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A B S T R A C T   

Fine-grained crowd distribution forecasting benefits smart transportation operations and man-
agement, such as public transport dispatch, traffic demand prediction, and transport emergency 
response. Considering the co-evolutionary patterns of crowd distribution, the interactions among 
places are essential for modelling crowd distribution variations. However, two issues remain. 
First, the lack of sampling design in passive big data acquisition makes the spatial interaction 
characterizations of less crowded places insufficient. Second, the multi-order spatial interactions 
among places can help forecasting crowd distribution but are rarely considered in the existing 
literature. To address these issues, a novel crowd distribution forecasting method with multi- 
order spatial interactions was proposed. In particular, a weighted random walk algorithm was 
applied to generate simulated trajectories for improving the interaction characterizations derived 
from sparse mobile phone data. The multi-order spatial interactions among contextual non- 
adjacent places were modelled with an embedding learning technique. The future crowd distri-
bution was forecasted via a graph-based deep neural network. The proposed method was verified 
using a real-world mobile phone dataset, and the results showed that both the multi-order spatial 
interactions and the trajectory data enhancement algorithm helped improve the crowd distri-
bution forecasting performance. The proposed method can be utilized for capturing fine-grained 
crowd distribution, which supports various applications such as intelligent transportation man-
agement and public health decision making.   
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1. Introduction 

Fine-grained spatiotemporal crowd distribution forecasting is essential for traffic governance, urban management, and public 
health (Huang et al., 2021; Li et al., 2019a–c; Xu et al., 2018; Yao et al., 2020). For example, the department of traffic management can 
reschedule public transportation based on dynamic population distribution forecasting results to improve public travel efficiency; 
emergency management departments can forecast the crowd gathering processes of urban mass events, thereby improving the sci-
entific nature and timeliness of control measures to reduce the risk of trampling (Chen et al., 2020; Iacobucci et al., 2019; Wang et al., 
2019; Yuan & Raubal, 2016). Accurate crowd distribution forecasting can provide technical support and a decision-making basis for 
solving transportation problems and facilitating fine-grained traffic management, which is of great significance to the development of 
smart transportation. 

Due to the lack of effective observation techniques, traditional urban mobility studies are mainly based on survey data, which limits 
the representativeness and spatiotemporal coverage of these studies (Zhang & Zhu, 2018; Chen et al., 2016). With the development of 
mobile positioning technology and the ubiquity of smart devices, long-time large-volume individual tracking data provide alternative 
opportunities for capturing the variation in human activities (Li et al., 2020; Yang et al., 2019; Gao et al., 2015; Gonzalez et al., 2008). 
In addition, breakthroughs in trajectory data mining and machine learning provide methodological support for urban mobility studies 
and applications (Ke et al., 2021; Liu et al., 2019; Park et al., 2019). They highlight the necessity of crowd distribution inference and 
forecasting (Li et al., 2021; Mimura et al., 2019; Chen et al., 2018). 

With reference to the existing research on crowd distribution forecasting, two issues remain. First, the lack of sampling design in 
passive big data acquisition limits the accuracy and the stability of spatial interaction modelling. That is, the extracted spatial 
interaction pattern may significantly vary due to different sampling strategies and spatial heterogeneity in data distribution. This 
phenomenon is particularly evident in the less crowded places, which lead to the data hungry problem (Li et al., 2019; Yang et al., 
2019). An example is shown in Fig. 1. Assuming that Pd is a place having 200 individuals at present, of which 130 individuals also stay 
in Pd at the previous time period moment and other 15, 50, and 5 individuals come from Pa, Pb, Pc, respectively. When the data were 
randomly sampled at 10 % of the population in each place, it may have resulted in oversampling of the individuals staying at Pd, while 
Pa and Pc, which originally had interactions with Pd, showed no interaction. This makes the spatial interaction characterizations of less 
crowded places insufficient, thereby reducing the accuracy of crowd distribution forecasting. 

Second, the interactions among places cause crowd distribution variations, and these interactions can be reflected in individual 
movement trajectories (Peng et al., 2019; Zhu et al., 2018; Liu et al., 2017). The individual movement trajectories among multiple 
places portray the processes of crowd gathering and dispersing. These processes can be regarded as the multi-order spatial interactions 
among different places at the aggregation level. As far as we know, existing crowd forecasting studies often generalize trajectories as 
series of first-order interactions between two anchor places (origin–destination (OD) flows), thus ignoring the multi-order spatial 
interaction processes among the places (Li et al., 2021; Zhu et al. 2020). However, crowd distribution variation is influenced not only 
by contextual adjacent places (first-order interaction) but also by contextual non-adjacent places (multi-order interactions). For 
example, when one travels from home to work via a bus stop, if the entire movement trajectory is generalized and divided into the 
interaction between home and bus stop and the interaction between bus stop and work, the important multi-order/multi-context 
interactions between home and work will be ignored (Crivellari & Beinat 2019). Researches on multi-order spatial interaction 
learning can help model spatial correlations more comprehensively, thus improving the accuracy and interpretability of crowd dis-
tribution forecasting. 

To address these issues, we proposed a novel Crowd Distribution Forecasting method with Multi-order Spatial Interaction, called 
CDF-MSI, to forecast future crowd spatiotemporal distribution. The main contributions of this study are summarized as follows:  

(1) A trajectory enhancement algorithm was applied to mitigate the problem of inaccurate interaction modelling in less crowded 
places caused by the lack of sampling design. 

(2) The multi-order spatial interactions among contextual non-adjacent places were considered in the crowd distribution fore-
casting modelling to improve the forecasting accuracy and stability.  

(3) A crowd distribution forecasting model was constructed using a hybrid graph-based deep neural network for modelling the 
spatiotemporal patterns of crowd distribution with multi-order spatial interactions. 

(a) (b)

Pd

Pb

Pc

Pa

5015

5
130 Pd

Pb

Pc

Pa

50

0
15

10% 
sampling

Fig. 1. An illustration of the spatial interaction pattern variation caused by data sampling.  
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(4) The performance of the proposed CDF-MSI method was evaluated with a real-world mobile phone dataset in Senegal. The 
results demonstrated the superiority of our proposed method over other baseline approaches. 

The remaining parts of this paper are organized as follows. Section 2 presents a literature review on crowd distribution forecasting 
and its related studies. Section 3 presents the details of our proposed CDF-MSI method. Section 4 presents the experimental results and 
the performance analysis of the case study. Section 5 discusses the broad implications of this work and our vision for future work. 
Finally, Section 6 presents the conclusion of this study. 

