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Abstract: Human mobility data play a crucial role in many fields such as infectious diseases, transportation, 

and public safety. Although the development of Information and Communication Technologies (ICT) has made 

it easy to collect individual-level positioning records, raw individual trajectory data are still limited in 

availability and usability due to privacy issues. Developing models to generate synthetic trajectories that are 

statistically close to the real data is a promising solution. This study proposed a novel trajectory generation 

method called Act2Loc (Activity to Location), which combined machine learning and mechanistic models. 

First, an activity-sequence generation model was constructed based on machine learning models (i.e., K-

medoids and Transformer) to generate individual activity sequences aligning with human activity patterns. Then, 

a spatial-location selection model was proposed based on mechanistic models (e.g., Universal Opportunity 

model) to explicitly determine the specific locations of the activities in each generated sequence. Experimental 

results showed that compared to baselines based on purely machine learning or mechanistic models, Act2Loc 

can better reproduce the spatio-temporal characteristics of the real data, with additional advantage of low data 

requirements for training, proving its potential for generating synthetic trajectories in practice. This research 

offers new insights on knowledge-guided GeoAI models for human mobility.  

Keywords: Trajectory generation, machine learning, mechanistic model, human mobility behavior, activity 

sequence 

1. Introduction 

Spatio-temporal trajectories of individuals hold significant implications for various applications such as 

epidemic simulation, transportation management, and crowd gathering warning (Wang et al., 2021; Dodge et 

al. 2020; Long et al. 2018). For instance, simulating the movement patterns of suspects and residents can aid in 

identifying hotspots of criminal incidents, thereby reducing crime rates (Zhu and Wang, 2021); integrating 

individual movement processes to construct spatially explicit models of disease transmission has become a 

cutting-edge technique for epidemic prediction and control strategy simulation. (Yin et al., 2021).  

mailto:kang.liu@siat.ac.cn


International Journal of Geographical Information Science 

2 

 

The rapid development of modern information and communication technologies (ICTs) in recent years has 

facilitated the collection of large-scale human mobility data. Various types of actively or passively collected 

trajectory data, including Global Navigation Satellite Systems (GNSS) records, cellular signaling data, and 

social media check-ins, have promoted the development of many related fields and yielded significant practical 

value (Dodge et al. 2020; Yue et al. 2014). However, despite the wide collection of individual trajectory data, 

its availability is still greatly limited due to concerns regarding personal privacy and data security (Anastasiou 

et al., 2022; Kamel Boulos et al., 2022). Moreover, the instability of data communication, transmission, and 

storage devices can often result in data redundancy, loss, and noise, which severely affects the usability of the 

data. In light of the above problems, generating synthetic trajectories that are statistically close to the real data 

without recycling real information is a potential solution (Savage, 2023; Pappalardo et al., 2023).  

Existing trajectory generation methods can be divided into two categories: mechanistic models and 

machine learning. Mechanistic models are mainly studied by researchers in the field of statistical physics. 

Specifically, researchers firstly uncover the underlying statistical regularities of human mobility by analyzing 

massive individual spatio-temporal behavior data; then they establish mechanistic models to simulate individual 

mobility processes to explain the reasons and potential dynamic influences behind these regularities (Barbosa 

et al., 2018). The main advantage of mechanistic models lies in their ability to explicitly characterize individual 

mobility processes based on predefined mechanisms, using limited input data and parameters (Brockmann et 

al., 2006; Gonzalez et al., 2008; Rhee et al., 2011). However, existing mechanistic models are still insufficient 

in depicting individuals’ complex mobility patterns, which results in significant disparities between the 

generated and the real trajectories. Machine learning (including deep learning) based trajectory generation 

methods typically construct generative models (e.g., generative adversarial network) based on neural networks 

(Luca et al., 2021; Rao et al. 2020). Trajectories generated by those data-driven methods tend to closely 

approximate the real ones because these models can effectively learn the complex and implicit human mobility 

behavior from the data. However, machine learning methods are usually data-hungry and lack of explainability 

due to their "black box" nature. Although research on mechanistic models and machine learning has existed for 

many years, they are still developing independently within their respective domains without effective integration 

and complementation.  

