
An Interactive Knowledge and
Learning Environment in
Smart Foodsheds
Yamei Tu, Xiaoqi Wang, Rui Qiu, Han-Wei Shen
The Ohio State University

Michelle Miller, Jinmeng Rao, Song Gao
University of Wisconsin-Madison

Patrick R Huber, Allan D Hollander
University of California Davis

Matthew Lange
International Center for Food Ontology Operability Data and Semantics (IC-FOODS)

Christian R Garcia, Joe Stubbs
The University of Texas at Austin Texas Advanced Computing Center

Abstract—The Internet of Food (IoF) is an emerging field in smart foodsheds, involving the
creation of a knowledge graph (KG) about the environment, agriculture, food, diet, and health.
However, the heterogeneity and size of the KG present challenges for downstream tasks, such as
information retrieval and interactive exploration. To address those challenges, we propose an
interactive knowledge and learning environment (IKLE) that integrates three programming and
modeling languages to support multiple downstream tasks in the analysis pipeline. To make
IKLE easier to use, we have developed algorithms to automate the generation of each language.
In addition, we collaborated with domain experts to design and develop a dataflow visualization
system, which embeds the automatic language generations into components and allows users
to build their analysis pipeline by dragging and connecting components of interest. We have
demonstrated the effectiveness of IKLE through three real-world case studies in smart
foodsheds.

THE INTRODUCTION

Knowledge graphs provide a powerful means
to capture and integrate diverse linked knowl-
edge into a unified graph structure [1]. Many
knowledge graphs have been developed to support
a range of industrial and scientific applications,
including the Google Knowledge Graph, DBpe-
dia [2], Wikidata [3]. In the context of smart
foodsheds, there is a growing interest among
researchers from industry, academia, and gov-

ernment in building a semantic platform for the
Internet of Food (IoF). The IoF represents a
linked domain knowledge of the environment,
agriculture, food, diet, and health [4], [17]. By
using the knowledge graph to link food system
stakeholders with data, cyberinfrastructure, AI,
and other tools, the IoF can improve the current
food system for increased food sustainability,
health, justice, and delight. It also facilitates many
downstream tasks, such as information retrieval

Publication Name Published by the IEEE Computer Society © 2021 IEEE 1

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

and food flow data analysis in food systems [17],
[20].

The knowledge graphs in smart foodsheds
face several challenges for downstream tasks due
to their massiveness and heterogeneity. First, spe-
cialized food vocabularies and ontologies used by
different organizations require a unified environ-
ment for data exchange and information sharing,
but defining standardized ontologies for different
downstream tasks is not trivial. Second, knowl-
edge graphs are commonly built from ontologies
and represented as Resource Description Frame-
work (RDF) triplets. Structured query languages
like SPARQL can query RDF triplets, but writing
SPARQL queries can be challenging for users
unfamiliar with the underlying ontologies. Hence,
easy-to-use query methods are urgently needed.
Lastly, after retrieving relevant information from
knowledge graphs, identifying data patterns is
crucial to facilitate the decision-making process.
Automatic visualization generation can efficiently
reveal data patterns and draw meaningful insights.

Many technologies and systems have been
proposed to address the individual challenge men-
tioned above. Protégé is the most popular ontol-
ogy editor in the world for ontology development.
But it only focuses on the ontology definition and
does not address how to utilize it. To query the
knowledge graph, pre-trained language models
like BERT [5], GPT [6], and RoBERTa [7] can
be fine-tuned with sequence-to-sequence tasks
to translate natural languages to the SPARQL.
While Neo4j allows users to interact with data
through visual interactions, it only supports node-
link diagrams for visualization. Thus, there is a
research gap in developing a unified environment
that addresses various challenges, including incor-
porating ontologies for data exchange, automated
query generation, and visual analytics of knowl-
edge graphs.

This work introduces an Interactive Knowl-
edge and Learning Environment (IKLE) to ad-
dress the research gap. The IKLE leverages three
different languages, including Linked Data Mod-
eling Language (LinkML), SPARQL, and Vega-
Lite, to accomplish ontology building, query gen-
eration, and visualization recommendations while
keeping users in the loop. Collaborating with do-
main experts, a dataflow system is designed and
developed to demonstrate the flexibility of IKLE

for interactive exploration. The dataflow system
modularizes each functionality into components,
enabling users to build their analysis pipeline
according to their skill level and verify the output
of each step. We evaluate the proposed method
through case studies in the smart foodshed liter-
ature. In short, the contributions of this work can
be summarized as follows:

• Modeling the knowledge graph interactions
as a combination of three programming and
modeling languages and generating them on
demand based on user interactions.

• Proposing a general solution, IKLE of KG
interactions, which can be easily extended and
transferred to other domains.

• Designing a dataflow system that enables users
to build their analysis pipeline according to
their needs.

• Demonstrating the usefulness and effectiveness
of our system qualitatively through case studies
in smart foodsheds with input from domain
experts for further improvements.

Related Work
Dataflow Visualization System

Dataflow systems allow users to create cus-
tomized functionality by building a dataflow dia-
gram that outlines how components interact with
each other. These systems can be divided into
two main categories: general computational [21]
and visualization systems. For the purposes of
this work, we focus on dataflow systems that
specialize in data manipulation and visualization.
VisFlow [11] is a web-based visualization frame-
work for tabular data which employs a subset data
flow model, allowing interactive queries within
the data flow. Based on it, VisFlowj [12] is an
enhanced subset-flow visualization system that in-
tegrates natural language processing techniques to
facilitate multi-view visualization. ExPlates [13]
is another system developed to allow users to
manipulate data and build visual queries to ex-
plore multidimensional data. Viscomposer [14]
is a programmable integrated development en-
vironment (IDE) to make visualization design
easier with its intuitive user interface. To the
best of our knowledge, While many existing
dataflow systems analyze tabular data, few of
them address the challenges of KG exploration.