2. Literature review 

2.1. Future crowd distribution forecasting 

The urgent demand for forecasting future crowd distribution in applications such as public transport scheduling, emergency 
dispatch, mobile communication, and base station operations has promoted the development of crowd distribution forecasting 
research. According to the different aspects of attention, the existing methods can be divided into two categories: temporal variation 
pattern-based forecasting methods and spatial interaction pattern-based forecasting methods (Panczak et al., 2020). 

Temporal variation pattern-based methods forecast future crowd distribution by modelling the temporal tendency and periodicity 
of the given crowd distribution variation sequence (Cecaj et al., 2020; Cheng et al., 2020; Mimura et al., 2019; Li et al., 2012). For 
example, Xue et al. (2020) proposed an expression method to reasonably divide a region and time period to determine the crowd 
distribution statistics and then designed an improved long short-term memory (LSTM) network to forecast future crowd distribution 
based on the temporal proximity, periodicity and trend characteristics. Mimura et al. (2019) designed a time series generation model 
based on conditional variational autoencoders and an LSTM network. It forecasts future crowd distribution by analysing the temporal 
variations in crowd distribution series and the influence of weather factors. Liang et al. (2016) designed a computational forecasting 
framework with parallel flow based on RNNs, which can effectively forecast near real-time crowd distribution by analysing the 
sequence characteristics of crowd size variations in a specific region. However, these methods only mine patterns from the historical 
time series of crowd distribution and ignore the effects of spatial interactions and spatial correlations, thus limiting their forecasting 
performance across space (Zhen et al., 2019; Shaw and Yu, 2009). 

To address previous issues, researchers have started to forecast future crowd distribution by modelling the spatial interaction 
characteristics among places (Li et al., 2021; Crivellari & Beinat, 2019; Crols & Malleson, 2019; Chen et al., 2018). For example, Crols 
& Malleson (2019) applied a multi-agent model to characterize the commuting behaviours contained in travel survey data, thereby 
forecasting the crowd distribution by calibrating the difference between the distributions of commuters and urban populations based 
on Wi-Fi data. Chen et al. (2018) designed an artificial neural network to express the relationships between a historical crowd dis-
tribution and the inflow and outflow of people in each neighbourhood and forecasted the future crowd distribution in a large 
metropolitan area. On the basis of crowd movement behaviours in physical space, Li et al. (2021) integrated the interactions in 
physical spaces and social spaces with a graph fusion technique and forecasted the future crowd distribution by combining a GCN and a 
LSTM. However, most of the existing studies only consider first-order interaction characteristics (e.g., physical distances and OD flows) 
as the impact factors of crowd distribution forecasting. This makes the developed models fail to measure the influence of multi-order 
spatial interactions among contextual non-adjacent places on crowd distribution, resulting in insufficient forecasting accuracy and 
interpretability. 

It is worth noting that the superiority of deep learning methods in capturing complex non-linear relationships has made it widely 
used in the field of traffic forecasting, such as traffic demand forecasting (Ke et al., 2021; Jin et al., 2020; Xu et al., 2017), traffic flow 
forecasting (Xu et al., 2022; Zhu et al., 2020; Zhang et al., 2020; Qiu et al., 2020), and traffic condition forecasting (Medrano & 
Aznarte, 2021; Zheng et al., 2020; Cui et al., 2019). For example, Ke et al. (2021) proposed a multi-task & graph learning approach to 
enable the knowledge of multiple kinds of service modes sharing across networks and designed various multi-graph convolutional 
networks for forecasting ride demands for different service modes. Zhang et al. (2020) regraded a road network as graphs for 
considering the topological structure of the underlying network and applied a GCN to forecast short-term traffic conditions. Geng et al. 
(2019) proposed a spatiotemporal multi-graph convolution network to capture the complicated spatiotemporal dependencies among 
different places and forecasted ride-hailing demand using a multi-graph integrated convolution technique. Li et al. (2017) designed a 
diffusion convolutional recurrent network for traffic flow forecasting by capturing the spatiotemporal dependency of traffic flows 
using bi-directional graph random walk and recurrent neural network with scheduled sampling. Solutions to these similar spatio-
temporal forecasting problems provide reference and methodological foundation for crowd distribution forecasting. How to integrate 
deep learning methods and domain knowledge to improve the performance of crowd distribution forecasting is still a challenging 
problem worth exploring. 

2.2. Historical crowd distribution mapping 

The mapping of historical crowd distribution is the basis of crowd forecasting studies. Depending on the data sources used, the 
existing crowd distribution mapping methods can be divided into natural and socioeconomic data-based mapping methods, remote 
sensing image-based mapping methods, and geotagged data-based mapping methods. 

The main idea of natural and socioeconomic data-based mapping methods is to quantitatively analyse the relationships between 
relevant factors and crowd distribution variations, thus assigning coarse-grained census data to fine-grained space (Leasure et al., 
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2020; Aryal, 2020; Krunić et al., 2015). Although this type of method has good spatial coverage and can improve the spatial granularity 
of crowd distribution mapping to a certain extent, it suffers from the problems of lagging data and a long update period. In addition, 
when combining natural and socioeconomic data with census data, problems such as temporal mismatches and inconsistencies across 
multiple statistical metrics affect the accuracy of crowd distribution mapping results. 

Remote sensing image-based mapping methods mainly extract the features of relevant elements affecting crowd distribution 
through remote sensing images to establish relationships between the corresponding elements and crowd distribution variations. 
Common elements include the night-time lighting index, built-up area, etc. (You et al., 2020; Georganos et al., 2019). For example, 
Xing et al. (2020) proposed a deep learning architecture for learning the physical characteristics of remote sensing images and in-
tegrated neighbour effects to improve the crowd distribution mapping performance. Stathakis et al. (2018) assumed that the variations 
in observed night lights were a valid proxy for crowd distribution, thus estimating season-specific ambient crowd counts in Greece. 
This type of method significantly improves the spatial granularity and timeliness of prediction, but the acquisition of remote sensing 
data is limited by the given satellite transit time and weather conditions. This makes the mapping results of these methods unable to 
capture the dynamic processes of fine-grained population distributions (e.g., hourly) and suffers from missing data problems. 

