Tsay, 2002; Tartakovsky 
& Moustakides, 2010), given its ability to objectively assess the uncertainties surrounding the changepoints, a 
significant advantage over a frequentist solution (Ruggieri, 2013). We assume that the observed stay-at-home 
records  = {x1, x2, ⋯, xN} for a certain geographical region can be modeled by stationary Gaussian distributions 
parameterized by � as mean and � as standard deviation [i.e.,  (�, �), where � changes given a series of change-
points (�) in ]. In other words, we aim to fit a staging function to our observation . Supposing that a staging 
function with a total of n states can well explain , parameter set � contains n mean values (i.e., {�1, ⋯,�n}), n − 1 
changepoints (i.e., {�1,⋯, �n−1}), and a �:

We rewrite the model-based Bayes’ theorem as below:

where ( ) denotes the distribution of observation . (�1, ⋯,�n, �1,⋯, �n−1, �) denotes a set of the prior dis-
tribution of all parameters to be estimated (the definitions of these priors are detailed in the next section). 
(|�1, ⋯,�n, �1,⋯, �n−1, �) denotes the likelihood function that describes the probability of observing  given our 
parameter set {�1, ⋯,�n, �1,⋯, �n−1, �}. (�1,⋯,�n, �1,⋯, �n−1, �| ) denotes a set of the posterior distribution of all 
parameters after taking into account the priors and . We then formulate the likelihood function as:

Note that we assume  can be modeled by a series of normal distributions,  (�1, �),  (�2, �), …, (�n, �). 
Thus, we can rewrite the likelihood function as:

(1)(�| ) = (|�)(�)
( )

(2)� = {�1, ⋯,�n, �1,⋯, �n−1, �}

(3)(�1, ⋯,�n, �1,⋯, �n−1, �| ) =
(|�1,⋯,�n, �1,⋯, �n−1, �)(�1, ⋯,�n, �1,⋯, �n−1, �)

( )

(4)P(|�1, ⋯,�n, �1,⋯, �n−1, �)=

�1∏
i=1

P(xi|�1, �)

�2∏
j=�1+1

P
(
xj|�2, �

)
⋯

N∏
m=�n−1+1

P(xm|�n, �)

(5)
(|�1, ⋯,�n, �1,⋯, �n−1, �)∝ (2��2)−N∕2

exp

{
−

1

2�2

[
�1∑
i=1

(x2
i
+�2

1
−2�1xi)+

�2∑
i=�1+1

(x2
i
+�2

2
−2�2xi)+⋯+

N∑
i=�n−1+1

(x2
i
+�2

n
−2�nxi)

]}
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3.3 | Prior distribution assumption and model settings

The heat map of raw SafeGraph home-dwelling time records (Figure 1) reveals a notable inverted “U-shape” pat-
tern, which suggests the potential existence of three stages along the timeline covered by the retrieved SafeGraph 
data. Supposing that we expect xi, a series of observed daily stay-at-home records at unit i , to have two change-
points, respectively denoted as �1 and �2, we model xi as follows:

where  (�, Σ) denotes the normal assumption that is parametrized by its mean (�) and standard deviation (Σ).
Bayesian analyses require prior distributions, either uninformative, weakly informative, or informative ones, 

over unknown parameters. Prior distributions, indicating our prior knowledge of parameters to be modeled, affect 
the posterior distributions. In this study, we decided to implement weakly informative priors to facilitate mod-
els reaching reasonable posterior distributions without being excessively subjective. After the interpretation of 
Figure 1, we derived these parametric forms of the prior distributions for the model components:

where Unifcont and Unifdct, respectively, denote the continuous uniform and discrete uniform distributions that are 
bounded by the lower and upper limits. �1 and �2 are bounded by limits that represent the day count from January 
1, 2020. �1, �2, �2, Σ, and � are characterized by parameters that represent home-dwelling time in minutes.

Following Equation (5), we formulate the log-likelihood function for the proposed Bayesian model:

where � is piecewise on two changepoints to be modeled (i.e., �1 and �2):

(6)xi =

⎧
⎪⎪⎨⎪⎪⎩

N(𝜇1, Σ),

N(𝜇2, Σ)

N(𝜇3, Σ),

,

t≤ 𝜏1

𝜏1< t<𝜏2

t≥ 𝜏2

Σ ∼ Unifcont (0, 200)

� ∼ Unifcont (0, 200)

�1 ∼  (700, �)

�2 ∼  (800, �)

�2 ∼  (700, �)

�1 ∼ Unifdct(50, 130)

(7)�2 ∼ Unifdct(�1, 200)

(8)log = −

N∑
i=1

log
[
(2�)1∕2�

]
−

N∑
i=1

[
−

(xi−�)2

2�2

]