2 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

This study proposes an interactive knowledge and
learning environment for KG exploration in smart
foodsheds, which can be easily extended to other
domains.

Knowledge Graph Interaction
The knowledge graph (KG) has attracted

much attention in both academia and industry
recently. Various systems have been built to facili-
tate sub-tasks of KG in different domains. For the
knowledge reasoning task, many clinical decision
support systems incorporate knowledge graphs to
obtain valuable medical knowledge and diagnose
evidence [15]. As for link prediction, by modeling
user-product interactions with external knowledge
as a knowledge graph, the recommendation sys-
tems are trained to predict items of interest for
new coming users [16]. Some commercial tools
are released to support querying and visualizing
the knowledge graph, such as Neo4j 1, Gruff 2.
In this work, we propose a general environment
to make progress on enabling a variety of tasks
necessary for smart foodsheds, such as cohering
domain ontologies into application data models
through LinkML, SPARQL query generation, and
visualization of either raw data or output of
models.

Internet of Food
Originally, the concept of the Internet of Food

(IoF) first appeared in 2011, which is mainly
concerned with issues related to how technology
impacts the food system. Later on, since food
systems are composed of a diverse range of social
and natural components, IoF represents a linked
heterogeneous knowledge (knowledge graph) of
data describing these components coming from
numerous sources[4]. Recently, there are several
works aiming at analyzing knowledge graphs
in food systems but with different focuses. For
example, [20] analyzes the resilience of food
networks at different geographic scales via the
technique of geospatial knowledge graph. [18]
utilizes a large-scale food knowledge graph to
recommend food according to dietary preferences
and health guidelines. In this work, we develop
a visualization system to help users interactively

1https://neo4j.com/
2https://allegrograph.com/products/gruff/

explore the IoF and thus facilitate some potential
downstream tasks, including partner finder, infor-
mation retrieval, resilience analysis and etc.

Preliminaries
First, we introduce the PPOD knowledge

graph that we used in this paper, and then we
formalize the problem we aim to address.

Dataset
To address information inefficiencies in the

food system, experts first developed the ontology
of PPOD, a schema that describes the attributes
and relationships between People, Program,
Organizations and Data sets. To instantiate this
ontology with real data, they built a PPOD knowl-
edge graph using data from California and Ohio
as a first use case.

The PPOD knowledge graph G is represented
as a set of triplets G = {(s, p, o)} that de-
scribes the relationships between different entities
in the food system. Each triplet (s, p, o) char-
acterized the semantic relationships p between
source entity s and object entity o. For exam-
ple, the triplet (“Cosumnes River Project,” “lead-
ing organization,” “The Nature Conservancy”)
means that The Nature Conservancy is the leading
organization of the Cosumnes River Project. En-
tities in the triplets are represented using either
URIs (universal resource identifier) u ∈ U or
literal l ∈ L. Each subject s must have a unique
URI s ∈ U , while each object o can be either
URI or literal o ∈ (U ∪ L). Entities represented
as literal can only be the tail of a triplet and are
denoted as EL. Entities with URIs can either be
the head or tail of a triplet and are denoted as EU .
These definitions are used consistently throughout
the paper.

Problem Statement
The goal of this work is to improve infor-

mation access in smart foodsheds by leveraging
visual analytics to facilitate access to the PPOD
knowledge graph. To achieve this, our key tasks
involve defining the ontology Gont in a machine-
understood way, using Gont and user query q
to retrieve information from the corresponding
PPOD knowledge graph G, and visualizing the
resulting valid triplets G′ = (s, p, o|q) from G in
an intuitive manner to aid decision-making.

Month 2021 3

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

https://neo4j.com/
https://allegrograph.com/products/gruff/

THEME/FEATURE/DEPARTMENT

YAML Loader

Query Editor

KG querier
URL

Endpoint

Table Viewer

Table Visualizer

Data [obj1, obj2…]

C. Vega-Lite

Table Loader

Ontology Filter
filter1

filter2

filter3
…

𝑮𝒐𝒏𝒕
𝑮′𝒐𝒏𝒕

A. LinkML

B. SPARQL

Back-End
(Flask)

Knowledge
graph

Fr
on

t-E
nd

 (V
U

E)
Kubernetes
Pods at TACC

Data [obj1, obj2…]

Figure 1: Overview of our system and its architecture.

Requirement Analysis
To gain a better understanding of the needs

of domain users in smart foodsheds, we held
weekly meetings with the domain experts of this
project for over one year. During these meetings,
we derived the system’s requirements from the
discussions as follows:
R1. Incorporating expert-defined ontologies.
Our system should enable users to easily load
and utilize different expert-defined ontologies for
downstream tasks, facilitating knowledge sharing
as suggested by our experts.
R2. Easy querying of knowledge graphs. As
pointed out by the experts, structuring SPARQL
queries from scratch can be difficult for non-
programming users. Thus, our system should pro-
vide guidance to help users prepare queries for
retrieving information from knowledge graphs.
Specifically, it should:

• R2.1 Automatically generate SPARQL queries
to ease the burden on users who are unfamiliar
with the structured language’s schema and
rules.

• R2.2 Allow users to fine-tune the automatically
generated queries to increase transparency and
trust in the system.

