
R E S E A R CH AR T I C L E

ADCN: An anisotropic density-based clustering
algorithm for discovering spatial point patterns
with noise

Gengchen Mai1 | Krzysztof Janowicz1 | Yingjie Hu2 |

Song Gao1

1Department of Geography, University of

California, Santa Barbara, California, USA

2Department of Geography, University of

Tennessee, Knoxville, Tennessee, USA

Correspondence

Gengchen Mai, STKO Lab, Department of

Geography, University of California Santa

Barbara, Santa Barbara, CA 93106, USA.

Emails: gengchen_mai@geog.ucsb.edu

Abstract
Density-based clustering algorithms such as DBSCAN have been

widely used for spatial knowledge discovery as they offer several key

advantages compared with other clustering algorithms. They can dis-

cover clusters with arbitrary shapes, are robust to noise, and do not

require prior knowledge (or estimation) of the number of clusters. The

idea of using a scan circle centered at each point with a search radius

Eps to find at least MinPts points as a criterion for deriving local den-

sity is easily understandable and sufficient for exploring isotropic

spatial point patterns. However, there are many cases that cannot be

adequately captured this way, particularly if they involve linear fea-

tures or shapes with a continuously changing density, such as a spiral.

In such cases, DBSCAN tends to either create an increasing number

of small clusters or add noise points into large clusters. Therefore, in

this article, we propose a novel anisotropic density-based clustering

algorithm (ADCN). To motivate our work, we introduce synthetic and

real-world cases that cannot be handled sufficiently by DBSCAN

(or OPTICS). We then present our clustering algorithm and test it with

a wide range of cases. We demonstrate that our algorithm can per-

form equally as well as DBSCAN in cases that do not benefit explicitly

from an anisotropic perspective, and that it outperforms DBSCAN in

cases that do. Finally, we show that our approach has the same time

complexity as DBSCAN and OPTICS, namely O(n log n) when using a

spatial index and O(n2) otherwise. We provide an implementation and

test the runtime over multiple cases.

1 | INTRODUCTION AND MOTIVATION

Cluster analysis is a key component of modern knowledge discovery, be it as a technique for reducing dimensionality,

identifying prototypes, cleansing noise, determining core regions, or segmentation. A wide range of clustering

Transactions in GIS. 2018;1–22. wileyonlinelibrary.com/journal/tgis VC 2018 JohnWiley & Sons Ltd | 1

Received: 13 May 2017 | Revised: 29 August 2017 | Accepted: 14 October 2017

DOI: 10.1111/tgis.12313

http://orcid.org/0000-0002-7818-7309
http://orcid.org/0000-0003-4359-6302

algorithms, such as DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999),

K-means (MacQueen, 1967), and mean shift (Comaniciu & Meer, 2002), have been proposed and implemented over

the last decades. Many clustering algorithms depend on distance as their main criterion (Davies & Bouldin, 1979). They

assume isotropic second-order effects (i.e., spatial dependence) among spatial objects, thereby implying that the magni-

tude of similarity and interaction between two objects mostly depends on their distance. However, the genesis of

many geographic phenomena demonstrates clear anisotropic spatial processes. As for ecological and geological

features, such as the spatial distribution of rocks (Hoek, 1964), soil (Barden, 1963), and airborne pollution (Isaaks &

Srivastava, 1989), their spatial patterns vary in direction (Fortin, Dale, & Ver Hoef, 2016). Similarly, data about urban

dynamics from social media, the census, transportation studies, and so forth are highly restricted and defined by the

layout of urban spaces, and thus show clear variance along directions. To give a concrete example, geotagged images—

be it in the city or the great outdoors—show clear directional patterns due to roads, hiking trails, or simply for the fact

that they originate from human, goal-directed trajectories. Isotropic clustering algorithms such as DBSCAN have diffi-

culties dealing with the resulting point patterns and either fail to eliminate noise or do so at the expense of introducing

many small clusters. One such example is depicted in Figure 1. Owing to the changing density, algorithms such as

DBSCAN will classify some noise (i.e., points between the spiral arms) as being part of the cluster. To address this

problem, we propose an anisotropic density-based clustering algorithm.

More specifically, the research contributions of this article are as follows:

� We introduce an anisotropic density-based clustering algorithm (ADCN).1 While the algorithm differs in the

underlying assumptions, it uses the same two parameters as DBSCAN, namely Eps and MinPts, thereby pro-

viding an intuitive explanation and integration into existing workflows.

FIGURE 1 A spiral pattern clustered using DBSCAN. Some noise points are indicated by red arrows

2 | MAI ET AL.

� We motivate the need for such an algorithm by showing 12 synthetic and 8 real-world use cases, each with

three different noise definitions, modeled as buffers that generate a total of 60 test cases.

� We demonstrate that ADCN performs as well as DBSCAN (and OPTICS) for isotropic cases, but outperforms

both algorithms in cases that benefit from an anisotropic perspective.

� We argue that ADCN has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a

spatial index and O(n2) otherwise.

� We provide an implementation for ADCN and apply it to the use cases to demonstrate the runtime behavior of

our algorithm. As ADCN has to compute whether a point is within an ellipse instead of merely relying on the radius

of the scan circle, its runtime is slower than that of DBSCAN while remaining comparable with OPTICS. We dis-

cuss how the runtime difference can be reduced by using a spatial index and by testing the radius case first.

The remainder of this article is structured as follows. First, in Section 2, we discuss related work such as variants of

DBSCAN. Next, we introduce ADCN and discuss two potential realizations of measuring anisotropicity in Section 3.

Use cases, the development of a test environment, and a performance evaluation of ADCN are presented in Section 4.

Finally, in Section 5, we conclude our work and point to directions for future work.

2 | RELATED WORK

Clustering algorithms can be classified into several categories, including but not limited to partitioning, hierarchical,

density-based, graph-based, and grid-based approaches (Deng, Liu, Cheng, & Shi, 2011; Han, Kamber, & Pei, 2011).

Each of these categories contains several well-known clustering algorithms, with their specific pros and cons. Here we

focus on the density-based approaches.

Density-based clustering algorithms are widely used in big geodata mining and analysis tasks, like generating poly-

gons from a set of points (Duckham, Kulik, Worboys, & Galton, 2008; Moreira & Santos, 2007; Zhong & Duckham,

2016), discovering urban areas of interest (Hu et al., 2015), revealing vague cognitive regions (Gao et al., 2017), detect-

ing human mobility patterns (Huang, 2017; Huang & Wong, 2015, 2016; Jurdak et al., 2015), and identifying animal

mobility patterns (Damiani, Issa, Fotino, Heurich, & Cagnacci, 2016).

Density-based clustering has many advantages over other approaches. These advantages include: (a) the ability to

discover clusters with arbitrary shapes; (b) robustness to data noise; and (c) no requirement to predefine the number of

clusters. While DBSCAN remains the most popular density-based clustering method, many related algorithms have

been proposed to compensate for some of its limitations. Most of them, such as OPTICS (Ankerst et al., 1999) and

VDBSCAN (Liu, Zhou, & Wu, 2007), address problems arising from density variations within clusters. Others, such as

ST-DBSCAN (Birant & Kut, 2007), add a temporal dimension. GDBSCAN (Sander, Ester, Kriegel, & Xu, 1998) extends

DBSCAN to include non-spatial attributes in clustering and enables the clustering of high-dimensional data.