(9)𝜇 =

⎧
⎪⎪⎨⎪⎪⎩

𝜇1,

𝜇2,

𝜇3,

t≤ 𝜏1

𝜏1< t<𝜏2

t≥ 𝜏2
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3.4 | Sampling mechanism

To perform posterior sampling, we used the Markov chain Monte Carlo (MCMC) sampling approach to enable 
samples to be obtained from successive states of a discrete-time Markov chain (Geyer, 2011), which is designed 
to simulate samples that have a distribution arbitrarily close to the posterior distribution (Wang & Park, 2020). 
Two MCMC-based algorithms were used: (1) Metropolis–Hastings (MH); and (2) No-U-Turn Sampler (NUTS). MH, 
a popular method for sampling discrete parameters, conducts controlled random walks over the parametric space 
to derive a sequence of random samples from a probability distribution where direct sampling is difficult (Martino 
& Elvira, 2014). Based on the gradient of the log posterior density, NUTS uses a recursive algorithm to build a set 
of likely candidate points that span a wide swath of the target distribution, achieving faster convergence than 
traditional sampling methods (Hoffman & Gelman, 2014). In this study, we conducted sampling using NUTS for 
variables with continuous prior assumptions, which includes �, �1, �2, and �2. For parameters with discrete prior 
assumptions (i.e., �1 and �2), we adopted the MH sampling approach, given its non-gradient sampling mechanism. 
Samples were obtained with 5,000 posterior draws.

3.5 | Extra conditions

In this study, we hypothesize that home-dwelling time records can be captured by the proposed three-stage 
model (as observed in Figure 1). However, we acknowledge that not all geographic units feature such a pattern, 
especially for small geographic units like the Census Tracts, where a low number of mobile devices potentially 
leads to a certain level of randomness. In light of this issue, we included three additional conditions:

where norm denotes a cumulative normal distribution function. ∇�2−�1
 denotes the posterior distribution of the differ-

ence between �2 and �1. ∇�2−�3
 denotes the posterior distribution of the difference between �2 and �3. Similarly, ∇�2−�1

 
denotes the posterior distribution of the difference between �2 and �1. The observed three-stage pattern stands if the 
conditions of 𝜇2 > 𝜇1, 𝜇2 > 𝜇3, and 𝜏2 − 𝜏1 > 10 are all statistically true (with significant p values at �). The rationale of 
introducing the condition of a 10-day gap between the two changepoints is that we aim to exclude time series with an 
unstable second stage detected by the proposed Bayesian model, presumably due to noise in the time series or biases 
in the sampling procedure. In this study, we set the significance � as 0.05.

4  | RESULTS

4.1 | U.S. national level

Figure 2 presents the raw daily home-dwelling time records with detected stage-related variables for the U.S. 
national level. Two changepoints (i.e., �1 and �2) were identified, with the former corresponding to March 22, 
2020 and the latter corresponding to May 17, 2020. The first changepoint (�1) in home-dwelling time appeared 
9 days after the White House declared the National Emergency on March 13. After �1, home-dwelling time in the 
USA maintained a high level (i.e., between �1 and �2), which lasted for a total of 56 days. The USA experienced a 

norm(∇𝜇2−𝜇1
< 0) < 𝛼

norm(∇𝜇2−𝜇3
< 0) < 𝛼

(10)norm(∇𝜏2−𝜏1
< 10) < 𝛼

https://en.wikipedia.org/wiki/Pseudo-random_number_sampling
https://en.wikipedia.org/wiki/Probability_distribution
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notable drop in home-dwelling time starting from May 17 (�2) when stay-at-home orders had been lifted (Moreland 
et al., 2020). The two identified changepoints separate the time series into three notable stages—Stage 1, Stage 
2, and Stage 3—with distinctively different mean values of that stage (i.e., �1, �2, and �3; see Figure 2). �2 with a 
mean of 838.2 min is considerably higher than both �1 with a mean of 638.7 min and �3 with a mean of 673.7 min, 
revealing the generally strong and positive response to the COVID-19 pandemic in the USA. Compared with �1 , �2 
is 199.5 min higher, indicating that people in the USA spent around 3 hr 20 min more in Stage 2 than Stage 1. The 
sudden drop in home-dwelling time after �2 can be explained by the gradually loosened control measures from 
the “Opening Up America Again” guidelines (White House, 2020). Although �3 is still higher than �1, their small 
difference reveals that society has largely returned to normal from a perspective of daily home-dwelling duration.