R3. Efficient data visualization. Designing an
effective mapping from data to visual channels
requires specialized skills and resources that may
not be readily available to all users. Thus, our
system should provide recommendations for data
visualization to help users easily understand and
interpret the data.
R4. Personalized analysis pipeline building.
Our domain experts mentioned that users with
different backgrounds and skill levels might have
varying needs, and a system with a pre-defined
pipeline cannot meet all of these needs. Thus,

our system should enable users to build the
analysis pipelines flexibly to serve a broader
audience and meet a wider range of needs.

Method
The requirements have driven us to develop an

interactive knowledge and learning environment
(IKLE) to support various interactions with the
knowledge graphs. In this section, we first present
an overview of IKLE and then introduce each of
its components in more detail.

Overview
The key challenge behind IKLE is how to

leverage the machine’s ability to handle various
tasks and reduce the burden of domain users.
We propose to identify three key programming
languages (PLs) that are involved in knowledge
graph interactions. One advantage of using these
PLs is that machines can process and understand
them, which enables us to automate each sub-
task. In summary, our method consists of four
components, summarized as follows:
• LinkML of ontology definition (Figure 1A):

We first describe the key design of the on-
tology, which can be further parsed into an
ontology graph to help users to understand the
knowledge graph structure (R1).

• SPARQL generation (Figure 1B): Users can
interact with the ontology graph and build the
query interactively, triggering the automatic
generation of SPARQL (R2).

• Vega-Lite generation (Figure 1C): Once users
query data from knowledge graphs, we au-
tomatically recommend visualization and cre-
ate Vega-lite specification for chart rendering
(R3).

4 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

• dataflow system: A dataflow system that is
developed as an implementation of the IKLE.
It achieves high flexibility by allowing users to
build their own analysis pipeline(R4).

Ontology Design and Parse
The ontology defines the different types of

entities and their relationships with each other.
This structural information is critical for users
to understand the information provided by the
knowledge graph and for machines to generate
SPARQL queries automatically (R1). However, it
can be challenging to design an ontology schema
that (1) includes all necessary information for
creating queries; (2) can be easily parsed and
visualized for interactive queries; (3) has a clear
structure that can be adapted to other domains.

We have collaborated with domain experts to
identify the key information required for the on-
tology, resulting in the following data definition:

• Entity Types (TE): This defines the types of
entities with URI EU , with each entity type
Te ∈ TE having a defined URI (Te.URI) and
a set of relations (Te.rel) starting from Te.

• Relation Types (TR): To reduce information
redundancy, each relation type Tr is defined
first and referred to by a unique identifier
when defining it in Te.rel. Tr.name pro-
vides the semantic meaning of the relation,
while Tr.URI indicates the relation type’s
URI. Tr.targets defines the targeting entity
types of this relation type.

• Filters (F): A set of filter conditions on differ-
ent entity types Te are pre-defined by domain
experts to help users identify relevant informa-
tion. Each filter f ∈ F contains an entity type
Te and a set of permissible entities with their
URIs, denoted asf = (Te, {u1

e, u
2
e, .., }).

LinkML is a flexible modeling language that
specifies data schema in YAML and can be
translated to other schema representation formats,
such as JSON or RDF. Due to such flexibility, we
utilize LinkML to describe the PPOD ontology,
which can be parsed by machines into a graph
structure Gont, allowing users to interact easily.

The ontology graph Gont is constructed using
a parsing algorithm. Each node in Gont represents
an entity type Te, while the edge indicates the
semantic relationship Tr between different entity

Figure 2: Ontology graph Gont of PPOD knowl-
edge graph.

types. The input to the algorithm is a LinkML file
that contains three aspects of information: entity
types TE , relation types TR, and filters F. For
each entity type Te ∈ TE , we iterate over its
outgoing relations Te.rel and check whether it
is connected to another entity type T′

e. If so, we
add the edge Te → T′

e and nodes Te,T
′
e to Gont.

Since only entities with URIs EU are defined in
TE , we create a conceptual node literal in Gont to
represent all literal entities EL, e.g., the “email”
of a “Person.” Additionally, we add an attribute,
called filtered when adding nodes Te into Gont.
The attribute indicates whether Te has defini-
tions in the filter F and helps differentiate nodes
with/without filtering conditions when visualizing
the ontology graph for users.

The resulting Gont for PPOD is shown in
Figure 2, with literal entities EL aggregated into
one conceptual node and EU that are not defined
in F shown in gray (), while EU that have pre-
defined vocabularies in F are colored in green
(). This allows users to select a set of desired
filtering conditions.

Querying Knowledge Graph
While building visual queries has been ex-

tensively studied in the visualization literature,
they cannot be applied directly to smart foodsheds
data because our target users are not experienced
in visual programming and are more used to
traditional interactive methods. Moreover, accord-
ing to our domain experts, building queries from

Month 2021 5

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

scratch is less effective than filtering a subset of
existing ontology. To better assist users in build-
ing queries (R2), we employ a top-down method
that involves presenting the Gont to users and
allowing them to select a sub-graph G′

ont through
various interactions such as clicking, brushing,
and dragging. SPARQL queries are generated
based on the selected sub-graph G′

ont.
We have summarized common graph patterns

of G′
ont based on real-world use cases and pro-

vided example queries in Table 1. Green nodes
() represent entities with filtering conditions,
while gray nodes () do not. Dashed lines indicate
the existence of one/multiple filtering nodes. For
example, in the first row of the table, users query
organizations located in a specific ecoregion.