By combining machine learning and mechanistic models, this study proposed a novel trajectory generation 

method called Act2Loc (Activity to Location). The method firstly employed machine learning models to 

generate individual activity sequences, then applies mechanistic models to determine the locations of activities 

in each sequence. The main contributions of this research can be summarized as follows.  

(1) An activity-sequence generation model was constructed using two machine learning models, K-

medoids and Transformer, to generate individual activity sequences based on clusters of real activity sequence 

data, which can help capture and preserve the temporal patterns of human daily activities.  

(2) A spatial-location selection model was established using mechanistic models, including the advanced 

Universal Opportunity model for depicting individual’s destination selection behavior, to explicitly determine 

specific locations of activities in each generated sequence, which can enable the reproduction of spatial 
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characteristics of human mobility behavior.  

(3) The proposed method was comprehensively evaluated. The results demonstrated that the proposed 

method outperforms other trajectory generation methods based on purely machine learning models or 

mechanistic models as it adaptively combines and leverages the strengths of both. 

(4) The proposed method can generate a given number of synthetic trajectories using only small-sample 

individual activity sequence data and population distribution data, with low data requirements and ease of 

implementation.  

The rest of this paper is organized as follows. Section 2 presents a review on existing studies of trajectory 

generation methods based on mechanistic models and machine learning. Section 3 provides the mathematical 

statement of this problem. Section 4 introduces the details of the proposed Act2Loc method. Section 5 describes 

the experimental results of the case study. Section 6 is devoted to discussions and concludes this work.  

2. Literature review 

2.1. Trajectory generation methods based on mechanistic models 

Based on datasets such as dollar-bill tracking records, mobile phone positioning data, check-in records in 

social media, and taxi trajectories, researchers in the field of statistical physics have identified statistical 

regularities of human mobility behavior. For example, researchers found that the jump length of travelers using 

multiple transportation modes follows power-law or truncated power-law distributions (Brockmann et al., 2006; 

Gonzalez et al., 2008; Rhee et al., 2011), while the jump length of travelers using single transportation modes 

follows an exponential or approximate exponential distribution (Liang et al., 2012; Roth et al., 2011). On this 

basis, researchers modeled the individual mobility process to reveal the underlying microscopic mechanisms 

behind these macroscopic statistical laws, and thus formed a series of individual trajectory generation models. 

For instance, Brockmann et al. (2006) proposed the Continuous Time Random Walk (CTRW) model, which 

incorporates both power-law distributions of jump length and waiting time, to simulate the trajectories of dollar-

bills in large-scale geographic spaces. Song et al. (2010) proposed the Exploration and Preferential Return (EPR) 

model to depict the human behavior mechanism proposed by Gonzalez et al. (2008) that individuals have both 

inclinations to explore new locations (i.e., unvisited locations) and return to familiar locations (i.e., previously 

visited locations). Many studies have extended the EPR model by incorporating more complex individual 

behavioral mechanisms, social mechanisms, and geographic features to better reproduce the statistical patterns 

(Barbosa et al., 2015; Alessandretti et al., 2018; Dong et al., 2021; Toole et al., 2015; Cornacchia et al., 2021; 

Pappalardo et al., 2018). However, these models and their variations mainly focus on the spatial characteristics 

of human mobility and do not adequately consider the spatio-temporal features.  

At the intra-urban scale, residents' activities exhibit clear periodic and regular temporal characteristics, 

such as circadian rhythm and commuting behavior (Eagle et al., 2009; Jiang et al., 2012). To capture both spatial 

and temporal features of human mobility, researchers have proposed a series of trajectory generation models 

(Yan et al., 2011; Jiang et al., 2016; Pappalardo et al., 2018; Wang et al., 2019). Two typical models for intra-

urban scale are the w-EPR model proposed by Wang et al. (2019) and the DITRAS (DIary-based TRAjectory 
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Simulator) model proposed by Pappalardo et al. (2018). The w-EPR model incorporates distance decay effects 

and spatial heterogeneity of population distribution into the exploration phase of the EPR model. However, this 

model makes a peremptory rule for all individuals to have the same out-of-home duration and determines 

waiting time for all locations based on a statistical distribution, which is divorced from reality. DITRAS is a 

trajectory generation framework consisting of a diary generator and a trajectory generator. The diary generator 

is a data-driven Markov-based model, which generates individual activity diaries by capturing the probabilities 

of individuals following or breaking their "routine" from the real data. The trajectory generator is an improved 

EPR model (i.e., d-EPR) that generates locations for each individual diary. However, DITRAS only uses a 

binary indicator (i.e., staying at home or not) as the "routine" to generate activity diaries, overlooking other 

prominent activities such as work and others (Jiang et al., 2012). In addition, the determination of the next 

activity modeled by the Markov model is only relied on the current activity and independent of historical 

activities. This "memoryless" property results in the loss of original temporal patterns in the generated activity 

diaries.  