Figure 3 presents the posterior distribution (based on 5,000 posterior draws) of the parameters in the pro-
posed Bayesian for home-dwelling records in the USA as a whole. These parameters include stage means (i.e., �1 , 
�2, and �3; Figures 3a–c), changepoints (i.e., �1 and �2; Figures 3d and e), and standard deviation (Σ) (Figure 3f) in 
the general model setting of Equation (6). The results indicate that we provided reasonable priors to the proposed 
Bayesian model. Posteriors of �1, �2, �3 still follow a normal distribution but with shifted means after considering 
the priors from our assumption and the home-dwelling time records (i.e., the evidence). For changepoints, most 
posterior draws (the mode) of �1 fall on March 22, which is the same as the median in its distribution. In compar-
ison, the mode of �2 (May 19) is different from its median (May 18). In this study, we chose the median values 
respectively from the posterior distribution of �1 and �2 as their optimal settings, following the rule of thumb of 
the optimal value selection from discrete distributions.

4.2 | U.S. state level

We applied the proposed Bayesian model to home-dwelling time records for each U.S. state. Figure 4 presents the 
state-level daily home-dwelling time, derived stages, and stage-related variables that include �1, �2, �3, �1, and �2 . A 
summary of these variables can be found in Table B1 in Appendix B. The spatial distribution of stage-related variables, 
together with Σ, is presented in Figure A1 in Appendix A. The posterior distribution based on 5,000 posterior draws 
of �1, �2, �3, �1, and �2 can be found respectively in Figures A1–A5 in Appendix A. In general, the impact of COVID-19 

F I G U R E  2 Daily home-dwelling time records and detected stage-related variables using the proposed 
Bayesian model for the U.S. national level
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on home-dwelling time is evident, as all U.S. states saw a certain level of increase in home-dwelling time, especially 
in March and April (Figure 4). The results reveal that the U.S. states present considerably similar �1 (ranging from 
March 20 to March 30, 2020), indicating that state-level responses reflected from the home-dwelling time during the 
first wave do not differ significantly at the first changepoint, despite the varying issue dates of State of Emergency 
and stay-at-home orders. As an initial hotspot of COVID-19 cases in the USA, Washington declared the first State 
of Emergency in the USA as early as February 29, 2020. However, the estimation from our Bayesian model suggests 
that �1 of Washington is around March 22, 2020 (1 day before Washington's statewide stay-at-home order was is-
sued), indicating that it was not until 22 days after the issuing of the State of Emergency that Washington started to 
present a statistical changepoint in home-dwelling time. Despite the small differences in �1 among these states, its 
spatial disparity is still noticeable, with California, Nevada, Utah, Illinois, and Missouri having the same and earliest 
�1 (March 20, 2020) (Figure 1a). As for �2, Oklahoma, Mississippi, Texas, and Alabama present the top four earliest �2 , 
suggesting their earlier return to normal compared to other states. In comparison, states that were heavily affected 
by the home-dwelling policy—such as California, New York, and New Jersey—present the latest �2 of May 19, 2020.

We further derived the duration of Stage 2 by calculating �2 − �1 (Figure 5a). A higher value of �2 − �1 cor-
responds to a longer Stage 2. The results present notable spatial disparity of home-dwelling time, revealing 
that Pacific states (e.g., California, Oregon, and Washington), Northeast/Mid-Atlantic states (e.g., New York, 
Pennsylvania, and Virginia), and East North Central states (e.g., Wisconsin, Michigan, and Illinois) present relatively 
large values of �2 − �1, suggesting that Stage 2 in these states is considerably longer than that in other states. In 
comparison, Alabama is found with the shortest Stage 2, lasting only 33 days, followed by Mississippi with a Stage 
2 lasting 40 days. We also derived the increase in home-dwelling time when entering Stage 2 by calculating �2 − �1 
(Figure 5b). A higher value of �2 − �1 suggests a more aggressive reaction to COVID-19, evidenced by an intensive 
growth in daily home-dwelling time at Stage 2. New Jersey, New York, and California stand out, as they are the top 
three states with the highest value of �2 − �1. New Jersey, for example, has a �2 of 1,007.4 min, 325.6 min more 
compared to �1, presumably due to strict local social distancing policies. In contrast, Arkansas presents the lowest 
value of �2 − �1 (117.6 min), followed by Wyoming (121.1 min) and Montana (128.0 min).

4.3 | U.S. county level

We further applied the proposed Bayesian model at the U.S. county level (only counties in the conterminous 
USA are involved) to reveal the staging patterns of home-dwelling time records during the investigated temporal 
period. The county-level analysis has the capability to reveal the hidden spatial heterogeneity that the preceding 
state-level analysis fails to capture, thus providing valuable insights on the spatial differences in home-dwelling 
time within and across states. Figure 6 presents daily home-dwelling time and detected stage-related variables for 
six selected U.S. counties that differ considerably in response: Hawaii County, Hawaii (Figure 6a); Wayne County, 
Georgia (Figure 6b); Pierce County, Washington (Figure 6c); Jefferson County, Arkansas (Figure 6d); New London 
County, Connecticut (Figure 6e); and Madera County, California (Figure 6f).