NET-DBSCAN (Stefanakis, 2007) revises DBSCAN for network data. To improve the computational efficiency, algo-

rithms such as IDBSCAN (Borah & Bhattacharyya, 2004) and KIDBSCAN (Tsai & Liu, 2006) have been proposed.

All of these algorithms use distance as the major clustering criterion. They assume that the observed spatial pat-

terns are isotropic (i.e., that intensity does not vary by direction). For example, DBSCAN uses a scan circle with an Eps

radius centered at each point to evaluate the local density around the corresponding point. A cluster is created and

expanded as long as the number of points inside this circle (Eps-neighborhood) is larger than MinPts. Consequently,

DBSCAN does not consider the spatial distribution of the Eps-neighborhood, which poses problems for linear patterns.

Some clustering algorithms do consider local directions. However, most of these so-called direction-based cluster-

ing techniques use spatial data which have a predefined local direction (e.g., trajectory data). The local direction of one

point is predefined as the direction of the vector which is part of the trajectories with the corresponding point as its

origin or destination. DEN (Zhou et al., 2010) is one direction-based clustering method which uses a grid data structure

to group trajectories by moving directions. PDC1 (Wang & Wang, 2012) is another trajectory-specific DBSCAN vari-

ant that includes the direction per point. DB-SMoT (Rocha, Times, Oliveira, Alvares, & Bogorny, 2010) includes both

MAI ET AL. | 3

the direction and temporal information of GPS trajectories from a fishing vessel in the clustering process. Although all

of these three direction-based clustering algorithms incorporate local direction as one of the clustering criteria, they

can only be applied to trajectory data.

Anisotropicity (Fortin et al., 2016) describes the variation of directions in spatial point processes, in contrast with

isotropicity. It is another way to describe the intensity variation in a spatial point process, other than first- and second-

order effects. Anisotropicity has been studied in the context of interpolation, where a spatially continuous phenomenon

is measured, such as directional variograms (Isaaks & Srivastava, 1989) and different modifications of kriging methods

based on local anisotropicity (Boisvert, Manchuk, & Deutsch, 2009; Machuca-Mory & Deutsch, 2013; Stroet & Snep-

vangers, 2005). In this article, we focus on anisotropicity of spatial point processes. Researchers have studied anisotro-

picity of spatial point processes from a theoretical perspective by analyzing their realizations, such as detecting

anisotropy in spatial point patterns (D’Ercole & Mateu, 2013) and estimating geometric anisotropic spatial point pat-

terns (Møller & Toftaker, 2014; Rajala, Särkkä, Redenbach, & Sormani, 2016). Here, we study anisotropicity in the con-

text of density-based clustering algorithms.

A few clustering algorithms take anisotropic processes into account. For instance, in order to obtain good results

for crack detection, an anisotropic clustering algorithm (Zhao, Wang, & Ye, 2015) has been proposed to revise

DBSCAN by changing the distance metric to geodesic distance. QUAC (Hanwell & Mirmehdi, 2014) demonstrates

another anisotropic clustering algorithm, which does not make an isotropic assumption. It takes the advantages of ani-

sotropic Gaussian kernels to adapt to local data shapes and scales and prevents singularities from occurring by fitting

the Gaussian mixture model (GMM). QUAC emphasizes the limitation of an isotropic assumption and highlights the

power of anisotropic clustering. However, due to the use of anisotropic Gaussian kernels, QUAC can only detect clus-

ters which have ellipsoid shapes. Each cluster derived from QUAC will have a major direction. In real-world cases, spa-

tial patterns will show arbitrary shapes. Furthermore, the local direction is not necessarily the same between and even

within clusters. Instead, it is reasonable to assume that the local direction can change continuously in different parts of

the same cluster.

3 | INTRODUCING ADCN

In this section we introduce the proposed Anisotropic Density-based Clustering with Noise (ADCN).

3.1 | Anisotropic perspective on local density

Without predefined direction information from spatial datasets, one has to compute the local direction for each point

based on the spatial distribution of points around it. The standard deviation ellipse (SDE) (Yuill, 1971) is a suitable

method to get the major direction of a point set. In addition to the major direction (long axis), the flattening of the SDE

implies how much the points are distributed strictly along the long axis. The flattening of an ellipse is calculated from

its long axis a and its short axis b:

f5
a2b
a

(1)

Given n points, the SDE constructs an ellipse to represent the orientation and arrangement of these points. The

center of this ellipse, O(�X ; �Y), is defined as the geometric center of these n points and is calculated as:

�X5

Xn
i51

xi

n
; �Y5

Xn
i51

yi

n
(2)

The coordinates (xi, yi) of each point are normalized to the deviation from the mean areal center point:

~xi5xi2�X ; ~yi5yi2�Y (3)

4 | MAI ET AL.

Equation 3 can be seen as a coordinate translation to the new origin (�X ; �Y). If we rotate the new coordinate sys-

tem counterclockwise about O by angle u (0<u � 2p) and get the new coordinate system Xo,Yo, the standard deviation

along the Xo axis rx and the Yo axis ry is calculated, respectively, as:

rx5

ffiXn
i51

ð~yisin u1~xicos uÞ2

n

vuuut
(4)

ry5

ffiXn
i51

ð~yicos u2~xisin uÞ2

n

vuuut
(5)

The long/short axis of the SDE is along the direction that has the maximum/minimum standard deviation. Let rmax

and rmin be the length of the semi-long axis and the semi-short axis of the SDE. The angle of rotation hm of the long/

short axis is given by Equation 6 (Yuill, 1971):

tan um52
A6B
C

(6)

A5
Xn
i51

~xi
22
Xn
i51

~yi
2 (7)

C52
Xn
i51

~xi ~yi (8)

B5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A21C2

p
(9)

Here,6 indicates two rotation angles hmax, hmin corresponding to the long and short axes.

3.2 | Anisotropic density-based clusters

In order to introduce an anisotropic perspective to density-based clustering algorithms such as DBSCAN, we have to

revise the definition of an Eps-neighborhood of a point. First, the original Eps-neighborhood of a point in a dataset D is

defined by DBSCAN, as given in Definition 1.

Definition 1 (Eps-neighborhood of a point): The Eps-neighborhood NEpsðpiÞ of point pi is defined as all

the points within the scan circle centered at pi with a radius Eps, which can be expressed as:

NEpsðpiÞ5fpjðxj; yjÞ 2 Djdistðpi; pjÞ � Epsg (10)

Such a scan circle results in an isotropic perspective on clustering. However, as we discuss above, an anisotropic

assumption will be more appropriate for some geographic phenomena. Intuitively, in order to introduce anisotropicity

into DBSCAN, we can employ a scan ellipse instead of a circle to define the Eps-neighborhood of each point. Before

we give a definition of the Eps-ellipse-neighborhood of a point, it is necessary to define a set of points around a point

(the search-neighborhood of a point), which is used to derive the scan ellipse; see Definition 2.

Definition 2 (Search-neighborhood of a point): A set of points SðpiÞ around point pi is called a search-

neighborhood of point pi and can be defined in two ways:

1. The Eps-neighborhood NEpsðpiÞ of point pi.

2. The kth nearest neighbor KNNðpiÞ of point pi. Here, k5MinPts and KNNðpiÞ does not include pi itself.

After determining the search-neighborhood of a point, it is possible to define the Eps-ellipse-neighborhood region (see

Definition 3) and the Eps-ellipse-neighborhood (see Definition 4) of each point.