With the decreasing data collection cost, the geotagged data-based mapping method has become mainstream in historical crowd 
distribution mapping. Emerging methods focus on taxi trajectories, social media data or smart card data (Hara et al., 2020; Hipp et al., 
2018; Wang et al., 2018). However, the sample biases in these data make the mapping results suffer from representativeness problems 
(Mellon & Prosser, 2017). Since mobile phone data cover almost all classes of the population and have fine spatiotemporal granularity, 
they have become one of the main data sources for historical crowd distribution mapping (Salat et al., 2020; Li et al., 2020; Liu et al., 
2018; Deville et al, 2014). Kang et al. (2012) quantitatively analysed the correlations among the number of calls, the number of active 
mobile phone users, and the size of the associated crowd, thus demonstrating the linear relationships between crowd distribution and 
mobile phone indicators. Cheng et al. (2020) mapped monthly crowd distribution across China using mobile phone data and envi-
ronmental ancillary data through a hybrid method containing a random forest model and area-to-point interpolation. The importance 
measures of the explanatory variables in this method demonstrated the ascendancy of mobile phone data in crowd distribution 
mapping. However, since most mobile phone data only record the corresponding location when communication or transition 
behaviour occurs, mobile phone data suffer from the data sparsity problem (Li et al., 2019; Chen et al., 2019). In addition, the lack of 
corresponding attribute values (e.g., age, gender, etc.) in mobile phone data limits the application of crowd distribution mapping 
results to a certain extent. 

2.3. Spatial interaction pattern analysis 

Spatial interaction refers to the phenomenon of the movement or exchange of people, objects or information that occurs among 
places (Tobler, 1976). It reveals the connections among places, which provides great support for research on crowd distribution 
variation (Ullman, 1953; Park et al., 2018). 

Limited by data availability, traditional spatial interaction intensity estimation methods mostly regard places as nodes and 
construct mechanistic models to estimate spatial interaction intensity. The most common models include the gravity model, inter-
vening opportunities model, and random walk model. For example, the gravity model draws on the idea of the law of gravity, which 
suggests that the intensity of spatial interaction is proportional to regional attributes (population, gross domestic product, etc.) and 
decays with increasing inter-regional distance (Zipf, 1946). The gravity model is widely used in many fields, such as population 
migration and international trade; however, it has certain shortcomings in practical applications due to its reliance on historical data 
calibration for parameter setting and the need for a priori knowledge to perform distance function selection (Gupta et al., 2019; Park 
et al., 2018). The intervening opportunities model introduced the principle of maximum entropy instead of spatial distance to explain 
spatial interaction intensity, which reflects the decision processes of human travel behaviours in the original hypothesis (Stouffer, 
1940). However, this model has problems such as an overcomplicated solution process and the underestimation of long-distance travel 
proportions. Simini et al. (2012) regarded a spatial interaction as a random process determined by a joint probability, which was 
determined by the crowd distribution of the origin, destination and calculation radius. This model makes it possible to estimate spatial 
interaction intensities by only inputting the crowd distribution, thereby solving the cold start problem of spatial interaction intensity 
estimation models. 

Different from the above mechanistic model, the quick accumulation of geotagged data enables us to estimate and forecast the 
intensities of the spatial interactions among places from a data-driven perspective (Ouyang et al., 2020; Wu et al., 2018). For example, 
Zhang et al. (2017) designed a deep spatio-temporal residual network (ST-ResNet) to forecast spatial interaction intensities by 
modelling the spatial dependence and the proximity, periodicity, and trend characteristics of the input spatial interaction intensity 
sequences. Wu et al. (2018) introduced an attention mechanism based on convolutional and RNN models by automatically learning the 
historical importance of spatial interaction intensities to further improve the accuracy of spatial forecasting. It is worth noting that the 
generation of spatial interactions is related to the selection of human movement behaviours, and this selection process is directly 
reflected in human movement trajectories (Zhang et al., 2021; Liu et al., 2020). The learning of interaction patterns among multiple 
places based on trajectory data will help us understand the mechanisms of human movement behaviours, measure the spatial cor-
relations among places more comprehensively, and then improve the accuracy and interpretability of crowd distribution forecasting. 

3. Methodology 

The details of our proposed crowd distribution forecasting method are presented in this section. It contains three parts. First, the 
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weighted random walk algorithm used in this study for trajectory data enhancement is introduced to improve the interaction char-
acterization performance in less crowded places. Then, an embedding learning technique is introduced for learning the multi-order 
interactions among different places. Finally, the architecture of the proposed crowd distribution forecasting model is presented. 
The overall framework is shown in Fig. 2. 

3.1. Trajectory data enhancement 

Due to the lack of sampling design in passive trajectory data acquisition, the extracted spatial interaction pattern may significantly 
vary. This makes the spatial interaction characterizations of less crowded places especially insufficient, thereby reducing the accuracy 
of crowd distribution forecasting. To mitigate this issue, a weighted random walk algorithm was used to generate simulated trajec-
tories which started at less crowded places for trajectory data enhancement. 

To minimize the difference between the simulated trajectories and real trajectories, we represent the interaction patterns reflected 
in the input historical trajectories as a directed and weighted graph for trajectory simulation. In this graph, the places were represented 
as nodes, and the number of interaction records between two places was taken as the edge weight. An illustration of the interaction 
graph is shown in Fig. 3, where wi,j represents the number of interaction records from a place Si to another Sj, and an interaction was 
detected when the two adjacent trajectory records of one individual were linked to different places. 

Combined with the generated interaction graph, trajectory simulation can be regarded as a weighted random walk process. In this 
study, a second-order random walk algorithm was introduced for trajectory data enhancement (Grover & Leskovec, 2016). Different 
from the simple weighted random walk algorithm that simulates the next visit place based on the current place St and the edge weight 
wt,j, our second-order algorithm also considered the effects of the previously visited place St− 1 to further minimize the difference 
between the simulated trajectories and real trajectories. The simulation process can be briefly explained as follows. Given the current 
place Sm and the previously visited place Sl that an agent has visited, the probability of visiting the next place Sn can be defined as 

Fig. 2. The overall framework of the CDF-MSI method.  
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follows: 

P(St+1 = Sn|St = Sm) = α(l,n)*wm,n/Z (1)  

α(l,n) =

⎧
⎨

⎩

1/p, if dl,n = 0
1, if dl,n = 1

1/q, if dl,n = 2
(2) 

where P indicates the visit probability, wm,n indicates the corresponding edge weight in the interaction graph, Z indicates the 
standardized coefficients, and dl,n indicates the minimum number of edges between places Sl and Sn. Parameter p controls the like-
lihood of revisiting nodes in the walk, and a high value of this parameter ensures a lower probability of visiting a visited place; 
parameter q controls the search to move in the “inward” or “outward” direction, and a high value of this parameter ensures a lower 
probability of visiting places close to Sl. The parameters p and q can be calibrated based on the movement pattern of the real tra-
jectories which were tuned as 0.25 and 2 in this case study. Based on the proposed weighted random walk algorithm, the less crowded 
places were chosen as start nodes, and simulated trajectories were generated for trajectory data enhancement. The generated simu-
lation trajectories and the real trajectories will be used as inputs for subsequent multi-order spatial interaction learning together to 
enhance the effectiveness of spatial interaction characterization. It is worth noting that the generated simulation trajectories in less 
crowded places were only used for learning the spatial interaction pattern among places (i.e., the underlying connectivity and spatial 
structure of places) and were not used in the crowd distribution estimation. The crowd distribution was only obtained from the real 
trajectories. 