We investigated three specific interactions between stage-related variables: �2 − �1 (duration of Stage 2); 
�2 − �1 (increase in home-dwelling time when entering Stage 2 from Stage 1); and �3 − �1 (decrease in home-
dwelling time comparing Stage 3 and Stage 1). To explore potential clustering spatial patterns, we calculated 
optimized Getis–Ord G∗

i
, an index that summarizes spatial patterns with statistical significance by exploring each 

feature within the context of neighboring features (Getis & Ord, 2010). The detailed calculation procedure of 
Getis–Ord G∗

i
 is documented in Supporing Information Appendix C. Out of 3,108 counties in the conterminous 

USA, Bayesian-derived stage-related variables from 358 counties (accounting for 11.5%) fail to meet the extra 
conditions stated in Section 3.5, and these counties are not included in this analysis. Figure 7 presents the spatial 
patterns of the remaining counties in terms of �2 − �1 (Figure 7a1), �2 − �1 (Figure 7a2), �3 − �1 (Figure 7a3), and 
the statistically significant hot/coldspots of �2 − �1 (Figure 7b1), �2 − �1 (Figure 7b2), and �3 − �1 (Figure 7b3).
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For the duration of Stage 2 implied by �2 − �1, four hotspots with relatively long duration of Stage 2 are de-
tected (Figure 7b1): (1) Mid-Atlantic/East-Coast region that contains the metropolitan areas of New York, Boston, 
Philadelphia, and D.C.; (2) Pacific Northwest region that contains the metropolitan areas of Portland and Seattle; 
(3) Lake Michage North that contains the metropolitan areas of Chicago and Milwaukee; and (4) Pacific West 
region that covers most parts of California. One extensive coldspot with a relatively short duration of Stage 2 
is found in the West/East South Central region that covers Texas, Oklahoma, Arkansas, Louisiana, Mississippi, 
Alabama, Georgia, South Carolina (south part), and Tennessee (west part).

Similar hotspots are found for �2 − �1, which implies the intensity of increase in home-dwelling time during 
the transition from Stage 1 to Stage 2 (Figure 7b2). For example, counties in California, as well as in metropolitan 
areas of New York, Boston, Philadelphia, D.C., Chicago, and Seattle, experience not only a long Stage 2 but also 
an intense increase in daily home-dwelling time. A new hotspot (not identified in the hotspots of �2 − �1) emerges 
in the metropolitan area of Denver, suggesting that the counties in Denver experienced a sharp increase in home-
dwelling time, but such increase only lasted for a limited duration. The coldspots of �2 − �1 present different spa-
tial patterns compared with those of �2 − �1, revealing the spatial disagreement between Stage 2 duration and the 
intensity of increase in home-dwelling time during the stage transition from Stage 1 to Stage 2. A notable coldspot 
of �2 − �1 (not identified in the coldspots of �2 − �1) appears in the coastal areas of North Carolina and Virginia, 
suggesting that counties in these regions increased home-dwelling time in a marginal manner during Stage 2, 
though such increases lasted for a while.

The hot/coldspots of �3 − �1, which suggest the recovery levels in home-dwelling time comparing Stage 3 
and Stage 1, are presented in Figure 7b3. A higher value of �3 − �1 denotes less magnitude of recovery during 
the investigated period, while a lower value of �3 − �1 denotes otherwise, with negative values suggesting even 
less home-dwelling time in Stage 3 compared to the pre-pandemic period. Different from Figure 7b1 and b2, no 

F I G U R E  7 U.S. county-level spatial patterns of (a1) �2 − �1, (a2) �2 − �1, (a3) �3 − �1 and identified statistically 
significant hot/coldspots of (b1) �2 − �1, (b2) �2 − �1, (b3) �3 − �1. The calculation procedure of Geitis–Ord Gi is 
detailed in Appendix C. The Z-score distribution of Gi is summarized at three significant levels: � = 0.01 (99% 
confidence level), � = 0.05 (95% confidence level), and � = 0.1 (90% confidence level). Note that (a1), (a2), and (a3) 
are mapped with 10 classes categorized by Jenks natural breaks (Jenks, 1967)
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hotspot of �3 − �1 is found for counties in metropolitan areas of Portland and Seattle, indicating their high recovery 
level despite their long-lasting Stage 2, with a strong increase in home-dwelling time. In comparison, the hotspots 
of �3 − �1 remain notable for counties in California, metropolitan areas of New York, Boston, Philadelphia, and 
D.C. Similar hotspots can also be found in counties within the Deep South states, such as Mississippi, Alabama, 
Georgia, South Carolina, and Texas (south). In contrast to the observed lower recovery level in the south, a cold-
spot of �3 − �1 stands out in the Great Lake region, revealing a considerably higher recovery level.