Overall, the advantage of mechanistic models is that they can explicitly characterize individual movement 

processes based on predefined mechanisms, using limited input data and parameters. However, existing 

mechanistic models are still insufficient in depicting the complex human mobility behavior, making significant 

differences between the generated and the real trajectories.  

2.2. Trajectory generation methods based on machine learning models 

Trajectory generation using machine learning is another mainstream approach primarily concentrated in 

the field of computer science. Early approaches focused on Markov-based models (Gambs and Killijian, 2012; 

Mathew et al., 2012; Chen et al., 2014; Qiao et al., 2015), but such models have limited ability to exploit 

historical location sequence information, and the predicted position can only be the one that has existed in the 

historical location sequence. Conventional machine learning methods, such as support vector machines (SVM) 

and decision trees, require manual definition of features from historical trajectories as model input to predict 

the next trajectory point (Baraglia et al., 2013; Muntean et al., 2015).  

With the rapid development of deep learning, Recurrent Neural Networks (RNNs), which are widely used 

for sequence generation tasks such as machine translation and speech recognition, have also been applied in 

trajectory generation. Long Short-Term Memory (LSTM), a variation of RNNs, has gained widespread 

popularity due to its ability to address the vanishing gradient problem inherent in traditional RNNs and learn 

long-term dependencies in sequences (Berke et al., 2022; Song et al., 2016; Li et al., 2020). When using RNNs 

as generation models, they are prone to a phenomenon known as exposure bias during the inference stage. This 

is because the model generates a sequence iteratively and predicts the next token based on its previously 

predicted ones, which may never have been observed in the training data. This discrepancy between training 

and inference can accumulate as the sequence progresses, and becomes more pronounced as the length of the 

sequence increases (Yu et al., 2017).  

To effectively capture useful information from historical trajectory sequence, researchers also introduced 
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attention mechanism into deep learning models. For example, Feng et al. (2018) used RNNs to capture complex 

transfer patterns within trajectory sequences, and designed attention modules to capture multi-timescale periodic 

effects from historical trajectories. Some studies directly exploited attention mechanisms to generate trajectories 

(Xia et al., 2021; Feng et al., 2020). For instance, Xia et al. (2021) designed different attention-mechanism 

neural networks to capture the spatio-temporal dependencies within and between trajectories, and achieved 

sparse trajectory completion. 

In recent years, Generative Adversarial Networks (GANs) have been applied to trajectory generation. 

Specifically, the generator is responsible for generating trajectories and aims to make the generated trajectories 

as close as possible to the real ones. While the discriminator performs a classification task, aiming to accurately 

determine whether the input trajectory is generated or real and provide feedback to the generator to guide its 

training. Through adversarial learning, both the generator and discriminator improve their performance. Ouyang 

et al. (2018) constructed a generator and a discriminator both using Convolutional Neural Networks (CNNs), 

where the generator could directly generate complete trajectories with random noises as input. However, this 

model had a simple design, limited utilization of effective information, and relatively poor performance. Rao et 

al. (2020) encoded the spatial, temporal, and semantic information of trajectories and designed a generator and 

a discriminator that integrated LSTMs. The results showed that given real trajectories and random noises, the 

generated trajectories effectively achieved the privacy protection goal and well preserved the spatial, temporal, 

and semantic features of the real trajectories. The aforementioned studies focused on generating trajectories as 

a whole output. In another GAN structure, the generator operates on a point-by-point sequence generation by 

using RNN (Kulkarni et al., 2018), self-attention mechanisms (Feng et al., 2020), A* algorithm (Jiang et al., 

2023), and others (Choi et al., 2021; Yuan et al., 2022). As the discriminator needs to perform real/fake 

classification on the complete trajectories, in these GAN structures, trajectory completion needs to be performed 

during the intermediate stages. Monte Carlo search is usually used in the discriminator to complete the trajectory 

based on the currently generated trajectory sequence. 