When generating the SPARQL queries based
on the G′

ont, the main challenge lies in construct-
ing the WHERE clause due to the complexity of
constraints. The WHERE clauses should strictly
follow the ontology while also specifying the
filtering conditions on entity types. To address
this challenge, we first define four types of sub-
queries in the WHERE clause and aggregate them
according to the entity types in G′

ont. Declara-
tion() defines the entities EU through its URI
to locate the information of interest. Addition-
ally, Attribute() detects which literal entities
EL are connected to a specified EU and adds
them to the WHERE clause. Relation() defines
the triplet relation, i.e., Te is connected to T′

e

through semantic relation Tr. Filter() constrains
Te to a user-selected conditions u. As indicated
in the Algorithm 1, we iterate over each edge
(s, p, o) in the G′

ont (line1) and generate the
query accordingly, depending on whether the
nodes s/o has filtering conditions through an
attribute filtered (line3,9,14). If there is one
filtering node, the Filter() is required (line12,17).
Otherwise, we only need to define the subject s,
object o and its predicate p (line3−7).

Visualization Recommendation
To gain informative insights from the knowl-

edge graph, scanning through the queried results
row by row is much less effective than visual-
izing the queried results with proper visualiza-
tion charts. We exploit rule-based visualization
recommendations to achieve better explainability
(R3). Taking the tabular data items as input,

Algorithm 1 SPARQL Generation
Input: User-selected ontology subgraph G′

ont

Output: SPARQL query Q
1: for (s, p, o) ∈ G′

ont do
2: if !s.filtered & !o.filtered then
3: Q+=Declaration(s), Q+=Attribute(s)
4: Q+=Declaration(o), Q+=Attribute(o)
5: Q+=Relation(r)
6: else if s.filtered & !o.filtered then
7: Q+=Declaration(o), Q+=Attribute(o)
8: Q+=Relation(r)
9: Q+=Filter(s)

10: else if !s.filtered & o.filtered then
11: Q+=Declaration(s), Q+=Attribute(s)
12: Q+=Relation(r)
13: Q+=Filter(o)
14: end if
15: end for

we transform them to the Vega-Lite grammar,
including both visual elements specifications and
data items. The Vega-Lite specification can later
be rendered as charts and allow users to download
them as figures. We build the visualization rec-
ommendation module as a python library3 based
on the implementation of VizKG [19], which
converts tabular data to charts using Plotly.

The recommendation contains several steps.
First, to display the input data patterns prop-
erly, we identify the data types of each col-
umn via regex matching. Currently, the supported
datatypes include numerical, date, and categor-
ical. Then, based on the mapping rules4, we
check the supported charts with their specified
datatypes and identify valid charts as candidates.
The validated charts follow several rules: (1) the
data type of the input data must conform to the
required data types of the chart. (2) if there is
more than one conforming data type, we take a
first-come-first-map strategy. The supported chart
types include histograms, scatter plots, line charts,
box plots, area charts, maps, and donut charts.

Data Flow Visualization System
To create the IKLE, we develop a dataflow

visualization system that provides high flexibility

3https://github.com/ICICLE-ai/Smartfoodshed VA Flow/tree/
main/backend/AutoVega

4https://bit.ly/VizKG-MappingRules

6 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
https://bit.ly/VizKG-MappingRules

Type Name Description Diagram

Data Loader Tabular Loader
• Input: None.
• Output: List of N objects, [obj1, obj2, ..., objN].
• Usages: uploading local CSV files; loading existing CSV files on the Cloud.

Figure 4P3-C

YAML Loader
• Input: None.
• Output: URL of LinkML.
• Usages: loading the LinkML of a KG.

Figure 4P1-A

Data Analyzer
Ontology Filter

• Input: YAML Loader
• Output: SPARQL
• Usages: building the ontology with filters; generating the SPARQL

according to user interactions.

Figure 4P1-B’

Example Query Graph Pattern

what (A) organization is located in (B) Great Valley ecoregion? A B
n

what (A) program provides funding for (B) project to solve (C) wildfire issues?
A

C

B

n

what (D) wetlands-focused (A) projects are lead by (B) organizations in the
(C) Central Coast ecoregion?

A D

B

n

Cn

who are the (D) owners of (B) organizations that work on (E) fragmentation?
C

B E

A
D

n

n

Query Editor
• Input: SPARQL or None.
• Output: SPARQL.
• Usages: viewing/editing queries, i.e., SPARQL

Figure 4P1-D

KG Qurier
• Input: SPARQL
• Output: List of N objects queried from KG, [obj1, ..., objN]
• Usages: executing SPARQL to an RDF knowledge graph.

Figure 4P1-C

Data Viewer Table Viewer
• Input: List of N objects.
• Output: List of M objects (M ⩽ N).
• Usages: displaying tabular data.

Figure 4P1-E

Table Visualizer

• Input: List of objects.
• Output: List of objects and charts.
• Usages: generating Vega-Lite; rendering Vega-Lite specifications to generate

images; allowing users to view/edit the Vega-Lite specifications.

Figure 4P2-c1
Figure 4P2-c2

Note: Dashed lines indicate one or more filtering nodes.

Table 1: Our system contains a list of components with pre-defined functions and input/output
specifications. Ontology filter contains common graph patterns of G′

ont and example queries of PPOD.

and scalability (R4).

User Interface To enable users to build their
analysis pipeline flexibly and interactively, the
system is designed with two panels: a component
list and an edit panel. The component list con-
tains multiple pre-designed components, which
are categorized into three groups based on their
roles in the analytic process: data loader, analyzer,
and viewer. Each component has predefined func-
tionalities and input/output specifications, as in-
dicated in Table 1. Additionally, each component
can be minimized or maximized to save space
when necessary, e.g., as shown in Figure 4B and
B′. In the edit panel, users can add components
from the list and drag and drop them to connect
them with matched input/output to build their
analysis pipeline flexibly.