Definition 3 (Eps-ellipse-neighborhood region of a point): An ellipse ERi is called an Eps-ellipse-

neighborhood region of a point pi iff:

MAI ET AL. | 5

1. Ellipse ERi is centered at point pi.

2. Ellipse ERi is scaled from the standard deviation ellipse SDEi computed from the search-neighborhood SðpiÞ
of point pi.

3. r0
max

r0
min

5 rmax
rmin

where r0
max; r

0
min and rmax, rmin are the length of the semi-long and semi-short axes of ellipse

ERi and ellipse SDEi.

4. AreaðERiÞ5pab5pEps2:

According to Definition 3, the Eps-ellipse-neighborhood region of a point is computed based on the search-

neighborhood of a point. Since there are two definitions of the search-neighborhood of a point (see Definition 2), each

point should have a unique Eps-ellipse-neighborhood region given Eps (using the first definition in Definition 2) or

MinPts (using the second definition in Definition 2), as long as the search-neighborhood of the current point has at

least two points for the computation of the standard deviation ellipse.

Definition 4 (Eps-ellipse-neighborhood of a point) An Eps-ellipse-neighborhood ENEpsðpiÞ of point pi is
defined as all the points inside the ellipse ERi, which can be expressed as:

ENEpsðpiÞ5 pjðxj; yjÞ 2 D
ððyj2yiÞsin umax1ðxj2xiÞcos umaxÞ2

a2
1
ððyj2yiÞcos umax2ðxj2xiÞsin umaxÞ2

b2
� 1

�����
)(

(11)

There are two kinds of point in a cluster obtained from DBSCAN: core point and border point. Core points have at least

MinPts points in their Eps-neighborhood, while border points have less thanMinPts points in their Eps-neighborhood but are

density reachable from at least one core point. Our anisotropic clustering algorithm has a similar definition of core point and

border point. The notions of directly anisotropic density reachable and core point are illustrated bellow; see Definition 5.

Definition 5 (Directly anisotropic density reachable): A point pj is directly anisotropic density reachable

from point pi with respect to Eps and MinPts iff:

1. pj 2 ENEpsðpiÞ.

2. jENEpsðpiÞj � MinPts (core point condition).

If point p is directly anisotropic reachable from point q, then point q must be a core point which has no less than MinPts

points in its Eps-ellipse-neighborhood. Similar to the notion of density reachable in DBSCAN, the notion of anisotropic

density reachable is given in Definition 6.

Definition 6 (Anisotropic density reachable): A point p is anisotropic density reachable from point q

with respect to Eps and MinPts if there exists a chain of points p1, p2, . . ., pn (p15q, pn5 p) such that

point pi11 is directly anisotropic density reachable from pi.

Although anisotropic density reachability is not a symmetric relation, if such a directly anisotropic density reach-

able chain exits, then except for point pn, the other n21 points are all core points. If point pn is also a core point, then

symmetrically point p1 is also density reachable from point pn. That means that if two points p, q are anisotropic density

reachable from each other, then both of them are core points and belong to the same cluster.

Equipped with the above definitions, we are able to define our anisotropic density-based notion of cluster-

ing. DBSCAN includes both core points and border points in its clusters. In our clustering algorithm, only core

points will be treated as cluster points. Border points will be excluded from clusters and treated as noise points,

because otherwise many noise points will be included in clusters according to the experimental results. In short,

a cluster (see Definition 7) is defined as a subset of points from the whole point dataset in which each two

points are anisotropic density reachable from each other. Noise points (see Definition 8) are defined as the

subset of points from the entire point dataset for which each point has less than MinPts points in its

Eps-ellipse-neighborhood.

6 | MAI ET AL.

Definition 7 (Cluster): Let D be a point dataset. A cluster C is a non-empty subset of D with respect to

Eps andMinPts iff:

1. 8p 2 C; ENEpsðpÞ � MinPts.

2. 8p; q 2 C, p, q are anisotropic density reachable from each other with respect to Eps andMinPts.

A cluster C has two attributes. 8p 2 C and 8q 2 D, if p is anisotropic density reachable from q w.r.t. Eps andMinPts, then

1. q 2 C.

2. There must be a directly anisotropic density reachable points chain C(q, p): p1, p2, . . ., pn (p15q, pn5 p) such

that pi11 is directly anisotropic density reachable from pi. Then 8pi 2 Cðq; pÞ; pi 2 C.

Definition 8 (Noise): Let D be a point dataset. A point p is a noise point with respect to Eps and MinPts

if p 2 D and ENEpsðpÞ<MinPts.

Let C1, C2, . . ., Ck be the clusters of the point dataset D with respect to Eps and MinPts. From Definition 8, if p 2 D

and ENEpsðpÞ<MinPts, then 8Ci 2 fC1;C2; . . . ;Ckg; p =2Ci.

According to Definition 2, and in contrast to a simple scan circle, there are at least two ways to define a

search-neighborhood of the center point pi. Thus, ADCN can be divided into an ADCN-Eps variant that uses the

Eps-neighborhood NEpsðpiÞ as the search-neighborhood and an ADCN-KNN variant that uses kth nearest neighbors

KNNðpiÞ as the search-neighborhood. Figures 2 and 3 illustrate the related definitions for ADCN-Eps and ADCN-

KNN. The red points in both figures represent current center points. The blue points indicate the two different

FIGURE 2 Illustration for ADCN-Eps

MAI ET AL. | 7

search-neighborhoods of the corresponding center points according to Definition 2. Note that for ADCN-Eps, the

center point is also part of its search-neighborhood, which is not true for ADCN-KNN. The green ellipses and green

crosses stand for the standard deviation ellipses constructed from the corresponding search-neighborhood and their

center points. The red ellipses are Eps-ellipse-neighborhood regions, while the dashed-line circles indicate a

DBSCAN-like scan circle. As can be seen, ADCN-KNN will exclude the point to the left of the linear bridge pattern,

while DBSCAN includes it.

3.3 | ADCN algorithms

From the definitions provided above it follows that our anisotropic density-based clustering with noise algorithm takes

the same parameters (MinPts and Eps) as DBSCAN, and that they have to be decided before clustering. This is for good

reasons, as the proper selection of DBSCAN parameters has been well studied and ADCN can easily replace DBSCAN

without any changes to established workflows.

As shown in Algorithm 1, ADCN starts with an arbitrary point pi in a point dataset D and discovers all the core

points which are anisotropic density reachable from point pi. According to Definition 2, there are two ways to get the

search-neighborhood of point pi which will result in different Eps-ellipse-neighborhoods ENEpsðpjÞ based on the derived

FIGURE 3 Illustration for ADCN-KNN

8 | MAI ET AL.

Eps-ellipse-neighborhood region in Algorithm 2. Hence, ADCN can be implemented by two algorithms (ADCN-Eps and

ADCN-KNN). Algorithm 2 needs to take care of situations where all points of the search-neighborhood SðpiÞ of point
pi are strictly on the same line. In this case, the short axis of the Eps-ellipse-neighborhood region ERi becomes zero and

its long axis becomes infinity. This means that ENEpsðpiÞ is reduced to a straight line. The process of constructing the

Eps-ellipse-neighborhood ENEpsðpiÞ of point pi becomes a point-on-line query.