3.2. Multi-order spatial interaction learning 

The movements of individuals among different locations/places can cause crowd distribution variations. As a microscopic part of 
an urban system, the individual movement behaviours recorded in the trajectory data provide a feasible idea for measuring the multi- 
order spatial interaction characteristics of places. Inspired by the achievements in computational linguistics, we regarded the tra-
jectories as text sequences, thereby introducing an embedding learning technique to characterize the multi-order interactions among 
places (Zhang et al., 2021). 

As the word2vec model can effectively extract the co-occurrence relationships and common context relationships among words in 
text, it has become a popular embedding learning technique. The core idea of this model is to express words as N-dimensional vectors 
and make a vector of words with more co-occurrences and common context relationships that are more similar. Therefore, the se-
mantic relevance among words can be measured through vector similarity. Considering the data structure similarity between tra-
jectory and text sequences, we used this model to characterize the multi-order interactions among places. An illustration of the places 

Fig. 3. An illustration of interaction graph generation.  
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Fig. 4. An illustration of places that (a) share a common context or (b) frequently co-occur. The places labelled in blue have high spatial corre-
lations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with common context and co-occurrence relationships is shown in Fig. 4. As shown in Fig. 4(a), the places S2, S3, and S4 have common 
upstream and downstream neighbours S1 and S5, indicating that these places have common context relationships. Correspondingly, 
the places S3 and S4 in Fig. 4(b) appear in two trajectory segments <S1, S3, S4> and <S2, S3, S4>, indicating that these places have co- 
occurrence relationships. The places with either common context or co-occurrence relationships have high spatial correlations, thus 
justifying the usage of the word2vec model for multi-order spatial interaction learning. 

The training process can be briefly summarized as follows. Given an enhanced trajectory Trajk = S1,S2,⋯,SH, the core idea is to 
maximize the average log probability: 

1
H
∑H

h=1

∑K

k=− K
logP(St+k |St) (3) 

where K indicates the number of spatial interaction orders considered in the model. P(St+k|St) indicates the probability of correctly 
forecasting visit place St+k given current place St, and this probability is defined as follows: 

P(St+k |St) =
exp(u′

St+k

TuSt )
∑V

v=1exp(u′

Sv
TuSt )

(4) 

where V indicates the number of places and u′

Sv 
and uSv indicate the initial one-hot vector and the trained N-dimensional vector of 

the place, respectively. The training process typically uses the back-propagation rule (Rumelhart et al., 1986). More technical details 
can be found in the paper (Mikolov et al., 2013). It is worth noting that only trajectories from the training data were used to learn the 
multi-order spatial interaction to avoid overfitting phenomena. 

With the trained model, each place can be expressed as an N-dimensional vector. Therefore, the multi-order spatial interaction 
graph can be calculated by the similarity between each pair of trained vectors as follows: 

MSI(i,j) =
uSi • uSj

‖uSi‖*‖uSj‖
(5) 

where MSI(i,j) indicates the multi-order spatial interaction strength between places Si and Sj, and ‖uSi‖ and ‖uSj‖ represent the norms 
of trained vectors uSi and uSj , respectively. A higher MSI(i,j) value indicates that the two places more frequently co-occur or share 
common contexts in the trajectories, that is, a higher multi-order interaction strength between the two places. 

3.3. Forecasting model with a graph-based deep neural network 

Based on the multi-order spatial interaction graph, a graph-based deep neural network model was designed for crowd distribution 
forecasting. The architecture of this model can be summarized in two parts: the characterization of the multi-order spatial interaction 
pattern of the crowd distribution with a GCN module and the characterization of the temporal variation pattern of the crowd dis-
tribution with an RNN module. An illustration of the CDF-MSI model is shown in Fig. 4. 

As shown in Fig. 5, the current crowd distribution Cdt and the multi-order spatial interaction matrix MSI were first organized into 
graph form as the model input. Specifically, the places were abstracted as nodes, the crowd distribution Cdt was abstracted as node 
weights, and MSI was abstracted as edge weights. It is worth noting that the MSI matrix should be transformed into a Laplacian matrix 

Fig. 5. The architecture of the CDF-MSI model.  

M. Li et al.                                                                                                                                                                                                              



Transportation Research Part C 144 (2022) 103908

8

for fitting the input of the GCN (Kipf & Welling, 2016). Based on the transformed MSI matrix, a GCN module was applied for modelling 
the spatial variation pattern of the crowd distribution, which can be calculated as follows: 

Cdr+1
t = ∊(MSI

′*Cdrt*W
r
t ) (6) 

where Cdr
t represents the feature matrix (which equals Cdt when the number of convolutions r equals one), ∊ represents the 

activation function, MSI
′

represents the multi-order spatial interaction matrix MSI changed by the Laplace transform, and Wr
t repre-

sents the weight matrix for model training. 
On the basis of the GCN module, an RNN module was then used as the encoding–decoding framework for modelling the temporal 

variation pattern of the crowd distribution. During this process, a time step T was first determined with the temporal autocorrelation 
function (Cheng et al., 2020). According to the determined time step, the feature matrices Cdr+1

t , Cdr+1
t+1 , …, Cdr+1

t+T− 1 were organized into 
time series and inputted into the RNN module. An LSTM architecture was used in our method and the corresponding formulas are 
shown as follows: 

zgt = σ(Wg*
[
Cdr+1

t , ht− 1]+ bg) (7)  

C̃t = tanh(Wc*[Cdr+1
t , ht− 1] + bc) (8)  

Ct = zft *Ct− 1 + zit*C̃t (9)  

ht = zot *tanh(Ct) (10) 

where Cdr+1
t represents the trained result of GCN module, zg

t represents the gate state at time t, g ∈ [f , i, o] indicate the forget gate, 
input gate, and output gate, respectively. Ct and ht represent the cell state and the current output at time t, C̃t represents the candidate 
values that could be added to cell state. Wg and Wc represent the corresponding weight matrix, and bg and bc represent the corre-
sponding bias. The minimum root mean square error (RMSE) of the forecasted crowd distribution was used as the optimization cri-
terion for model training. With this architecture, the CDF-MSI model was trained to forecast future crowd distribution. When 
performing forecasting, the new crowd distribution matrix sequence and the multi-order spatial interaction strength matrix were 
passed into the trained model, and then the forecasting results of the crowd distribution were obtained. 