4.4 | U.S. Census Tract level (Metro Atlanta as an example)

Taking the Atlanta–Sandy Springs–Alpharetta metropolitan statistical area (MSA), hereafter referred to as Metro 
Atlanta, as a pilot study area, we investigated how the derived stage-related variables correlate with household 
income, one of the major factors responsible for the noticeable disparities in the exposure of many diseases 
(Anderson & Chu,  2007; Diez-Roux, Link, & Northridge,  2000; Hopman, Allegranzi, & Mehtar,  2020). Metro 
Atlanta serves as an appropriate testbed due to the following reasons. As the 12th largest MSA in the USA, Metro 
Atlanta is the most populous metropolitan area in Georgia. Alongside its rapid growth, Metro Atlanta has shown 
the widening socioeconomic inequity underlying the uneven urban growth and development (Bullard, Johnson, & 
Torres, 1999; Huang, Li, Lu, et al., 2020). During the first wave of the COVID-19 pandemic, Metro Atlanta exhib-
ited spatially homogenous policy implementation, where the examination of the influence of household income 
on home-dwelling time can be conducted under the condition of the same or similar regional mitigation measures.

Similar to the experiment at the U.S. county level, we investigated the same interactions between Bayesian-
derived stage-related variables (i.e., �2 − �1, �2 − �1, and �3 − �1). Out of 987 Census Tracts in Metro Atlanta, 
126 (accounting for 12.8%) fail to meet the extra conditions detailed in Section 3.5. The spatial distribution of 
median household income (median hhinc), �2 − �1, �2 − �1, and �3 − �1 in the study area can be found in Supporting 
Information Figure C1 in Appendix C. In general, the spatial patterns in Figure C1 imply a close relationship of 
median hhinc with �2 − �1, �2 − �1, and �3 − �1, evidenced by their similar distribution patterns, especially that 
between median hhinc and �2 − �1.

Figure 8 presents the scatterplots of median hhinc with �2 − �1 (Figure 8a), �2 − �1 (Figure 8b), and �3 − �1 
(Figure 8c) at the Census Tract level in Metro Atlanta. The relationship between median hhinc and �2 − �1 fol-
lows a logarithmic correlation, suggesting that an increase in median household income tends to extend 
the duration of Stage 2 with diminishing marginal effects. Our logarithmic fit reveals their relationship to be 
�2 − �1 = 13.19 × ln(medianhhinc) − 99.75 (R2 = 0.22), indicating that a 10% increase in household income ex-
tends 1.319 days in Stage 2. The relationship between median hhinc and �2 − �1 follows a strong positive lin-
ear correlation. A linear fit reveals �2 − �1 = 0.0018 × medianhhinc − 121.21 (R2 = 0.40), suggesting that a $1,000 
increase in household income translates to 1.8  min more daily home-dwelling time when transitioning from 
Stage 1 to Stage 2. In comparison, median hhinc and �3 − �1 follow a weak, low-explanatory linear relationship: 
�3 − �1 = 0.00056 × medianhhinc + 26.82 (R2 = 0.07), revealing the trivial contribution of medianhhinc to the re-
covery levels reflected in home-dwelling time when comparing Stage 3 with Stage 1.

5  | DISCUSSION

5.1 | What have we learnt?

In this study, we investigated social distancing stages using home-dwelling time records aggregated at multi-scales 
in the USA from a data-driven perspective. Specifically, we adopted Bayesian inference with weakly informative 
priors as a data-driven approach, aiming to reveal how stage-related variables (i.e., changepoints and stage means) 
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and their interactions vary spatiotemporally. Different from the existing effort with stage definition (e.g., “before 
the stay-at-home order,” “under the stay-at-home order,” “re-opening”) from a purely policy-driven perspective 
(Huang et al., 2022), our study contributes to the literature by proposing an automatic stage-inferencing workflow 
that allows better exploration of the hidden patterns or confounders associated with policy implementation and 
policy adherence.