According to Algorithm 3, ADCN-Eps uses the Eps-neighborhood NEpsðpiÞ of point pi as the search-neighborhood,

which will be used later to construct the standard deviation ellipse. In contrast, ADCN-KNN (Algorithm 4) uses a kth

nearest neighborhood of point pi as the search-neighborhood. Here, point pi will not be included in its kth nearest

neighborhood. As can be seen, the runtimes of ADCN-Eps and ADCN-KNN are heavily dominated by the search-

neighborhood query which is executed on each point. Hence, the time complexities of ADCN, DBSCAN, and OPTICS

are O(n2) without a spatial index and O(n log n) otherwise.

Algorithm 1. ADCN(D, MinPts, Eps)

Input: A set of n points D(X, Y); MinPts; Eps

Output: Clusters with different labels Ci½��; a set of noise points Noi½��

1 for each point piðxi; yiÞ in the set of points D(X, Y) do

2 mark pi as visited;

3 //Get Eps-ellipse-neighborhood ENEpsðpiÞ of pi
4 ellipseRegionQuery(pi, D, MinPts, Eps);

5 if jENEpsðpiÞj<MinPts then

6 add pi to the noise set Noi½��;
7 else

8 create a new cluster Ci½��;
9 add pi to Ci½��;
10 for each point pjðxj; yjÞ in ENEpsðpiÞ do
11 if pj is not visited then

12 mark pj as visited;

13 //Get Eps-ellipse-neighborhood ENEpsðpjÞ of point pj
14 ellipseRegionQuery(pj, D, MinPts, Eps);

15 if jENEpsðpjÞj � MinPts then

16 let ENEpsðpiÞ be the merged set of ENEpsðpiÞ and ENEpsðpjÞ;
17 add pj to the current cluster Ci½��;
18 else

19 add pj to the noise set Noi½��;
20 end

21 end

22 end

23 end

24 end

MAI ET AL. | 9

4 | EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we will evaluate the performance of ADCN from two perspectives: clustering quality and

clustering efficiency. In contrast to the scan circle of DBSCAN, there are at least two ways to determine an

anisotropic neighborhood. This leads to two realizations of ADCN, namely ADCN-KNN and ADCN-Eps. We

will evaluate their performance using DBSCAN and OPTICS as baselines. We selected OPTICS as an addi-

tional baseline, as it is commonly used to address some of DBSCAN’s shortcomings with respect to varying

densities.

According to the research contributions outlined in Section 1, we intend to establish: (a) that at least one of the

ADCN variants performs as well as DBSCAN (and OPTICS) for cases that do not explicitly benefit from an anisotropic

perspective; (b) that the aforementioned variant performs better than the baselines for cases that do benefit from an

anisotropic perspective; and finally (c) that the test cases include point patterns typically used to test density-based

clustering algorithms as well as real-world cases that highlight the need for developing ADCN in the first place. In

addition, we will show runtime results for all four algorithms.

Algorithm 2. ellipseRegionQuery(pi, D, MinPts, Eps)

Input: pi, D, MinPts, Eps

Output: Eps-ellipse-neighborhood ENEpsðpiÞ of point pi

1 //Get the search-neighborhood SðpiÞ of point pi. ADCN-Eps and ADCN-KNN use different functions

2 ADCN-Eps: searchNeighborhoodEps(pi, D, Eps); ADCN-KNN: searchNeighborhoodKNN(pi, D, MinPts);

3 compute the standard deviation ellipse SDEi based on the search-neighborhood SðpiÞ of point pi;
4 scale ellipse SDEi to get the Eps-ellipse-neighborhood region ERi of point pi to make sure AreaðERiÞ5p3Eps2;

5 if the length of the short axis of ERi550 then

6 //The Eps-ellipse-neighborhood region ERi of point pi is diminished to a straight line. Get Eps-ellipse-neigh-

borhood ENEpsðpiÞ of point pi by finding all points on this straight line ERi

7 else

8 //The Eps-ellipse-neighborhood region ERi of point pi is an ellipse. Get Eps-ellipse-neighborhood ENEpsðpiÞ of
point pi by finding all the points inside ellipse ERi

9 end

10 return ENEpsðpiÞ;

Algorithm 3. searchNeighborhoodEps(pi, D, Eps)

Input: pi, D, Eps

Output: The search-neighborhood SðpiÞ of point pi

1 //This function is used in ADCN-Eps//Get all the points whose distance from point pi is less than Eps

2 for each point pjðxj; xjÞ in the set of points D(X, Y) do

3 if
ffi
ðxi2xjÞ21ðyi2yjÞ2

q
� Eps then

4 add point pj to SðpiÞ;
5 end

6 return SðpiÞ;

10 | MAI ET AL.

4.1 | Experiment designs

We have designed several spatial point patterns as test cases for our experiments. More specifically, we generated 20 test

cases with three different noise settings for each of them. These consist of 12 synthetic and 8 real-world use cases, result-

ing in a total of 60 case studies. Note that our test cases do not only contain linear features such as road networks, but

also cases that are typically used to evaluate algorithms such as DBSCAN (e.g., clusters of ellipsoid and rectangular shapes).

In order to simulate a “ground truth” for the synthetic cases, we created polygons to indicate different clusters

and randomly generated points within these polygons and outside them. We took a similar approach for the eight real-

world cases. The only difference is that the polygons for real-world cases have been generated from buffer zones with

a 3 m radius of the real-world features (e.g., existing road networks). This allows us to simulate patterns that typically

occur in geotagged social media data.

Although we use this approach to simulate the corresponding spatial point process, the distinction between clus-

tered and noise points in the resulting spatial point patterns may not be so obvious, even from a human’s perspective.

Algorithm 4. searchNeighborhoodKNN(pi, D, MinPts)

Input: pi, D, MinPts

Output: The search-neighborhood SðpiÞ of point pi

1 //This function is used in ADCN-KNN//Get the kth nearest neighbor of point pi, excluding pi itself

2 KNNArray5 new Array(MinPts);

3 distanceArray5new Array(jDj);
4 KNNLabelArray5 new Array(jDj);
5 for each point pjðxj; yjÞ in the set of points D(X, Y) do

6 KNNLabelArray[j]50;

7 distanceArray[j]5
ffi
ðxi2xjÞ21ðyi2yjÞ2

q
;

8 if j55i then

9 KNNLabelArray[j]51;

10 end

11 for each k in 0: ðMinPts21Þ do
12 minDist51;

13 minDistID50;

14 for each j in 0: jDj do
15 if KNNLabelArray[j]!51 then

16 if minDist> distanceArray[j] then

17 minDist5 distanceArray[j];

18 minDistID5 j;

19 end

20 KNNLabelArray[minDistID]51;

21 KNNArray[k]5minDistID;

22 add the point with minDistID as ID to SðpiÞ;
23 end

24 return SðpiÞ;

MAI ET AL. | 11

To avoid cases in which it is unreasonable to expect algorithms and humans to differentiate between noise and pat-

tern, we introduced a clipping buffer of 0, 5, and 10 m. For comparison, the typical position accuracy of GPS sensors

on smartphones and GPS collars for wildlife tracking is about 3–15 m (Wing, Eklund, & Kellogg, 2005) (and can decline

rapidly in urban canyons).

The generated spatial point patterns of 12 synthetic and 8 real-world use cases with 0 m buffer distance are

shown in the first column of Figures 4 and 5. Note that in all test cases, points generated from different polygons are

pre-labeled with different cluster IDs, which are indicated by different colors in the first column of Figures 4 and 5.

Points generated outside polygons are pre-labeled as noise, which are shown in black. These generated spatial point

patterns serve as the ground truth, used in our clustering quality-evaluation experiments.