4. Case study 

4.1. Data and experiment setup 

The data used in this study were obtained from an anonymized mobile phone dataset provided by a major telecom operator in 
Senegal. It contains over 300,000 of individuals for one year in 2013. The dataset was accessed through the “Data for Development” 
challenge (De Montjoye et al. 2014). The data we used were the individual trajectories extracted from the call detail records of 10 % of 
the sampled users. An example from this dataset is shown in Table 1. It is worth noting that all personal information was deleted before 
the data were provided due to personal privacy concerns. The data whose numbers of active days were<25 % of the total days or whose 
numbers of records were larger than 1000 were deleted in the data pre-processing. Accordingly, as the number of users was generally 
linearly proportional to the size of the crowd (Kang et al., 2012), the catchment area of the cell phone tower was regarded as the place 
(the study unit) and the number of records of each tower was aggregated in hourly intervals to represent the crowd distribution for 
model evaluation (the detailed calculation process referred to the papers (Wang et al., 2018; Niu et al., 2015)). For performance 
evaluation, the last 10 % day’s data were used as test data, the last 10 % of the remaining data was used as validation data, and the 
others were used as training data. A map of the crowd distribution in Senegal was shown in Fig. 6. 

The parameters used in this case study are shown in Table 2. The parameters were mainly tuned according to the grid search 
strategy based on the lowest obtained RMSE value on the validation dataset (Chai et al., 2018). The simulated trajectory length was 
tuned to 22, which corresponded to the weekly average length of the real individual trajectories. The less crowded places in this paper 
were defined as the places with the total crowd count in the bottom 20 % of all places. It was inspired by the Pareto principle (Sanders, 
1987), and the specific value was 48 in this study. The less crowded places were chosen as start nodes for trajectory data enhancement 
until the average count of individuals in this place reached the less crowded threshold. The spaces of parameters can be calibrated 
based on the individual movement pattern and the crowd distribution pattern (Li et al., 2020). 

Table 1 
Examples of individual trajectory data extracted from call detail records.  

Individual ID Date Time Tower ID Longitude Latitude 

4607**** 01–07 0:20 164 − 17.45** 14.74** 
4607**** 01–07 10:10 88 − 17.46** 14.74** 
4607**** 01–07 10:50 134 − 17.46** 14.75** 
4607**** … …  … … 
4607**** 01–20 21:10 143 − 17.45** 14.74**  
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4.2. Evaluation metrics 

The RMSE, MAE and StDev metrics were used to evaluate the forecasting errors and the stability of the forecasting methods. Given 
the crowd distribution of all cell phone towers at time t Ct = c1,t , c2,t ,⋯, cV,t and the forecasted crowd distribution C′

t = c′

1,t ,c
′

2,t ,⋯,c′

V,t , 
the evaluation metrics can be defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1

∑V
v=1(cv,t − c′

v,t)
2

V*T

√
√
√
√
√

(11)  

MAE =

∑T
t=1

∑V
v=1

⃒
⃒
⃒cv,t − c′

v,t

⃒
⃒
⃒

V*T
(12)  

StDev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1
∑V

v=1(
(
cv,t − c′

v,t

)
− Error)

2

V*T − 1

√
√
√
√

(13) 

Fig. 6. The maps of (a) the case study area, and (b) the crowd distribution based on mobile phone data.  

Table 2 
Parameters used in this study.  

Parameter Value Parameter Value 

Multi-order size 9 GCN layers 1 
Simulated trajectory length 22 Convolution kernel size 1 
Less crowded threshold 48 LSTM layers 1 
Number of hidden units 64 Time step 6  

Fig. 7. The forecasting performance of the CDF-MSI method in terms of the (a) RMSE, (b) MAE, and (c) StDev.  
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where V represents the number of cell phone towers, T represents the number of time slots needed to be forecasted, and Error 
represents the average of all forecasting errors. The maps of the average forecasting performance (RMSE and MAE) and forecasting 
error deviation (StDev) with respect to each place are shown in Fig. 7. 

4.3. Comparison of the CDF-MSI method with baselines 

To evaluate the performance of our proposed CDF-MSI method relative to that existing crowd distribution forecasting methods 
using machine learning, the following five methods were selected as baselines. For all methods, the parameters were tuned with a grid 
search algorithm based on the performance on the validation dataset. The detailed parameters of baselines were attached in Table S1 in 
the supplement file. To test the stability of the forecasting performance, each method was run ten times repeatedly. The average of ten 
results was used to indicate the average predictive performance of each model, and the best result of each method was used for 
subsequent analysis.  

• Spatio-Temporal meta-Model (STMeta): This model integrated generalizable spatiotemporal knowledge with multi-view 
learning and predicted the crowd flows by combining graph convolution LSTM and attention mechanism (Wang et al., 2020).  

• Diffusion Convolutional Recurrent Neural Network (DCRNN): This model captured the spatiotemporal dependency of traffic 
flows by using bi-directional graph random walk and recurrent neural network with scheduled sampling (Li et al, 2017).  

• Attention based Spatial-Temporal GCN (ASTGCN): This model applied a spatiotemporal attention mechanism to model the 
autocorrelations within the crowd distribution and capture the spatiotemporal variation patterns by combining a GCN and a 
standard convolutional network (Guo et al., 2019).  

• LSTM: This model is one of the most advanced recurrent deep learning techniques used in time series data modelling. It has been 
widely used in similar forecasting tasks such as traffic flow forecasting and next location forecasting. (Ren et al., 2020; Li et al., 
2020).  

• K-Nearest Neighbours (KNN): This model splits the crowd distribution sequences into fixed-length sub-sequences and finds the k 
samples that are most similar to the forecasted sequence. The average value or weighted average value of the k samples was 
outputted as the forecasting result (Smith et al., 2002).  