Data Loader To begin the data analysis
pipeline, the first step is typically to load the data.
To facilitate this process, our system includes a
set of data loaders that allow users to specify data
sources in various ways and flow the data to sub-
sequent components. One of these data loaders is
the tabular loader, which provides two functions:
(1) uploading a local CSV file to the cloud and (2)
utilizing an existing file on the cloud. In addition,
we have also incorporated feedback from domain
experts who have suggested that GitHub is a
popular platform for software development col-
laboration and that it stores many public ontology
definitions. To support this, we have included a
YAML loader that enables users to load expert-
defined ontologies through GitHub URLs.

Month 2021 7

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

Data Analyzer To support the different stages
of the data analysis pipeline, we have developed
a diverse set of components. These components
are designed to perform various tasks, including
data processing, querying, and analysis.

Ontology Filters Visualizing the ontology
graph Gont to users can help them understand
the data structure of knowledge graphs and facil-
itate interactive visual query building. To achieve
this, we introduce ontology filters, which takes
YAML loader and user interactions as input and
generates SPARQL queries as output. As shown
in Figure 4B’, the parsed ontology graph Gont

from LinkML is visualized on the right, while a
list of dropdown selects corresponding to filtering
nodes () in Gont is displayed on the left. The
user-selected sub-graph G′

ont is highlighted in red
and triggers the SPARQL generation algorithm.

Query Editors To enhance transparency and
interactivity, users are encouraged to review and
refine the results of the SPARQL queries gen-
erated by ontology editor. For this purpose, we
introduce query editors that can take inputs from
either ontology editor or user input and output
the resulting queries on the editor for use in the
subsequent components.

KG Queriers To enable users to query knowl-
edge graphs, we have designed KG queriers. Our
design logic is based on discussions with domain
experts who indicated that public resources are
either hosted in the graph database on the Cloud
and offer a SPARQL endpoint or stored as static
turtle files in GitHub. Therefore, we allow users to
specify the source of knowledge graphs by either
providing the SPARQL endpoint or a GitHub
URL. Additionally, KG queriers takes SPARQL
queries as another required input to be executed
on the specified knowledge graph.

Data Viewer Table viewers It is important to
provide access to raw data. Table viewer presents
data in row and column format, allowing users to
search and filter the data.
Table visualizers are proposed to render the au-
tomatically generated Vega-Lite specifications. It
also allows users to save and download the charts
as SVG or PNG files. Additionally, they allow
users to edit the generated Vega-Lite specification
to further refine the visualizations.

System Architecture Figure 1B illustrates
the overall architecture of our system. The front-
end interface is implemented as a series of web
applications using HTML, CSS, and Javascript
with the Vue.js framework. The back-end is im-
plemented with Node.js and Flask. When users
create the components in the interface, the corre-
sponding API requests are sent to the back-end
to execute the algorithm. We deploy our system
using the Pods service provided by the Texas
Advanced Computer Center (TACC)5, which pro-
vides easy ways to create and monitor the pod’s
states. The source code and data are available
at https://github.com/ICICLE-ai/Smartfoodshed
VA Flow.

Evaluation of SPARQL generation
We evaluated the performance of our

SPARQL generation algorithm by comparing
it with SPARQL queries manually created by
domain experts. To do this, we invited an expert
in semantic web technologies and food ontology
to generate different types of queries, each with
their corresponding SPARQL. The queries were
based on the four types of schemes we described.
The expert used the Gruff AllegroGraph interface
to build the SPARQL queries of PPOD, denoted
as q′. We then compared the querying results
separately for our generated queries q and q′.
We found that our q achieved the same querying
performance as q′. As an example for qualitative
comparison, we present q and q′ of the query
“Which non-profit organizations work on water
quality in Yolo or Solano counties?” The expert
made query q′ is shown as follows:
SELECT DISTINCT ?node_variable_1
WHERE {
VALUES ?county {
<http://www.wikidata.org/entity/Q109709>
<http://www.wikidata.org/entity/Q108083> }
?node_variable_1 rdf:type foaf:Organization ;
<http://www.w3.org/ns/org#classification>
<https://raw.githubusercontent.com/adhollander/

FSLschemas/main/CA_PPODterms.ttl#oty_cf5070> ;
<https://raw.githubusercontent.com/adhollander

/FSLschemas/main/fsisupp.owl#inCounty> ?county ;
<https://raw.githubusercontent.com/adhollander

/FSLschemas/main/fsisupp.owl#FSI_000239>
<https://raw.githubusercontent.com/adhollander

/FSLschemas/main/sustsourceindiv.rdf#CI0303> .}

Our algorithm generates the following SPARQL
queries:
PREFIX dcterms: http://purl.org/dc/terms/
PREFIX core: http://vivoweb.org/ontology/core#

5https://tapis-project.github.io/live-docs/?service=Pods

8 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow
https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow
https://tapis-project.github.io/live-docs/?service=Pods

PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
PREFIX fsls: https://raw.githubusercontent.com

/adhollander/FSLschemas/main/fsisupp.owl#
PREFIX fsli: https://raw.githubusercontent.com

/adhollander/FSLschemas/main/sustsourceindiv.rdf#
SELECT *
WHERE {
?organization dcterms:title ?organization_title .
?organization rdfs:label ?organization_label .
?organization a foaf:Organization .
?organization fsls:FSI_000239 ?componentissue .
Filter (?componentissue IN(fsli:CI0303)) .