In order to demonstrate the strength of ADCN, we need to compare the performance of ADCN with that of

DBSCAN and OPTICS from two perspectives: clustering quality and clustering efficiency. The experiment designs are

as follows:

� As for clustering quality evaluation, we use several clustering quality indices to quantify how good the clustering

results are. In this work, we use normalized mutual information (NMI) and the Rand index. We will explain these

two indices in detail in Section 4.3. We stepwise tested every possible parameter combination of Eps, MinPts

computationally on each test case. For each clustering algorithm, we select the parameter combination which

has the highest NMI or Rand index. By comparing the maximum of NMI and Rand index across different clus-

tering algorithms in each test case, we can find the best clustering technique.

� As for clustering efficiency evaluation, we generate spatial point patterns with different numbers of points by

using the polygons of each test case mentioned earlier. For each clustering algorithm and each number of points

setting, we computed the average runtime. By constructing a runtime curve of each clustering algorithm, we

were able to compare their runtime efficiency.

4.2 | Test environment

In order to compare the performance of ADCN with that of DBSCAN and OPTICS, we developed a JavaScript test

environment to generate patterns and compare results. This allows us to generate use cases in a Web browser, such as

FIGURE 4 Ground truth and best clustering result comparison for 12 synthesis cases

12 | MAI ET AL.

Firefox or Chrome, or load them from a GIS, change noise settings, determine DBSCAN’s Eps via a KNN distance plot,

perform different evaluations, compute runtimes, index the data via an R-tree, and save and load the data. Conse-

quently, what matters is the runtime behavior, not the exact performance (for which JavaScript would not be a suitable

FIGURE 5 Ground truth and best clustering result comparison for eight real-world cases

MAI ET AL. | 13

choice). All cases have been performed on a cold setting (i.e., without any caching using an Intel i5–5300U CPU with

8-GB RAM on an Ubuntu 16.04 system). This JavaScript test environment, as well as all the test cases, can be down-

loaded from http://stko.geog.ucsb.edu/adcn/.

Figure 6 shows a snapshot of this test environment. The system has two main panels. The map panel on the left

side is an interactive canvas in which the user can click and create data points. The tool bar on the right side is com-

posed of input boxes, selection boxes, and buttons which are divided into different groups. Each group is used for a

specific purpose, which will be discussed below.

The “File Operation” tool group is used for point dataset manipulation. For simplicity, our environment defines a

simple format for point datasets. Conceptually, a point dataset is a table containing the coordinates of points, their

ground truth memberships, and the memberships produced during the experiments. The ground truth and experimen-

tal memberships are then compared to evaluate the cluster algorithms. The “Open Pts File” box is used for loading

point datasets produced by other GIS. The data points can also be abstract points which represent objects, such as

documents (Fabrikant & Montello, 2008), in a feature space. The prototype takes the coordinates of points and maps

out these points after rescaling their coordinates based on the size of the map panel. During the clustering process, it

uses Euclidean distance as the distance measure.

The “Clustering Operation” tool group is used to operate clustering tasks. The “Eps” and “MinPts” input boxes let

users enter the clustering parameters for all clustering algorithms. The “DBSCAN,” “OPTICS,” “ADCN-Eps,” and

“ADCN-KNN” buttons are for running the algorithms. As for the implementation of DBSCAN and OPTICS, we used a

JavaScript clustering library from GitHub (https://github.com/uhho/density-clustering). This library has basic imple-

mentations of DBSCAN, OPTICS, K-MEANS, and some other clustering algorithms without any spatial indexes. Our

ADCN-KNN and ADCN-Eps algorithms were implemented using the same data structures as used in the library. Such

an implementation ensures that the evaluation result will reflect the differences of the algorithms rather than be

affected by the specific data structures used in the implementations. Finally, we implemented an R-tree spatial index

to accelerate the neighborhood search. We have used the R-tree JavaScript library from GitHub (https://github.com/

imbcmdth/RTree).

The “Clustering Evaluation” tool group is composed of “Quality Evaluation” and “Efficiency Evaluation”

subgroups. As for the clustering quality evaluation, we implemented two metrics—NMI and Rand index—to

quantify the goodness of the clustering results. The first four buttons in this subgroup will run the correspond-

ing clustering algorithm on the current dataset, based on all possible parameter combinations. They will

FIGURE 6 The density-based clustering test environment

14 | MAI ET AL.

http://stko.geog.ucsb.edu/adcn/
https://github.com/uhho/density-clustering
https://github.com/imbcmdth/RTree
https://github.com/imbcmdth/RTree

compute two clustering evaluation indexes for each clustering result. The “SAVE Index As. . .” button will save

these results to a text file.

Efficiency evaluation is another important part for comparing clustering algorithms. The “Efficiency Evaluation”

button will run these four clustering algorithms on datasets with different sizes. The “SAVE Efficiency Test As. . .” but-

ton can be used further to save the result into a text file.

Finally, the “KNN” tool group is used to draw the KNN plot of the current dataset based on the MinPts parameter

specified by the user. For each point, the KNN plot obtains the distance between the current point and its kth nearest

point (here K is MinPts). Then, it ranks the kth nearest distance of each point in ascending order. The KNN plot can be

used to estimate the appropriate Eps for the current point dataset given MinPts. More details on this estimation can be

found in the original DBSCAN paper (Ester et al., 1996).

Note that we provide the test environment to make our results reproducible and to offer a reusable implementa-

tion of ADCN, without implying that JavaScript would be the language of choice for future, large-scale applications of

ADCN.

4.3 | Evaluation of clustering quality

We use two clustering quality indices—NMI and Rand index—to measure the quality of clustering results of all algo-

rithms. NMI originates from information theory and has been revised as an objective function for clustering ensembles

(Strehl & Ghosh, 2002). NMI evaluates the accumulated mutual information shared by the clusters from different clus-

tering algorithms. Let n be the number of points in a point dataset D, with X5ðX1;X2; . . . ;XrÞ and Y5ðY1;Y2; . . . ;YsÞ
two clustering results from the same or different clustering algorithms. Note that noise points will be treated as their

own cluster. Let nðxÞh be the number of points in cluster Xh and nðyÞl be the number of points in cluster Yl. Let n
ðx;yÞ
h;l be

the number of points in the intersect of cluster Xh and cluster Yl. Then the normalized mutual information UðNMIÞðX;YÞ
is defined in Equation 12 as the similarity between two clustering results X and Y:

UðNMIÞðX;YÞ5

Xr
h51

Xs
l51

nðx;yÞh;l log
n � nðx;yÞh;l

nðxÞh � nðyÞlffiXr
h51

nðxÞh log
nðxÞ
h
n

 ! Xs
l51

nðyÞl log
nðyÞ
l
n

 !vuut
(12)

The Rand index (Rand, 1971) is another objective function for clustering ensembles from a different perspective. It

evaluates to what degree two clustering algorithms share the same relationships between points. Let a be the number

of pairs of points in D that are in the same cluster in X and in the same cluster in Y. b is the number of pairs of points

in D that are in different clusters in X and Y. c is the number of pairs of points in D that are in the same cluster in X and

in different clusters in Y. Finally, d is the number of pairs of points in D that are in different clusters in X and in the

same cluster in Y. The Rand index UðRandÞðX;YÞ is then defined as:

UðRandÞðX;YÞ5 a1b
a1b1c1d

(13)

For both NMI and the Rand index, larger values indicate higher similarity between two clustering results. If a

ground truth is available, both NMI and the Rand index can be used to compute the similarity between the results of

an algorithm and the corresponding ground truth. This is called the extrinsic method (Han et al., 2011).