• Gradient-Boosting Decision Tree (GBDT): The GBDT model regards fixed-length crowd distribution sub-sequences as features 
and trains a model with an iterative decision tree generation algorithm. The results of all trained decision trees are added as the 
forecasting result (Friedman, 2001). 

The comparison results are shown in Table 3. The best RMSE and MAE of our proposed CDF-MSI method were 8.885 and 4.633, 
respectively, thus outperforming all other baseline methods. The StDev of the CDF-MSI method was also the lowest, indicating that our 
proposed method showed an advantage regarding the stability of the forecasting error. Considering the sensitivity of the RMSE to 
outliers, the RMSE was used as the major evaluation metric in subsequent analysis (Chai & Draxler, 2014). We observed that the deep 
learning-based methods, including CDF-MSI, STMeta, DCRNN, ASTGCN, and LSTM, outperformed the classical machine learning- 
based methods. This phenomenon can be explained by the fact that deep learning-based methods better capture non-linear and 
complex spatiotemporal variation patterns. The spatiotemporal methods (CDF-MSI, STMeta, DCRNN, and the ASTGCN) showed better 
forecasting performance than the temporal methods (LSTM, KNN, and the GBDT), which may demonstrate the necessity of considering 
spatial patterns in the crowd distribution forecasting problem. It is worth noting that the RMSE and StDev values were not significantly 
different. This is mainly because some of the forecasting errors were positive and some were negative, making the average forecasting 
error Error (as shown in Formula 13) approximately equal to zero. However, these are two different aspects of the metrics used to 
evaluate the forecasting error and the stability of the forecasting error. 

A significance test was further conducted to verify the significance of the forecasting performance differences between the CDF-MSI 
method and the other baseline methods. Considering that the forecasting errors did not conform to a Gaussian distribution, the 
Kolmogorov-Smirnov test (K-S test) was chosen as the indicator. As shown in Table 4, all compared pairs achieved larger K-S statistic 
values than the expected values of the null hypothesis, and the p-values were <0.001. The results indicate that the forecasting errors of 
CDF-MSI were significantly different from those of the other methods, thus demonstrating the effectiveness of our proposed method. 

Table 3 
Performance comparison with baselines.  

Category Method RMSE MAE StDev 

Mean Best Mean Best Mean Best 

Deep Learning CDF-MSI  8.894  8.885  4.643  4.633  8.893  8.884 
STMeta  10.817  10.809  5.910  5.902  10.784  10.777 
DCRNN  9.749  9.741  5.388  5.380  9.675  9.667 
ASTGCN  9.941  9.933  4.715  4.703  9.928  9.920 
LSTM  29.462  29.458  4.907  4.880  29.450  29.446  

Classical 
Machine Learning 

GBDT  46.875  46.874  6.588  6.576  46.858  46.856 
KNN  47.241  47.241  7.141  7.141  47.222  47.222  
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To further demonstrate the advantage of our proposed CDF-MSI method, the forecasting performance was evaluated in terms of the 
size of the crowd and the diversity of the crowd variations. 

As discussed previously, the forecasting performance varies for places with different levels of congestion. With reference to Sen-
egal’s urbanization rate of approximately 40 %, we classified the places into three groups with crowd size thresholds of 195 and 435 
(World bank, 2014). The thresholds corresponded to cumulative distribution values of 60 % and 90 % with respect to the size of the 
crowd statistical distribution, roughly dividing the case study area into rural areas, township areas, and urban areas. The comparison 
results are shown in Fig. 8. We observed that the forecasting performance decreased with increasing crowd size. It was to be expected 
that the less crowded places led to simpler variation patterns and lower forecasting difficulty. Note that although the RMSE of our 
proposed CDF-MSI method increased from 4.647 to 16.620, but it still achieved good performance among the compared methods. 

The diversity of the crowd variations in the places affects the forecasting performance from another perspective. In this study, the 
standard deviation of the crowd size over the time series in a place was used to evaluate the stability and complexity of crowd size 
variations. Correspondingly, the division thresholds were chosen as 35 and 95, representing cumulative distribution values of 60 % 
and 90 %, respectively, in terms of the diversity of the statistical distribution of the crowd variations in places. The comparison results 
are shown in Fig. 9. All the comparison methods achieved good forecasting performance when the crowd variation diversity was 
simple. Note that the differences in forecasting performance between our proposed CDF-MSI method and the classical machine 
learning methods for both the small crowd size group and simple variation group were small. This result indicates that the complex 
methods tended to be more significantly improved when solving complex problems. Nevertheless, our method still performed well for 
each group. 

4.4. Evaluation of the two algorithms in the CDF-MSI method 

As mentioned in the methodology section, a trajectory enhancement algorithm and a multi-order spatial interaction learning al-
gorithm were applied in the CDF-MSI method to achieve forecasting performance improvement. To verify the applicability of these two 
algorithms on performance improvement, three strategies were designed for performance evaluation: (1) models with the trajectory 
enhancement part and the multi-order spatial interaction learning (with suffix -MSI), (2) models with the multi-order spatial inter-
action learning algorithm only (with suffix -OMSI), and (3) models with the first-order interaction as edge weights only (with suffix 
-FI). In addition, to verify the applicability of these two algorithms on performance improvement, the spatiotemporal deep graph 
neural network models, including MSI, STMeta, DCRNN, and ASTGCN, were used as basic models for the ablation study. The adjacency 
matrices generated by the above three strategies were input into the corresponding basic models for model training. The evaluation 
results were shown in Fig. 10. The results showed that the models with both algorithms achieved better forecasting performance than 
the others. Specifically, the models with suffix -MSI performed better than the models with suffix -OMSI, indicating that the trajectory 
enhancement algorithm (fixing the issue of insufficient interaction sampling in less crowded places) was helpful for achieving better 

Table 4 
The Kolmogorov-Smirnov test results for the forecasting error comparison.  

Compared pairs K-S statistics p-values 

CDF-MSI & STMeta  0.1808 p < 0.001 
CDF-MSI & DCRNN  0.2173 p < 0.001 
CDF-MSI & ASTGCN  0.0345 p < 0.001 
CDF-MSI & LSTM  0.2270 p < 0.001 
CDF-MSI & KNN  0.0829 p < 0.001 
CDF-MSI & GBDT  0.0864 p < 0.001  

Fig. 8. Effect of crowd size on the RMSE.  
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forecasting performance. Both the models with suffix -MSI and -OMSI outperformed other models, indicating that the multi-order 
spatial interaction learning algorithm also contributed to the improvement in forecasting performance. These results demonstrated 
the advantage of the two algorithms proposed in this paper to a certain extent. 