In addition to GANs, Variational Autoencoder (VAE) is also a typical generative model. Huang et al. (2019) 

proposed a trajectory generation method based on Sequence Variational Autoencoder (SVAE) by combining 

VAE and Seq2Seq models. The introduction of VAE allows the model to effectively learn human movement 

patterns from a small amount of trajectory data, thus generating synthetic trajectories that are not exactly the 

same as the input data but conform to their data distribution characteristics. Recently, Long et al. (2023) 

proposed a human trajectories generator consisting of user VAE and trajectory VAE, where the former can help 

learn the user distribution with all human trajectories from a group view, and the latter enables the modeling the 

complex individual mobility patterns.  

The recently emerged Diffusion models have also been applied to trajectory generation tasks (Zhu et al., 

2023; Yuan et al., 2023). For instance, Zhu et al. (2023) applied the Diffusion model to learn spatiotemporal 

features from real trajectories and generate high-quality trajectories with uncertainty and diversity of human 

mobility behavior in the real world.  

In general, machine learning, especially deep learning, can learn hidden patterns from data using various 
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ingenious and complex nonlinear methods, making the generated trajectory closer to reality. However, these 

"black-box" models and purely data-driven approaches also have drawbacks such as poor interpretability, high 

requirements for training data, complex model structures with numerous parameters, and limited generalization 

capabilities beyond observed data conditions.  

Table 1 summarizes the pros and cons of mechanistic models and machine learning models for trajectory 

generation. Although the two types of models have complementary advantages, they are still developing 

independently. To adaptively combine "white-box" mechanistic models with "black-box" machine learning 

models and leverage the advantages of both would be a beneficial and promising attempt for trajectory 

generation. 

Table 1. Comparison of trajectory generation methods based on mechanistic models and machine learning models. 

 Mechanistic models Machine learning models 

Interpretability Strong Week 

Fidelity Low High 

Demand for training data Low High 

Generalization ability Strong Week 

Parameter Few Large 

3. Preliminary 

This section firstly defines individual trajectory and activity sequence, and then formulates the problem of 

trajectory generation.  

Definition. An individual trajectory, denoted as 𝑇𝑘 , is defined as a sequence [𝑙1
𝑘 , ⋯ , 𝑙𝑁

𝑘 ], where 𝑙𝑖
𝑘 

denotes the ID of the spatial unit where individual 𝑘 spent the majority of her/his time during time slot 𝑖, i.e., 

the 𝑖th hour from 0:00 of the first observation day. The corresponding individual activity sequence, denoted as 

𝐴𝑘, is defined as a sequence [𝑎1
𝑘 , ⋯ , 𝑎𝑁

𝑘 ], where 𝑎𝑖
𝑘 denotes the type of activity (e.g., "Home”, “Work”, and 

“Other”) that individual 𝑘 conducted at spatial unit 𝑙𝑖. 𝑁 is the total number of time slots considered. For 

trajectories with a time span of one week, 𝑁  is equal to 168 (24 hours/day×7 days). The spatial units' 

coordinates are represented by longitude-latitude pairs of their geometric centers.  

Problem formulation. Given a real dataset of individual activity sequences 𝐴 = [𝐴1, ⋯ , 𝐴𝑅]  and 

population distribution on spatial units, the objective is to generate a given number of synthetic trajectories 

𝑇′ = [𝑇1, ⋯ , 𝑇𝐺] that exhibit similar spatio-temporal characteristics to the real trajectory data.  

4. Methodology 

In this research, we introduce a novel trajectory generation method called Act2Loc (Activity to Location), 

as illustrated in Figure 1. Act2Loc consists of two models. The activity-sequence generation model employs 

machine learning techniques (i.e., a clustering algorithm called K-medoids and a sequence generation model 

called Transformer) trained with a real activity-sequence dataset. This model can then generate a specified 

number of synthetic individual activity sequences that follow the temporal patterns of human daily activities in 

the real data. The spatial-location selection model is built based on mechanistic models that can explicitly 
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determine the specific locations of human activities in each generated sequence based on population distribution 

data. Machine learning and mechanistic models are sequentially combined in Act2Loc to capture the temporal 

and spatial characteristics of human mobility behavior, respectively.  