?organization fsls:inCounty ?county .
Filter (?county

IN(<http://www.wikidata.org/entity/Q108083>,
<http://www.wikidata.org/entity/Q109709>)) .

?organization org:classification ?organizationtype .
Filter (?organizationtype IN(fslp:oty_cf5070)) .
}

It is clear to see we use prefixes to replace
long label names, which can make queries more
readable, especially when the same prefix is used
multiple times in the WHERE clause.

Evaluation of IKLE
We have conducted a systematic comparison

between our system and the seven most related
systems that we have introduced in the related
works section.

To ensure the comparison is comprehensive
and convincing, we have carefully designed five
tasks to test each system, as shown in Figure 3.
(1) Information display evaluates the informa-
tion display capability of each system. This task
checks whether the system can efficiently present
information with sufficient details. (2) Data visu-
alization & graph visualization assesses whether
the system supports effective data visualization.
It involves mapping data to visual channels and
providing recommendations for data visualiza-
tion to help users understand the data more
easily. (3) Graph exploration & efficient query
examines whether the system supports efficient
graph query. It includes providing guidance on
generating queries automatically based on user
interaction and enabling users to fine-tune queries
interactively. (4) Flexible IR pipeline evaluates
whether the system supports users in complex
information-retrieving tasks with a customized
retrieval pipeline. (5) Gain insights tests the sys-
tem’s ability to generate insights that assist users
in solving real-world tasks.

The comparison is shown in Figure 3. In
conclusion, our systematic comparison of IKLE
with seven other existing visual analytics systems
has shown that IKLE not only meets but also

exceeds the requirements of the five tasks we
designed. Our system efficiently presents infor-
mation with sufficient details, supports effective
data visualization, facilitates efficient graph vi-
sualization and query, supports complex graph
information retrieval tasks with a flexible retrieval
pipeline, and provides great insight finder ability.
We are confident that our findings demonstrate
the unique strengths of IKLE and its potential as
a valuable tool for knowledge graph exploration
and analysis.

Case Study
To demonstrate the usefulness of our system

in smart foodsheds, we present the results of
applying our system in real-world scenarios.

Finding partners in smart foodsheds.
Alice wants to identify potential collaborators

who are leaders on water pollution issues in the
food system. She uses our system to search the
PPOD knowledge graph for relevant information.
The analysis pipeline is shown in Figure 4P1.
She began by using a YAML loader (Figure 4P1-
A) to load the LinkML files of PPOD. She then
connected it to an ontology filter (Figure 4P1-B’)
to construct queries. In the ontology filter, she
selected the related filtering conditions on the left
dropdown list, including “wastes & pollution”,
“water” under the integrated issues (Figure 4P1-
b2) and “advisor,” “board member,” “director,”
and “elected official” under the position type (Fig-
ure 4P1-b1). She then enabled the lasso function
and brushed a subgraph as Gont on the right
panel (Figure 4P1-b3). Once the Gont is changed,
the output of the ontology filter will be updated
accordingly.

Alice trusted our automatic generation. With-
out fine-tuning it, she connected the ontology
filter directly to a KG querier to perform the
query. She added a table viewer at the end of
the pipeline to display the results. When the
SPARQL execution is finished in the KG querier,
the table viewer is automatically updated with
the results (Figure 4P1-E), allowing Alice to find
possible partners for collaboration. This shows
that our system can be used for partner finding
and information retrieval, which are important for
the effective management of food systems.

Month 2021 9

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

Figure 3: Performance evaluation between IKLE with seven related systems for knowledge graph.

Information Retrieval
We present a case study to demonstrate the

flexibility and scalability of our system in re-
trieving information from other knowledge bases.
Jason, a Ph.D. student in food science, uses our
system to search for the latest research in food
literature using SPARQL queries. He has some
familiarity with RDF and SPARQL.

First, Jason dragged a query editor and wrote
a SPARQL query to identify study fields related
to food (Figure 4P2-A). He then connected to
a KG querier and input the endpoint of the
Microsoft Academic Knowledge Graph (MAKG)
as the knowledge base (Figure 4P2-B). He joined
a table visualizer to explore the results. As vi-
sualized in Figure 4P2-c1, Jason found that the
citations have decreased since 2018 but started
to increase in 2020. He also saw that the health
food field had gained more attention since 2020,
possibly due to the influence of the pandemic on
people’s work-life balance.

The table visualizer displayed the distribution
of publication numbers in subfields (Figure 4P2-
c2), allowing Jason to see the most popular
fields were food preservation, functional food,
and fermentation in food processing. This case
study demonstrates that our system can retrieve
information from various knowledge bases and
can be customized to meet user needs.

Resilience Analysis
Due to the high flexibility of our system, users

can also load the tabular data and visualize the
data patterns. Quantifying the resilience of the
food flow network is an important task in the food
system to identify potential security issues. Our
expert, Jasper, proposed a novel way to measure
the resilience of the US multi-commodity flow
network [20]. He wants to use our system to ex-

plore computed resilience scores to gain valuable
insights.

The constructed analysis pipeline is visualized
in Figure 4P3. Jasper first computed resilience
for each state (node) in the agricultural multi-
commodity flow network in 2012 and 2017 and
loaded it through a data loader. He then con-
nected it to a data visualizer. From the node-level
resilience results (Figure 4P3-A), Jasper observed
that the states along the east coast, west coast,
and midwest have higher resilience than states
in other geographic regions. He inferred that this
was because these states had a mid-range flow of
products - not too big or too small, making them
more resilient to disruption risks. This alerted him
to the potential brittleness of supply chains that
relied heavily on some states and the lack of food
access in others.