As for the trajectory enhancement algorithm, the 2nd-order random walk with historical movement interaction was used to 
generate simulated trajectories in this study. To test the similarity between the simulated trajectories and the real trajectories, a 
simulated trajectory dataset was generated. The number of generated trajectories originated from each place is equal to its average 
population count observed from the mobile phone data. The Pearson correlation was chosen as the evaluation metric, and the per-
spectives of average number of stay points per place, the median trajectory entropy per place, the crowd distribution, and the 
movement interaction matrix, were chosen to measure the similarity between the real trajectories and the simulated trajectories (Wang 
et al., 2019). The results were shown in Table 5. The correlation coefficients between the simulation trajectories and real trajectories in 
all four perspectives were over 0.8 and the correlation were statistically significant at the 0.01 level. A 2nd-order random walk with 
topological adjacency, a structural-similarity-based biased walk (Ribeiro et al., 2017), and a deep learning-based trajectory simulation 
algorithm LSTM-TrajGAN (Rao et al., 2020) were also conducted as the baselines. The coefficient values were lower than our proposed 
algorithm. These results indicated that the proposed algorithm can capture the movement spatial pattern well. However, it is worth 

Fig. 9. Effect of crowd variation diversity on the RMSE.  

Fig. 10. Verification of the applicability of these two algorithms on performance improvement.  

Table 5 
The correlation coefficients between the simulated trajectories and real trajectories.  

Simulated algorithm Number of stay points Trajectory entropy Crowd distribution Interaction matrix 

2nd-order – Movement  0.814**  0.809**  0.889**  0.903** 

2nd-order – Topology  0.346**  0.555**  0.658**  0.606** 

Structural-similarity-based  0.346**  0.538**  − 0.158**  0.002** 

LSTM-TrajGAN  − 0.001  0.055**  0.041  0.011 

** Correlation is significant at the 0.01 level. 
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noting that the simulation trajectories were still different from real trajectories. Therefore, we tried to find a balance between adding 
trajectories to address the sampling problem and reducing the noise. A model with simulation trajectories on all places was conducted 
for comparison. The RMSE, MAE, and StDev of this model were 8.951, 4.646, and 8.925, respectively, which was worse than those of 
our proposed method (as shown in Table 3). The ablation study results further demonstrated the effectiveness of our proposed tra-
jectory enhancement algorithm. Furthermore, the performance difference between these two models is not that significant. This may 
be due to the fact that adding simulation trajectories in already crowded places has less effect on interaction modelling. 

To further measure the multi-order spatial interaction effect on crowd distribution forecasting, a parameters analysis on the multi- 
order size and a spatial residual analysis were conducted. As shown in Fig. 11, the forecasting performance shows an overall trend of 
increasing and then decreasing with the increase in the multi-order interaction size and the best forecasting performance was achieved 
with the value of 9 (an RMSE of 8.885, MAE of 4.633, and standard deviation of error (StDev) of 8.884). This can be explained by the 
conjecture that a small size fails to capture the multi-order spatial interaction patterns, and a very large size results in too many places 
being considered, thus reducing the pertinence of modelling a specific place. 

From the spatial perspective, the RMSE comparison between our proposed CDF-MSI method and the first-order interaction CDF-I 
method in each place was shown in Fig. 12. The places where the RMSE of CDF-I is greater than that of CDF-MSI were labelled in red, 
and the opposite parts were labelled in blue. Fig. 12(a) shows the overall comparison result across the country. It suggests that 
considering multi-order spatial interaction can improve forecasting performance on most places (CDF-I was significantly better than 
CDF-MSI on only 8.82 % of the places). The places where CDF-I performs better distributed sporadically. Combined with the local 
individual movement pattern, this may be explained by the fact that the lower frequency of movement among places of local residents 
reduces the impact of multi-order spatial interactions on the near real-time crowd distribution forecasting. Considering the greater 
application value of fine-grained crowd distribution forecasting in crowded areas, we selected region Dakar (where the capital of 
Senegal is located, marked as ①) and region Diourbel (one of the central core regions, marked as ②) to further analyse the differences 
in forecasting performance. It can be seen in Fig. 12(b) and 12(c) that our proposed method has achieved an overall advantage (CDF-I 
was significantly better than CDF-MSI on only 9.96 % and 3.97 % of places in Dakar and Diourbel, respectively), which demonstrated 
the superiority of considering the multi-order interaction in crowd distribution forecasting. 

5. Discussion 

5.1. Attempts at trajectory enhancement in interaction pattern learning 

“How much data is big enough” is a typical but always overlooked problem in big data applications (Wang et al., 2017; Splinter 
et al., 2013). In these applications, we usually regard the acquired big data (sample) as a true reflection of the population, ignoring the 
impact of the chosen sampling strategy (e.g., the number of users and the time period) on the population characteristics. Especially in 
location-based transportation research, given the spatial heterogeneity phenomenon, sampling strategy differences can be particularly 
prominent in areas with sparse data. To explore the effect of crowd size on the sampling result, we randomly sampled 50 % of the 
trajectories from the dataset and generated the movement interaction matrixes of the post-sampling data and the pre-sampling data 
respectively. The experimental results showed that the correlation between the pre-sampling interaction matrix and the post-sampling 
interaction matrix in the crowded places was 0.93, while the correlation between the interaction matrix before and after sampling in 
the less crowded places was only 0.87. It indicated that the differences were mainly observed in the less crowded places. This situation 
exacerbated our concern with respect to modelling the interactions among the less crowded places using raw sample trajectory data. 
Data augmentation, which refers to methods for constructing sampling algorithms via the introduction of unobserved data, has been 
widely used in the fields such as language translation, image classification, and recommendation systems (Chen et al., 2019a,b; Van 
Dyk and Meng, 2001; Wang and Perez, 2017; Xie et al., 2020; Wang et al., 2020). For example, Chen et al. (2019) enriched the user- 
item network structure and employ node2vec to alleviate the data sparsity problem in recommender system. Wang et al. (2017) 
explored and compared multiple solutions to the problem of data augmentation in image classification. These studies implicated the 
potential of data augmentation in solving data sparsity problems. The trajectory enhancement algorithm was an instance of data 
augmentation in movement interaction pattern learning and an attempt to mitigate the insufficient sampling issue. Further explo-
rations, such as more reasonable sampling expansion strategies or more diverse data, would contribute to a more comprehensive 
understanding of human movements and spatial interaction patterns. 