We use the aforementioned 20 test cases to evaluate the clustering quality of DBSCAN, ADCN-Eps, ADCN-

KNN, and OPTICS. All these four algorithms take the same parameters (Eps, MinPts). As there are no established

methods to determine the best overall parameter combination (we use KNN distance plots to estimate Eps) with

respect to NMI and the Rand index, we stepwise tested every possible parameter combination of Eps, MinPts com-

putationally. An interactive 3D visualization of the NMI and the Rand index results with changing Eps and MinPts

for the spiral case with 0 m buffer distance can be accessed online (http://stko.geog.ucsb.edu/adcn/). Table 1 shows

the maximum NMI and the Rand index results for the four algorithms over all test cases. Note that for each case,

MAI ET AL. | 15

http://stko.geog.ucsb.edu/adcn/

TABLE 1 Clustering quality comparisons

NMI Rand index

Case Buffer DBSCAN ADCN-Eps ADCN-KNN OPTICS DBSCAN ADCN-Eps ADCN-KNN OPTICS

bridge 0 m 0.937 0.957 0.957 0.937 0.985 0.991 0.992 0.985

5 m 0.948 0.966 0.967 0.949 0.989 0.993 0.994 0.989
10 m 0.938 0.973 0.968 0.944 0.988 0.995 0.995 0.989

circle 0 m 0.864 0.865 0.912 0.864 0.955 0.964 0.978 0.955

5 m 0.859 0.897 0.916 0.859 0.955 0.974 0.978 0.955
10 m 0.864 0.911 0.923 0.864 0.960 0.979 0.982 0.960

circleNarrow 0 m 0.914 0.951 0.958 0.914 0.974 0.988 0.991 0.974

5 m 0.939 0.946 0.965 0.939 0.983 0.987 0.993 0.983
10 m 0.923 0.962 0.962 0.923 0.976 0.991 0.992 0.976

circleRoad 0 m 0.689 0.704 0.725 0.689 0.934 0.945 0.952 0.934

5 m 0.737 0.758 0.779 0.737 0.950 0.963 0.962 0.951
10 m 0.730 0.778 0.821 0.730 0.946 0.963 0.971 0.946

curve 0 m 0.918 0.946 0.955 0.918 0.978 0.989 0.991 0.978

5 m 0.924 0.947 0.956 0.924 0.980 0.990 0.992 0.980
10 m 0.916 0.943 0.947 0.916 0.978 0.988 0.989 0.978

ellipse 0 m 0.978 0.982 0.976 0.978 0.996 0.997 0.995 0.996

5 m 0.979 0.982 0.980 0.979 0.996 0.997 0.996 0.996
10 m 0.975 0.980 0.978 0.974 0.996 0.997 0.996 0.996

ellipseWidth 0 m 0.917 0.935 0.935 0.917 0.985 0.989 0.988 0.985

5 m 0.919 0.933 0.939 0.919 0.988 0.989 0.989 0.988
10 m 0.931 0.938 0.941 0.931 0.990 0.991 0.991 0.989

multiBridge 0 m 0.935 0.790 0.957 0.938 0.983 0.935 0.992 0.984

5 m 0.958 0.883 0.977 0.958 0.992 0.968 0.996 0.992
10 m 0.964 0.830 0.985 0.964 0.994 0.947 0.998 0.994

rectCurve 0 m 0.886 0.893 0.907 0.886 0.963 0.969 0.973 0.963

5 m 0.909 0.910 0.908 0.915 0.974 0.977 0.974 0.974
10 m 0.921 0.923 0.911 0.922 0.975 0.977 0.977 0.975

spiral 0 m 0.740 0.756 0.774 0.740 0.913 0.930 0.938 0.913

5 m 0.776 0.812 0.809 0.776 0.927 0.946 0.948 0.927
10 m 0.745 0.788 0.795 0.745 0.918 0.950 0.952 0.918

square 0 m 0.745 0.751 0.794 0.745 0.934 0.920 0.944 0.934

5 m 0.751 0.778 0.830 0.752 0.932 0.928 0.959 0.932
10 m 0.744 0.716 0.801 0.743 0.935 0.893 0.944 0.935

star 0 m 0.887 0.901 0.914 0.887 0.968 0.977 0.980 0.968

5 m 0.903 0.899 0.916 0.900 0.974 0.977 0.982 0.974
10 m 0.902 0.778 0.909 0.902 0.974 0.924 0.981 0.974

Brooklyn Bridge 0 m 0.378 0.542 0.490 0.378 0.888 0.930 0.925 0.888

5 m 0.442 0.604 0.579 0.440 0.900 0.943 0.941 0.900
10 m 0.504 0.639 0.581 0.507 0.915 0.950 0.944 0.915

Brooktrail 0 m 0.441 0.431 0.421 0.440 0.742 0.765 0.756 0.742

5 m 0.476 0.512 0.489 0.475 0.750 0.825 0.800 0.750
10 m 0.387 0.555 0.498 0.387 0.712 0.852 0.799 0.711

Eiffel Tower 0 m 0.397 0.481 0.492 0.397 0.851 0.882 0.898 0.851

(Continues)

16 | MAI ET AL.

the best parameter combination with the maximum NMI does not necessarily yield the maximum Rand index. How-

ever, among all these 60 cases, there are 39, 35, 27, and 39 cases for DBSCAN, ADCN-Eps, ADCN-KNN, and

OPTICS, respectively, in which the best parameter combination for the maximum NMI is also the maximum Rand

index. For those cases where parameter combinations of maximum NMI and maximum Rand index do not match,

their parameters tend to be close to each other because NMI and the Rand index values are changing continuously,

while Eps and MinPts increase. This indicates that the NMI and Rand index have a medium to high similarity in

terms of measuring the clustering quality.

As for the 60 test cases, ADCN-KNN has a higher maximum NMI/Rand index than DBSCAN in 55 cases

and a higher maximum NMI/Rand index than OPTICS in 55 cases; see Figures 7 and 8. Furthermore, ADCN-

TABLE 1 (Continued)

NMI Rand index

Case Buffer DBSCAN ADCN-Eps ADCN-KNN OPTICS DBSCAN ADCN-Eps ADCN-KNN OPTICS

5 m 0.459 0.566 0.571 0.459 0.868 0.906 0.921 0.868
10 m 0.411 0.553 0.553 0.411 0.861 0.907 0.923 0.861

LAX 0 m 0.557 0.607 0.593 0.557 0.867 0.898 0.905 0.867

5 m 0.591 0.667 0.584 0.591 0.883 0.921 0.903 0.883
10 m 0.485 0.590 0.637 0.479 0.857 0.903 0.925 0.857

Laicheng 0 m 0.768 0.807 0.804 0.768 0.857 0.874 0.874 0.857

5 m 0.761 0.815 0.808 0.761 0.856 0.878 0.905 0.856
10 m 0.773 0.823 0.809 0.773 0.861 0.880 0.911 0.861

Skylawn 0 m 0.618 0.822 0.733 0.618 0.871 0.956 0.927 0.871

5 m 0.642 0.690 0.807 0.642 0.877 0.899 0.955 0.877
10 m 0.729 0.703 0.822 0.729 0.927 0.905 0.957 0.927