F I G U R E  8 Scatterplot of median household income with (a) �2 − �1, (b) �2 − �1, (c) �3 − �1 at the Census Tract 
level in the Atlanta Metropolitan area (Metro Atlanta)
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At the national level, our results show that home-dwelling time increased significantly in the USA during 
the pandemic, which could be explained by the containment and closure policies implemented in the USA to 
restrain human mobility and gathering after the National Emergency declaration (March 13). Detailed informa-
tion regarding state-level stay-at-home orders can be found at https://www.usato​day.com/story​telli​ng/coron​
aviru​s-reope​ning-ameri​ca-map/. By the first changepoint (τ1) on March 22, four states—including California, 
Illinois, New Jersey, and New York—had issued statewide mobility restrictions (Moreland et al., 2020). The 
other states also implemented various policies (e.g., school and workplace closures and restrictions on gath-
erings), though statewide restrictions had not been issued. With gradually strengthened policies, an increase 
in home-dwelling time was observed in March and April at Stage 2. The second changepoint (τ2) appeared on 
May 17, 1 month after the White House released the “Opening Up America Again” guideline. By May 17, six 
states had lifted their statewide stay-at-home order, and many other states initiated phased opening strate-
gies (Moreland et al., 2020). It is worth mentioning that the decreasing trend of home-dwelling time started 
before the implementation of re-opening policies. This might be explained by the quarantine fatigue observed 
in early April (Sun, Di, Sprigg, Tong, & Casal,  2020). Although home-dwelling time decreased significantly 
from Stage 2 to Stage 3, the average home-dwelling time at Stage 3 was still longer than that at Stage 1. This 
indicates that people spent more time at home after the lifting of containment and closure policies prior to 
the implementation of these policies. In addition to the remaining policies in certain states, panic effects 
caused by people's fear of being infected might have kept people from outdoor activities, especially with the 
increased COVID-19 cases and deaths after the re-opening (Kaufman, Whitaker, Mahendraratnam, Smith, & 
McClellan, 2020).

At the state level, our results reveal the spatial disparity across states. States with higher infection and death 
rates from COVID-19 (e.g., Washington and New York) in the early stages of the pandemic were more likely to ex-
perience longer home-dwelling time at Stage 2 compared with states having less COVID-19 severity, presumably 
resulting from the strict policies implemented in these states. Additionally, a recent study indicates that workers 
from the sectors of information, finance/insurance, and professional/business services are more flexible over 
working from home compared to workers from the sectors of arts, entertainment and recreation, accommodation 
and food, and retail trade (Bick, Blandin, & Mertens, 2020). Thus, states with larger markets in sectors with the 
flexibility to work from home may experience extensive growth of home-dwelling time at Stage 2 compared with 
other states. The state-level economic and demographic structure could also contribute to the spatial variation of 
home-dwelling time, as workers in middle age and/or with high educational levels and income are expected to be 
more likely to work from home (Bick et al., 2020).

The county-level analysis further reveals the spatial heterogeneity of home-dwelling time within and 
across states. There are obvious spatial variations among the western/eastern coastal regions, the Great 
Plain/South Central region, and the Great Lake region. The West Coast (e.g., California) and the East Coast 
(from Massachusetts to Virginia) have a longer duration of Stage 2 and a more notable increase of home-
dwelling time in Stage 2 and Stage 3, indicating the stronger adherence of stay-at-home policies by res-
idents and their continuous tendency of home dwelling after the release of home-dwelling policies. We 
observe spatial variations of home-dwelling time within California, specifically, a less significant increase 
of home-dwelling time from Stage 1 to Stage 2 in southern California (e.g., Barstow, Riverside, and San 
Diego) than that in northern California where high-tech industries are located. The results reveal the het-
erogeneity of policy adherence under the same state policies, possibly explained by the different levels of 
policy stringency at the local level and degrees of urban governance and supervision (Vaid, McAdie, Kremer, 
Khanduja, & Bhandari, 2020). Similarly, notable spatial heterogeneity can be observed in the duration of 
home dwelling and the increase of home-dwelling time within Michigan, Illinois, Wisconsin, and Indiana, 
where working routine has been recovered quickly after the lifting of home-dwelling policy. Moreover, 
within the South and Southeast Central regions, it is interesting to observe Denver as the single spot in 
the Great Plains with a substantial increase of home-dwelling time in Stage 2, though lasting for a limited 

https://www.usatoday.com/storytelling/coronavirus-reopening-america-map/
https://www.usatoday.com/storytelling/coronavirus-reopening-america-map/
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period. This is possibly due to the high-tech companies and innovative economy promoted by industrial 
transmission and development in Denver, which enable employees to work from home (Hathaway, 2013), 
whereas essential workers in relatively less developed counterparts of the Central region have to travel to 
work onsite. In addition, Texas has substantial variations in the increase of home-dwelling time in Stage 2 
(specifically, only south Texas is significant in such an increase), whereas Mississippi and Alabama retain a 
relatively higher level of home dwelling after the policy lifting. In sum, the county-level variations of home 
dwelling reflect the varying degree of policy stringency and the local response and adherence to policy 
implementation, which are potentially subject to the local industrial and occupational structures, job types, 
and socioeconomic disparities.