5.2. The application of embedding learning techniques for multi-order spatial interaction learning 

As the movements of individuals in space are continuous, the crowd distribution in a place is influenced by the surrounding places 
to a certain extent, thus reflecting the “coevolution” phenomenon. How to measure the spatial scope and intensity of this influence 
among different places has become an important topic for improving the accuracy of crowd distribution forecasting. Essentially, the 
influence among places originates from individual movements. Therefore, the inherent influence among places can be extracted from 
massive individual trajectories (Li et al., 2021; Liu et al., 2020; Liu et al., 2017). 

A trajectory can be considered the combination of a series of stops and movements, which can be represented as a stop sequence 
such as “location1, location2, …, locationk”. This means that the crowd distribution pattern of locationw is influenced not only by 
locationh− 1 and locationh+1 but also by locations from locationh− g to locationh+g (where g indicates the spatial scope of the influence 
mentioned in the above paragraph). This influence among multiple places was defined as a multi-order spatial interaction in this study. 
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The text-like structures of trajectories provide an efficient way to model the multi-order interaction among places using the embedding 
learning technique. Each location in the trajectory corresponding to the text structure “word1, word2, …, wordk” was analogous to a 
word in a sentence. Therefore, the multi-order spatial interactions can be regarded as the text similarity, which can be captured with 
embedding learning techniques. A higher multi-order spatial interaction intensity indicates that two places more frequently co-occur 
or possess common contextual neighbours in the trajectories, which also reflects higher spatial influence. 

5.3. Limitations and future work 

Several limitations of this study are worth noting and further exploring in future work. First, in the current CDF-MSI method, the 
2nd-order random walk algorithm was used to generate simulated trajectories for trajectory data enhancement. Although this algo-
rithm considered the historical movement pattern for transition weight matrix generation, the generated trajectories were still 
different from the real trajectories. This affected the accuracy and reliability of the spatial interaction modelling results to a certain 
extent. Advanced trajectory simulation strategies and other data expansion algorithms such as generative adversarial neural networks 
(Choi et al. 2021) and mobility Markov chain (Gambs et al. 2012) may further improve the forecasting performance. Second, the 
original word embedding model word2vec was applied in the proposed CDF-MSI method. This model can effectively extract the co- 
occurrence relationships and common context relationships among texts, which have been used in the explorations of road 
network structure (Chen et al., 2021; Wu et al., 2020; Wang et al., 2019). In our method, the multi-order spatial interactions among 
contextual non-adjacent places were modelled with this model using enhanced trajectories to capture the spatial correlations more 
comprehensively, thus improving the accuracy and stability of crowd distribution forecasting. It is worth noting that the imple-
mentation process in this paper has similarities with Node2Vec (Grover & Leskovec, 2016), but there are two differences. The initial 
weight matrix used in random walk of our method was based on the historical movement interaction, and the corresponding initial 
weight matrix of the Node2Vec was based on the topological adjacency. Besides, the Node2Vec method generates the same number of 
trajectories at each node, while our method does not. These made the learned edge weight matrix somewhat different. We also 
compared the forecasting performance based on our algorithm and the Node2Vec algorithm. The RMSE, MAE, and StDev of the 
Node2Vec based method were 9.528, 4.974, and 9.526, respectively, which was worse than those of our proposed method (8.885 on 
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Fig. 11. Effect of the multi-order interaction size (RMSE and StDev using the left axis and MAE using the right axis).  

Fig. 12. Verification of multi-order interaction regarding RMSE (a) across the country (b) in region Dakar (c) in region Diourbel. The places labelled 
in blue indicate that the CDF-I performs better than CDF-MSI in these places. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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RMSE, 4.633 on MAE, and 8.884 on StDev). Other advanced embedding learning techniques, such as BERT-flow and SimCSE, may help 
improve forecasting performance in future work (Su et al., 2021; Gao et al., 2021; Chen et al., 2021). In addition, the built environment 
can constrain and influence the movement behaviours of crowds (Tu et al., 2020). Five dimensions of the built environment (density, 
diversity, design, distance, and destination) were investigated for their effects on crowd distribution dynamics (Wu et al., 2018; 
Higgins & Kanaroglou, 2016). The consideration of the influence of the built environment can be an extension of crowd distribution 
forecasting methods. Moreover, it is worth noting that the network parameter has a great impact on forecasting performance. When 
increasing the number of GCN and LSTM layers from one to three, the RMSE of CDF-MSI model decreased from 8.885 to 8.589. 
Considering that the compared spatiotemporal graph-based models STMeta and ASTGCN typically used one spatial layer and one 
temporal layer for model training, we used one GCN layer and one LSTM layer in the case study to make the validation more com-
parable and less time consuming. The forecasting performance can be further improved by designing more complex network structures 
in future studies. Finally, in this study, the numbers of calls and mobile users were used to estimate the dynamic crowd distribution. 
Although linear relationships between crowd distribution and these two indicators have been demonstrated (Cheng et al., 2020; Kang 
et al., 2012), the potential impacts of sampling biases and uncertainty are of concern. Our future work will focus on solving these 
issues. 

6. Conclusion 

This study proposed a novel crowd distribution forecasting method considering the multi-order spatial interactions along different 
places using mobile phone data. We focus on two prevalent but not yet properly addressed limitations in current relevant studies: the 
insufficient interaction modelling in less crowded places caused by the lack of sampling design, and ignorance of multi-order spatial 
interactions among contextual non-adjacent places. To mitigate the influence of these issues, we applied a weighted random walk 
algorithm to generate simulated trajectories to improve the accuracy and robustness of the interaction characterizations in less 
crowded places. With the enhanced trajectories, we adopted an embedding learning algorithm to model the multi-order spatial in-
teractions among contextual non-adjacent places. A hybrid forecasting model was then constructed that combines a GCN and an RNN 
for modelling the spatiotemporal pattern of crowd distribution variations. Our proposed method was verified using a real-world mobile 
phone dataset in a country. The results indicate that both the multi-order spatial interactions and the trajectory enhancement algo-
rithm helped improve the crowd distribution forecasting performance. The CDF-MSI method also outperformed other baseline 
methods in terms of the RMSE, MAE, and StDev of the forecasting error. 

This study provides an effective method to forecast fine-grained crowd distribution. The method allows us to capture future crowd 
distribution variations across space, which technically supports for transportation applications such as traffic optimization, emergency 
evacuation, and cell base station operation. In addition, crowd distribution variation patterns can help reveal the patterns of human 
movements, thus enriching the theory and practices related to human mobility studies. 
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