Stelvio Pass 0 m 0.640 0.715 0.717 0.656 0.945 0.962 0.963 0.946

5 m 0.739 0.791 0.768 0.739 0.962 0.974 0.975 0.962
10 m 0.686 0.798 0.766 0.686 0.953 0.975 0.978 0.953

Zhangjiajie 0 m 0.760 0.832 0.799 0.760 0.964 0.978 0.976 0.964

5 m 0.772 0.868 0.839 0.772 0.967 0.987 0.982 0.967
10 m 0.835 0.911 0.873 0.835 0.978 0.991 0.990 0.978

FIGURE 7 Clustering quality comparisons: NMI difference between three clusteringmethods andDBSCAN for each
case. Synthetic cases are on the left, real-world cases on the right

MAI ET AL. | 17

KNN has a higher maximum NMI/Rand index than ADCN-Eps in 31 cases; see Table 2. This indicates that

ADCN-KNN gives the best clustering results among the tested algorithms. Our test cases not only contain lin-

ear features, but also cases that are typically used to evaluate algorithms such as DBSCAN (e.g., clusters of

ellipsoid and rectangular shapes). In fact, these are the only cases where DBSCAN slightly outcompetes ADCN-

KNN (i.e., the maximum NMI/Rand indexes of ADCN-KNN and DBSCAN are comparable). Summing up,

ADCN-KNN performs better than all other algorithms when dealing with anisotropic cases and equally as well

as DBSCAN for isotropic cases. In the following paragraphs, we will use ADCN-KNN and ADCN

interchangeably.

Figures 4 and 5 show the point patterns as well as the best clustering results of all algorithms for the 12 synthesis

cases and 8 real-world cases without buffering (i.e., with the 0 m buffer distance). By comparing the best clustering

results of these four algorithms, we find some interesting patterns: (a) Connecting clusters along local directions, ADCN

has a better ability to detect the local direction of spatial point patterns and connect the clusters along this direction;

and (b) Noise filtering, ADCN does better at filtering out noise points-A good example of connecting clusters along local

directions is the ellipseWidth case in Figure 4. As for the thinnest cluster at the bottom, the other three algorithms

(except ADCN-KNN) extract multiple clusters from these points, while ADCN-KNN is able to “connect” these clusters

to a single one. Many cases show the noise filtering advantage of ADCN. For example, the bridge case, the multiBridge

case in Figure 4, and the Brooklyn Bridge case in Figure 5 reveal that ADCN is better at detecting and filtering out noise

points along bridge-like features.

FIGURE 8 Clustering quality comparisons: Rand index difference between three clusteringmethods andDBSCAN for
each case. Synthetic cases are on the left, real-world cases on the right

TABLE 2 The number of cases with maximum NMI/Rand index for each clustering
algorithm

Cases Max NMI Max Rand index

DBSCAN 1 0

ADCN-Eps 25 19

ADCN-KNN 33 41

OPTICS 1 0

18 | MAI ET AL.

4.4 | Evaluation of clustering efficiency

Finally, this subsection discusses runtime differences of the four tested algorithms. Without a spatial index, the time

complexity of all algorithms is O(n2). Eps-neighborhood queries consume the major part of the runtime of density-

based clustering algorithms (Ankerst et al., 1999) and, therefore, also of ADCN-KNN and ADCN-Eps in terms of

Eps-ellipse-neighborhood queries. Hence, we implemented an R-tree to accelerate the neighborhood queries for all

algorithms. This changes their time complexity to O(n log n).

In order to enable a comprehensible comparison of the runtimes of all algorithms on different sizes of point data-

sets, we performed a batch of performance tests. The polygons from the 20 cases shown above have been used to

generate point datasets of different sizes ranging from 500 to 10,000 in 500-step intervals. The ratio of noise points

to cluster points is set to 0.25. Eps, MinPts are set to 15, 5 for all of these experiments. The average runtimes for the

same size of point datasets is depicted in Figure 9.

Unsurprisingly, the runtime of all algorithms increases as the number of points increases. The runtime of ADCN-

KNN is larger than that of DBSCAN and similar to that of OPTICS. As the size of the point dataset increases, the ratio

of the runtimes of ADCN-KNN to DBSCAN decreases from 2.80 to 1.29. The original OPTICS paper states a 1.6 run-

time factor compared with DBSCAN. The used OPTICS library failed on datasets exceeding 5,500 points. We also fit

the runtime data to the x log(x) function. Figure 9 shows the fitted curves and functions of each clustering algorithm.

We can see that all R2 of these functions are larger than 0.95, which means that the x log(x) function well captures the

trends of the real runtime data of these clustering algorithms. For ADCN, our implementation tests for point-in-circle

for the radius of the major axis before computing point-in-ellipse to significantly reduce the runtime. Further imple-

mentation optimizations are possible, but beyond the scope of this article.

5 | SUMMARY AND OUTLOOK

In this work, we proposed an anisotropic density-based clustering algorithm (ADCN). Both synthetic and real-world

cases have been used to verify the clustering quality and efficiency of our algorithm compared with DBSCAN and

FIGURE 9 Comparison of clustering efficiency with different dataset sizes; runtimes are given inmilliseconds (the used
OPTICS library failed on datasets exceeding 5,500 points)

MAI ET AL. | 19

OPTICS. We demonstrate that ADCN-KNN outperforms DBSCAN and OPTICS for the detection of anisotropic spatial

point patterns and performs equally well in cases that do not explicitly benefit from an anisotropic perspective. ADCN

has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) other-

wise. With respect to the average runtime, the performance of ADCN is comparable to that of OPTICS. Our algorithm

is particularly suited for linear features such as are typically encountered in urban structures. Application areas include

but are not limited to cleaning and clustering geotagged social media data (e.g., from Twitter, Flickr, or Strava), analyz-

ing trajectories collected from car sensors, wildlife tracking, and so forth. Future work will focus on improving the

implementation of ADCN, as well as on studying cognitive aspects of clustering and noise detection of linear features.

ORCID

Gengchen Mai http://orcid.org/0000-0002-7818-7309

Song Gao http://orcid.org/0000-0003-4359-6302

ENDNOTE
1 This article is a substantially extended version of the short paper by Mai, Janowicz, Hu, and Gao (2016). It also adds an open
source implementation of ADCN, a test environment, as well as new evaluation results on a larger sample.

REFERENCES

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering
structure. In Proceedings of ACM SIGMOD Conference (pp. 49–60). Philadelphia, PA: ACM.

Barden, L. (1963). Stresses and displacements in a cross-anisotropic soil. Geotechnique, 13, 198–210.

Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data & Knowledge Engineering,
60(1), 208–221.

Boisvert, J., Manchuk, J., & Deutsch, C. (2009). Kriging in the presence of locally varying anisotropy using non-Euclidean
distances. Mathematical Geosciences, 41, 585–601.

Borah, B., & Bhattacharyya, D. (2004). An improved sampling-based DBSCAN for large spatial databases. In Proceedings of
the First International Conference on Intelligent Sensing and Information (pp. 92–96). Chennai, India: IEEE.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 24(5), 603–619.

Damiani, M. L., Issa, H., Fotino, G., Heurich, M., & Cagnacci, F. (2016). Introducing presence and stationarity index to
study partial migration patterns: An application of a spatio-temporal clustering technique. International Journal of
Geographical Information Science, 30(5), 907–928.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 2, 224–227.

Deng, M., Liu, Q., Cheng, T., & Shi, Y. (2011). An adaptive spatial clustering algorithm based on Delaunay triangulation.
Computers, Environment & Urban Systems, 35, 320–332.