While the national- and county-level home-dwelling time patterns indicate policy compliance and spatial 
disparities in response to the COVID-19 pandemic, the Census Tract-level evidence provides more details on 
the exposed inequity across the population. Taking Metro Atlanta as a pilot study, we illustrate that both the 
length of Stage 2 (i.e., τ2 − τ1) and the home-dwelling time differential (i.e., μ2 − μ1) are positively associated 
with the median household income in a Census Tract. In other words, if a Census Tract has a higher median 
household income, its self-quarantine period during the pandemic would tend to be longer, and the increase in 
home-dwelling time would be greater. This indicates that people with higher incomes may be more protected 
by spending more time at home compared to the lower-income population. The Census Tract-level results echo 
previous studies, such as Huang et al.  (2022), which also suggested that neighborhoods with lower house-
hold incomes or a larger share of racial minorities appeared to have shorter home-dwelling time. Compared 
to the disadvantaged population groups, socioeconomically privileged people usually have more choices to 
work remotely, with a greater ability to access food and services without going out (Cetrulo, Guarascio, & 
Virgillito,  2020; Huang et  al.,  2022). In contrast, people with lower socioeconomic status may have to risk 
their health to secure their jobs and income by making more outdoor trips (Lou, Shen, & Niemeier,  2020). 
Subsequently, they would have a higher probability of being exposed and infected by COVID-19, which would 
further harm their household's financial conditions. Thus, the pandemic might exacerbate social inequality, 
given that households in high-income neighborhoods would be more resilient. The disparate exposure that 
disfavors low-income populations can further compound other disadvantages, causing adverse health out-
comes for vulnerable people. Mitigation measures need to recognize and account for the disparity in policy 
compliance and recovery, keeping the public value of social equity at the forefront of actions to support more 
effective readiness for future epidemics. It is imperative to reduce the immediate health effects and ensure 
equitable allocation of health care resources and the proper allocation of financial resources, such as subsidies, 
for more vulnerable populations.

Our multi-scale analysis of home-dwelling time based on the Bayesian inference method reveals the three-
stage pattern of home-dwelling time in the reflection of the differences in policy stringency and local response 
and adherence to policy implementation. Our key findings summarized above align with some observations in a 
number of international studies. Similar to our finding that home-dwelling policies tend to affect essential and 
low-skilled workers more, such policies in Japan had more impact on female and low-skilled workers who engaged 
in social and non-flexible jobs (Kikuchi, Kitao, & Mikoshiba, 2021). Similar to the trend of home dwelling in the 
USA, a significant decrease in human mobility to public facilities and an increase in home-dwelling time were also 
found in Australia (Wang, Liu, & Hu, 2020), South Korea (Kim, An, Min, Bitton, & Gawande, 2020), Italy, and other 
European countries (Flaxman et al., 2020).

5.2 | Limitations and future directions

We need to acknowledge several limitations of this study and provide guidelines for future research. First, the 
raw SafeGraph home-dwelling time records present a notable three-stage pattern, leading to the model-fitting 
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strategy that involves two changepoints (�1 and �2) and three stage means (�1,�2, and �3). Despite the fact that 
home-dwelling records in most geographical units in this study can be summarized by this pre-conceptualized 
piecewise function, we acknowledge that certain geographical units, especially fine-scale units such as Census 
Tracts, might not be constrained in such a way, given their great heterogeneity in urban/rural functionality. Thus, 
future efforts can be made to explore the possibility of hyper-parameterizing changepoint numbers to further 
weaken the role of prior knowledge in model fitting.

Second, the weakly informative priors assumed in the Bayesian model lead to the targeted sampling patterns 
that facilitate model fitting. However, the pre-conceptualized nature in these priors, to a certain degree, limits 
the sampling scope. Thus, efforts can be made to continuously weaken the informativeness of priors with an 
increasing number of posterior draws. In addition, the stage mean values serve as a simplified treatment of errors 
by neglecting the possibility of autocorrelation and heteroscedasticity to some degree (Kogan et al., 2021). Future 
efforts can be made to improve the analysis using sophisticated sampling strategies, autoregressive error param-
eters, and joint inferences to consider temporal autocorrelation and heteroscedasticity.

Third, the home-dwelling time series we constructed spans January 1, 2020 to August 31, 2020. The intra-
annual seasonal variations in home-dwelling time potentially pose challenges in differentiating the home-dwelling 
stages induced by COVID-19. Further efforts can be made to incorporate multi-year records to reduce the impact 
of seasonality. When considering multi-year records, however, attention should be paid to the comparability of 
cross-year records, as additional uncertainty might be introduced due to the differences in representativeness, 
calculation methods, and data sources. In addition, future studies can expand the temporal coverage of the analyt-
ical timeframe to merge with the potential resurges and re-introduction of social restriction policies.