Similarly, he calculated the import/export in-
fluence of each state on the entire food flow
spatial network in 2012 and 2017. As shown
in Figure 4P3-B, he identified that many top
agricultural-producing states had import/export
influence on the network, such as Texas, Cal-
ifornia, and the mid-west states. He could see
the importance of these states to North American
and global supply chains and that geographic
concentration increased from 2012-2017. This led
Jasper to ask further questions about regional
differences in crops produced and markets served
and the relationship these states had to ports for
import/export markets.

Expert Feedback
We conducted free-form interviews with do-

main experts to gather their feedback on the
system, asking them about their likes and dislikes
and for any suggestions they had. Overall, they
agreed that the system makes it easier for users to

10 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

(𝑎!)𝑖𝑚𝑝𝑜𝑟𝑡, 2012 (𝑎")𝑒𝑥𝑝𝑜𝑟𝑡, 2012 (𝑎#)	𝑖𝑚𝑝𝑜𝑟𝑡, 2017

A 	𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒

(𝑎$)	𝑒𝑥𝑝𝑜𝑟𝑡, 2017

(𝑏!)𝑖𝑚𝑝𝑜𝑟𝑡, 2012 (𝑏")𝑒𝑥𝑝𝑜𝑟𝑡, 2012 (𝑏#)	𝑖𝑚𝑝𝑜𝑟𝑡, 2017 (𝑏$)	𝑒𝑥𝑝𝑜𝑟𝑡, 2017

B 	𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒	

A B EC

B’

𝑏!
𝑏"

𝑏#

D

A

B

𝑐"

𝑐!

A

B

𝑃!

𝑃"

𝑃#
Figure 4: Three pipelines in case studies. (P1): finding partners in smart foodsheds using PPOD. (A)
YAML loader to load LinkML of PPOD; (B) minimized view and (B’) maximized view of ontology
filter; (b1, b2) user-selected filters; (b3) user-brushed query graph G′

ont; (C) KG querier to execute
SPARQL on PPOD; (D) code editor to display the generated SPARQL; (E) table viewer displays the
queried data. (P2): Information retrieval from Microsoft Academic Knowledge Graph. (A) query editor
to write the SPARQL; (B) KG querier specified with the MAKG endpoint; (c1, c2) table visualizer to
reveal the data patterns from results. (P3): State-level resilience and influence in the US agricultural
multi-commodity flow network in 2012 and 2017.

Month 2021 11

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

THEME/FEATURE/DEPARTMENT

complete complex tasks and achieve their goals
efficiently. E1 noted that the system has great
potential to democratize access to data visualiza-
tion and promote the co-production of knowledge.
They also highlight the system’s ability to incor-
porate knowledge graphs and tabular data, which
is particularly useful for small and medium-scale
practitioners, like independent grocers.E1 also
mentioned that the system is valuable for sci-
entists who may not be familiar with AI, as it
provides access to high-quality visualizations of
data patterns. In the PPOD case study, the system
demonstrated its potential by showing the value
of developing a food systems ontology foundry
for aligning databases and facilitating federated
learning. Another expert E2 expressed excitement
about the system’s potential to benefit a wide
range of users and looked forward to its continued
development and success. E3 expressed interest
in using the system to explicitly map a wide
range of sustainability activities taking place in
working landscapes, potentially providing valu-
able insights into how to better manage and
sustain these landscapes.

Conclusion
In this paper, we introduce an interactive

knowledge and learning environment (IKLE)
to support various interactions with knowledge
graphs in smart foodsheds. To establish this in-
telligent environment, we collaborated with do-
main experts to design a novel dataflow sys-
tem. Furthermore, the three case studies manifest
their usefulness to policymakers and practitioners
working in smart foodsheds under various sce-
narios. It also demonstrates that our system can
be easily extended to other domains, making it a
useful tool for a wide range of applications.

Acknowledgements
This work is financially supported by the

NSF-funded AI institute [Grant No. OAC-
2112606].

REFERENCES

1. Deagen, Michael E., et al. “FAIR and Interactive Data

Graphics from a Scientific Knowledge Graph.” Scientific

Data 9.1 (2022): 1-11.

2. Auer, Sören, et al. “Dbpedia: A nucleus for a web of open

data.” The semantic web. Springer, Berlin, Heidelberg,

2007. 722-735.

3. Vrandečić, Denny, et al. “Wikidata: a free collaborative

knowledgebase.” Communications of the ACM 57.10

(2014): 78-85.

4. Holden, Nicholas M., et al. “Review of the sustainability of

food systems and transition using the Internet of Food.”

npj Science of Food 2.1 (2018): 1-7.

5. Devlin, Jacob, et al. “Bert: Pre-training of deep bidirec-

tional transformers for language understanding.” arXiv

preprint arXiv:1810.04805 (2018).

6. Brown, Tom, et al. “Language models are few-shot learn-

ers.” Advances in neural information processing systems

33 (2020): 1877-1901.

7. Liu, Yinhan, et al. “Roberta: A robustly optimized bert

pretraining approach.” arXiv preprint arXiv:1907.11692

(2019).

8. Stolte, Chris, et al. “Polaris: A system for query, anal-

ysis, and visualization of multidimensional relational

databases.” IEEE Transactions on Visualization and

Computer Graphics 8.1 (2002): 52-65.

9. Hanrahan, Pat. “Vizql: a language for query, analysis and

visualization.” Proceedings of the 2006 ACM SIGMOD

international conference on Management of data. 2006.