Duckham, M., Kulik, L., Worboys, M., & Galton, A. (2008). Efficient generation of simple polygons for characterizing the
shape of a set of points in the plane. Pattern Recognition, 41, 3224–3236.

D’Ercole, R., & Mateu, J. (2013). On wavelet-based energy densities for spatial point processes. Stochastic Environmental
Research & Risk Assessment, 27, 1507–1523.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of Second International Conference on Knowledge Discovery and Data Mining
(pp. 226–231). Portland, OR: AAAI.

Fabrikant, S. I., & Montello, D. R. (2008). The effect of instructions on distance and similarity judgements in information
spatializations. International Journal of Geographical Information Science, 22, 463–478.

Fortin, M. J., Dale, M. R., & Ver Hoef, J. M. (2016). Spatial analysis in ecology. Retrieved from https://doi.org: 10.1002/
9781118445112.stat07766.pub2

Gao, S., Janowicz, K., Montello, D. R., Hu, Y., Yang, J.-A., McKenzie, G., . . . Yan, B. (2017). A data-synthesis-driven method
for detecting and extracting vague cognitive regions. International Journal of Geographical Information Science, 31,
1245–1271.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques. Oxford, UK: Elsevier.

20 | MAI ET AL.

http://orcid.org/0000-0002-7818-7309
http://orcid.org/0000-0003-4359-6302
https://doi.org: 10.1002/9781118445112.stat07766.pub2
https://doi.org: 10.1002/9781118445112.stat07766.pub2

Hanwell, D., & Mirmehdi, M. (2014). QUAC: Quick unsupervised anisotropic clustering. Pattern Recognition, 47(1),
427–440.

Hoek, E. (1964). Fracture of anisotropic rock. Journal of the South African Institute of Mining & Metallurgy, 64, 501–523.

Hu, Y., Gao, S., Janowicz, K., Yu, B., Li, W., & Prasad, S. (2015). Extracting and understanding urban areas of interest using
geotagged photos. Computers, Environment & Urban Systems, 54, 240–254.

Huang, Q. (2017). Mining online footprints to predict user’s next location. International Journal of Geographical Information
Science, 31, 523–541.

Huang, Q., & Wong, D. W. (2015). Modeling and visualizing regular human mobility patterns with uncertainty: An exam-
ple using Twitter data. Annals of the Association of American Geographers, 105, 1179–1197.

Huang, Q., & Wong, D. W. (2016). Activity patterns, socioeconomic status and urban spatial structure: What can social
media data tell us?. International Journal of Geographical Information Science, 30, 1873–1898.

Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York, NY: Oxford University Press.

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding human mobility from
Twitter. PloS One, 10, e0131469.

Liu, P., Zhou, D., & Wu, N. (2007). VDBSCAN: Varied density based spatial clustering of applications with noise. In Proceedings of
the 2007 International Conference on Service Systems and Service Management (pp. 1–4). Chengdu, China: IEEE.

Machuca-Mory, D. F., & Deutsch, C. V. (2013). Non-stationary geostatistical modeling based on distance weighted statis-
tics and distributions. Mathematical Geosciences, 45(1), 31–48.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. Cam, M. Le, &
J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1,
pp. 281–297). Berkeley, CA: University of California Press.

Mai, G., Janowicz, K., Hu, Y., & Gao, S. (2016). ADCN: An anisotropic density-based clustering algorithm. In Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 58). San Francisco,
CA: ACM.

Møller, J., & Toftaker, H. (2014). Geometric anisotropic spatial point pattern analysis and Cox processes. Scandinavian
Journal of Statistics, 41, 414–435.

Moreira, A., & Santos, M. Y. (2007). Concave hull: A k-nearest neighbours approach for the computation of the region
occupied by a set of points. In Proceedings of the Second International Conference on Computer Graphics Theory and
Applications (pp. 61–68). Barcelona, Spain: GRAPP.

Rajala, T. A., Särkkä, A., Redenbach, C., & Sormani, M. (2016). Estimating geometric anisotropy in spatial point patterns.
Spatial Statistics, 15, 100–114.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
Association, 66, 846–850.

Rocha, J. A. M., Times, V. C., Oliveira, G., Alvares, L. O., & Bogorny, V. (2010). DB-SMoT: A direction-based spatio-tempo-
ral clustering method. In Proceedings of the Fifth IEEE International Conference on Intelligent Systems (pp. 114–119).
London, UK: IEEE.

Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm
GDBSCAN and its applications. Data Mining & Knowledge Discovery, 2, 169–194.

Stefanakis, E. (2007). NET-DBSCAN: Clustering the nodes of a dynamic linear network. International Journal of
Geographical Information Science, 21, 427–442.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles: A knowledge reuse framework for combining multiple partitions. Journal
of Machine Learning Research, 3, 583–617.

Stroet, C. B. T., & Snepvangers, J. J. (2005). Mapping curvilinear structures with local anisotropy kriging. Mathematical
Geology, 37, 635–649.

Tsai, C.-F., & Liu, C.-W. (2006). KIDBSCAN: A new efficient data clustering algorithm. In L. Rutkowski, R. Tadeusiewicz, L.
A. Zadeh, & J. Zurada (Eds.), International Conference on Artificial Intelligence and Soft Computing – ICAISC 2006: Pro-
ceedings of the Eighth International Conference, Zakopane, Poland, June 25–29, 2006 (pp. 702–711). Berlin, Germany:
Springer Lecture Notes in Artificial Intelligence Vol. 4029.

Wang, J., & Wang, X. (2012). A spatial clustering method for points-with-directions. In T. Li, H. S. Nguyen, G. Wang, J.
W. Grzymala-Busse, R. Janicki, A.-E. Hassanien, & H. Yu (Eds.), Rough sets and knowledge technology: Proceedings of
the Seventh International Conference, RSKT 2012, Chengdu, China, August 17–20, 2012 (pp. 194–199). Berlin, Germany:
Springer Lecture Notes in Artificial Intelligence Vol. 7414.

Wing, M. G., Eklund, A., & Kellogg, L. D. (2005). Consumer-grade global positioning system (GPS) accuracy and reliability.
Journal of Forestry, 103, 169–173.

MAI ET AL. | 21

Yuill, R. S. (1971). The standard deviational ellipse: An updated tool for spatial description. Geografiska Annaler: Series B,
Human Geography, 53(1), 28–39.

Zhao, G., Wang, T., & Ye, J. (2015). Anisotropic clustering on surfaces for crack extraction. Machine Vision & Applications,
26, 675–688.

Zhong, X., & Duckham, M. (2016). Characterizing the shapes of noisy, non-uniform, and disconnected point clusters in
the plane. Computers, Environment & Urban Systems, 57, 48–58.

Zhou, W., Xiong, H., Ge, Y., Yu, J., Ozdemir, H. T., & Lee, K. C. (2010). Direction clustering for characterizing movement
patterns. In Proceedings of the 11th IEEE International Conference on Information Reuse and Integration (pp. 165–170).
Las Vegas, NV: IEEE.

How to cite this article: Mai G, Janowicz K, Hu Y, Gao S. ADCN: An anisotropic density-based clustering algo-

rithm for discovering spatial point patterns with noise. Transactions in GIS. 2018;00:1–22. https://doi.org/10.

1111/tgis.12313

22 | MAI ET AL.

https://doi.org/10.1111/tgis.12313
https://doi.org/10.1111/tgis.12313

	l
	l
	l
	l