Fourth, we adopted Bayesian inference in this study to derive home-dwelling stages (from a probabilistic per-
spective). Although Bayesian probabilistic modeling has been recognized as a statistically robust stage detection 
method and has been widely adopted in a variety of domains (e.g., Beckage, Joseph, Belisle, Wolfson, & Platt, 2007; 
Shen & Liu, 2015; Zhao et al., 2019), the potential of other approaches, such as models based on the likelihood ratio 
(Keogh, Chu, Hart, & Pazzani, 2001), graphs (Chen & Zhang, 2015), and clustering (Tran, 2019), deserve further in-
vestigation. In addition, the Bayesian inference model we constructed follows an offline setting, as all samples have 
been received before the changepoints are inferred in a retrospective manner (Truong, Oudre, & Vayatis, 2020). We 
believe that future studies can explore the possibility of adopting online frameworks to better detect abrupt changes 
in home-dwelling time (in real time or near real time) and investigate the driven forces behind them.

Finally, we investigated how derived stage-related variables correlate with household income (one of the major 
economic factors) in Metro Atlanta (a city with widening socioeconomic inequity). Due to length limits, we did 
not provide detailed multi-site comparative analyses nor investigate the contribution of other demographic and 
socioeconomic variables (e.g., race, ethnicity, gender, and work types) to the disparity in home-dwelling stages. 
We encourage future efforts to be made in those directions.

6  | CONCLUSIONS

In this study, we investigate stages in home-dwelling time in the USA from a data-driven perspective: a Bayesian 
inference approach with weakly informative priors. Specifically, we examine the multi-scale geographic variation 
of stages in home-dwelling time records, aiming to reveal the hidden patterns or confounders associated with the 
policy implementation and adherence. To our best knowledge, our work marks a pioneering effort to explore multi-
scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner.

At the U.S. national level, two changepoints (�1 and �2) are derived, with the former corresponding to March 
22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter correspond-
ing to May 17, 2020. The two identified changepoints separate the time series into three notable stages: Stage 1 
(pre-pandemic) with stage mean (�1) of 638.7 min; Stage 2 (reaction) with stage mean (�2) of 838.2 min; and Stage 



20  |    HUANG et al.

3 (recovery) with stage mean (�3) of 673.7 min. The small difference between �3 and �1 reveals that society has 
largely returned to normal after May 17 from a perspective of daily home-dwelling duration. At the state level, 
our results reveal notable spatial disparity in home-dwelling stage-related variables across states, presumably 
resulting from various reasons that include the state's political partisanship, COVID-19 severity, social distanc-
ing measures, re-opening policies, and industry distributions. Pacific states, Northeast/Mid-Atlantic states, and 
East North Central states present a longer Stage 2 compared to those in other states. Alabama is found with the 
shortest Stage 2 (33 days), followed by Mississippi (40 days). The top three states with the highest value of �2 − �1 
(increase in home-dwelling time when transitioning from Stage 1 to Stage 2) are New Jersey (325.6 min), New 
York (274.6 min), and California (274.3 min). In contrast, Arkansas presents the lowest value of �2 − �1 (117.6 min), 
followed by Wyoming (121.1 min) and Montana (128.0 min).

Our county-level analysis further reveals the spatial heterogeneity of home-dwelling time within and across 
states. Applying the optimized Getis–Ord G∗

i
 spatial statistics, we reveal potential clustering spatial patterns of the 

interactions among stage-related variables. Specifically, we observe notable spatial variations among the West/East 
Coast regions, the Great Plain/South Central region, and the Great Lake region. The West and East Coast have a 
longer duration of Stage 2 and a more notable increase of home-dwelling time in Stage 2 and Stage 3, which suggests 
their stronger adherence to stay-at-home policies and their continuous tendency for home dwelling after the lifting 
of home-dwelling policies. Taking Metro Atlanta as a pilot study, we observe that the length of Stage 2 (τ2 − τ1) and 
the increase in home-dwelling time transitioning from Stage 1 to Stage 2 (μ2 − μ1) are positively associated with the 
median household income at the U.S. Census Tract level. The results suggest that Census Tracts with a higher median 
household income tend to have a longer self-quarantine period with a more intensive increase in home-dwelling time, 
revealing the luxury nature of stay-at-home policies and echoing many pieces of existing evidence.

When and to what extent to release a home-dwelling policy and how to keep the effectiveness of a less restricted 
policy on virus control pose challenges for both politicians and healthcare systems in the USA and other countries when 
facing severe outbreaks. This study deepens our understanding of the multi-scale spatial disparity in policy compliance 
using fine-grained home-dwelling records from a data-driven perspective. The automatic identification of multi-stage 
patterns of home-dwelling time provides fundamental conceptual and methodological knowledge to evaluate policy 
effectiveness, and the Bayesian inference method used to optimize such identifications in our study can be applied to 
different geographic contexts and various waves along the pandemic timeline for more robust policy evaluation.
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