10. Waser, Jurgen, et al. “Nodes on ropes: A comprehen-

sive data and control flow for steering ensemble simula-

tions.” IEEE transactions on visualization and computer

graphics 17.12 (2011): 1872-1881.

11. Yu, Bowen, et al. “VisFlow-Web-based visualization

framework for tabular data with a subset flow model.”

IEEE transactions on visualization and computer graph-

ics 23.1 (2016): 251-260.

12. Yu, Bowen, et al. “FlowSense: A natural language inter-

face for visual data exploration within a dataflow system.”

IEEE transactions on visualization and computer graph-

ics 26.1 (2019): 1-11.

13. Javed, Waqas, et al. “ExPlates: spatializing interactive

analysis to scaffold visual exploration.” Computer Graph-

ics Forum. Vol. 32. No. 3pt4. Oxford, UK: Blackwell

Publishing Ltd, 2013.

14. Mei, Honghui, et al. “Viscomposer: A visual pro-

grammable composition environment for information vi-

sualization.” Visual Informatics 2.1 (2018): 71-81.

15. Xiang, Xiayu, et al. “Knowledge graph-based clinical

decision support system reasoning: a survey.” 2019 IEEE

Fourth International Conference on Data Science in Cy-

berspace (DSC). IEEE, 2019.

16. Shao, B., et al. “A survey of research hotspots and

frontier trends of recommendation systems from the

12 Publication Name

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

perspective of knowledge graph.” Expert Systems with

Applications, 165, 113764 (2021).

17. Hollander, Allan D., et al. “Toward smart foodsheds:

Using stakeholder engagement to improve informatics

frameworks for regional food systems.” Annals of the

American Association of Geographers 110.2 (2020):

535-546.

18. Chen, Yu, et al. ”Personalized food recommendation as

constrained question answering over a large-scale food

knowledge graph.” Proceedings of the 14th ACM Inter-

national Conference on Web Search and Data Mining.

2021.

19. Raissya, Hana, Fariz Darari, and Fajar J. Ekaputra.

“VizKG: A Framework for Visualizing SPARQL Query

Results over Knowledge Graphs.” VOILA (2021).

20. Rao, Jinmeng, et al. “Measuring network resilience via

geospatial knowledge graph: a case study of the us

multi-commodity flow network.” Proceedings of the 1st

ACM SIGSPATIAL International Workshop on Geospatial

Knowledge Graphs. 2022.

21. IBM SPSS Modeler. http://www.ibm.com/software/products/en/spss-

modeler.

Yamei Tu is a Ph.D. student at OSU, and her research
interests are visualization and NLP. Contact her at
tu.253@osu.edu.

Xiaoqi Wang is a Ph.D. student at OSU, and her
research interests include explainable AI and graph
drawing. Contact her at wang.5502@osu.edu.

Rui Qiu is currently a Ph.D. student at OSU and his
research interests include visual analysis and clinical
informatics. Contact him at qiu.580@osu.edu.

Han-Wei Shen is a full professor at the Ohio State
University. His primary research interests include sci-
entific visualization and computer graphics. Contact
him at shen.94@osu.edu.

Michelle Miller works as a practicing economic an-
thropologist engaged in participatory action research.
Contact her at mmmille6@wisc.edu.

Jinmeng Rao is a Ph.D. student at the Uni-
versity of Wisconsin-Madison. Contact him at jin-
meng.rao@wisc.edu.

Song Gao is an Associate Professor at the Uni-
versity of Wisconsin-Madison and the director of
the Geospatial Data Science Lab. Contact him at
song.gao@wisc.edu.

Patrick R Huber is a Project Scientist with the Food
Systems Lab. He directs the working landscapes
portfolio of projects for FSL. Contact him at prhu-
ber@ucdavis.edu.

Allan D Hollander is a geographer whose work
focuses on the use of information systems for en-
vironmental management. Contact him at adhollan-
der@ucdavis.edu.

Matthew Lange is the CEO and CSO of the Interna-
tional Center for Food Ontology Operability Data and
Semantics (IC-FOODS). Contact him at matthew@ic-
foods.org.

Christian R Garcia is currently working in CIC on
Abaco. Contact him at cgarcia@tacc.utexas.edu.

Joe Stubbs leads the Cloud and Interactive
Computing (CIC) group. Contact him at
jstubbs@tacc.utexas.edu.

Month 2021 13

This article has been accepted for publication in IEEE Computer Graphics and Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCG.2023.3263960

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Wisconsin. Downloaded on April 17,2023 at 15:42:48 UTC from IEEE Xplore. Restrictions apply.

	Related Work
	Dataflow Visualization System
	Knowledge Graph Interaction
	Internet of Food

	Preliminaries
	Dataset
	Problem Statement

	Requirement Analysis
	Method
	Overview
	Ontology Design and Parse
	Querying Knowledge Graph
	Visualization Recommendation
	Data Flow Visualization System
	User Interface
	Data Loader
	Data Analyzer
	Data Viewer
	System Architecture

	Evaluation of SPARQL generation
	Evaluation of IKLE
	Case Study
	Finding partners in smart foodsheds.
	Information Retrieval
	Resilience Analysis

	Expert Feedback
	Conclusion
	Acknowledgements
	REFERENCES
	Biographies
	Yamei Tu
	Xiaoqi Wang
	Rui Qiu
	Han-Wei Shen
	Michelle Miller
	Jinmeng Rao
	Song Gao
	Patrick R Huber
	Allan D Hollander
	Matthew Lange
	Christian R Garcia
	Joe Stubbs