 

 

Figure 1. The framework of Act2Loc for synthetic trajectory generation. 

4.1. Activity-sequence generation model based on machine learning 

Transformer (Vaswani et al., 2017), Recurrent neural networks (RNN) and its variants such as Long Short-

Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs), have been proven effective in sequence 

modeling and time series forecasting. However, when they are globally trained across all available but 

heterogenous sequences, the overall accuracy may degenerate. Existing studies have proved that prior 

subgrouping of time series is able to improve the performance of the baseline RNN models (Bandara et al., 

2020).  

Considering that human daily activities often exhibit regular routines or temporal patterns (Eagle et al., 
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2009; Jiang et al., 2012; Ji et al., 2023), this study adopts a similar idea for generating individual activity 

sequences. Specifically, we divide the individual activity sequence data into separate clusters using K-medoids 

algorithm, and then train different activity-sequence generation models based on different clusters of sequence 

data using Transformer.  

4.1.1. Clustering of individual activity-sequence data 

We cluster the individual activity-sequence data using the K-medoids algorithm (Kaufman and Rousseeuw, 

1990), and select the optimal number of clusters by using the Silhouette coefficient (Rousseeuw, 1987). Through 

this way, individual activity sequences in the same cluster would have the similar temporal pattern. 

K-medoids is a clustering algorithm that is similar to K-means but uses medoids instead of means. A 

medoid is defined as the data point within a cluster that has the smallest average dissimilarity to all other points 

in the same cluster. In other words, it is the most centrally located point in the cluster. One advantage of K-

medoids over K-means is that it is more robust to outliers since it uses medoids instead of means. Medoids are 

less sensitive to outliers since they are actual data points in the cluster rather than just the average of all points. 

Additionally, K-medoids can be used with arbitrary dissimilarity measures, whereas K-means generally requires 

Euclidean distance. In this study, Levenshtein distance (Levenshtein, 1966), a string metric for measuring the 

difference between two sequences, is used to measure the distance between two individual activity sequences.  

Since residents usually have regular daily routines (Song et al., 2010; Teixeira et al., 2021; Ji et al., 2023), 

significant clusters can be identified from small samples of individual activity-sequence data (Chen et al., 2016). 

To generate N trajectories, we need to obtain N activity sequences by randomly sampling with replacement from 

the real individual activity-sequence data, while preserving the relative proportions of different clusters in the 

original data.  

4.1.2. Construction of individual activity-sequence generation model 

For activity sequences in each cluster, we train an attention-based neural network, Transformer (Vaswani 

et al., 2017), as an individual activity-sequence generation model specifically for that activity pattern. Figure 2 

demonstrates the training phase and generation phase of the model. A Transformer consists of an encoder and 

a decoder. Specially, we add time-ID features to improve the accuracy of the generated activity sequences. The 

encoder’s inputs in both the training and generating phases are the same: the full length of activity sequence 

[𝑎1, ⋯ , 𝑎168] and its corresponding time-ID sequence [𝑡1, ⋯ , 𝑡168] (i.e., chronologically ordered indexes). 

The decoder’s inputs in the training phase activity sequence [𝑎1, ⋯ , 𝑎167] and its corresponding time-ID 

sequence [𝑡1, ⋯ , 𝑡167], while the training target is activity sequence [𝑎2, ⋯ , 𝑎168].  
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Figure 2. Illustration of individual activity-sequence generation model based on Transformer. 

For the embedding layer, we perform embedding on activity-type 𝑎𝑖 and time-ID 𝑡𝑖 with random matrix 

𝑊𝑎
𝑁𝑎×256

 and 𝑊𝑡
𝑁𝑡×256

, where 𝑁𝑎  and 𝑁𝑡  are the number of unique activity types and time IDs in the 

activity-sequence dataset. Furthermore, we concatenate the output embeddings:  

𝑒𝑖
𝑎 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑎𝑖; 𝑊𝑎

𝑁𝑎×256
), (1) 

𝑒𝑖
𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡𝑖; 𝑊𝑡

𝑁𝑡×256
), (2) 

𝑒𝑖
𝑎,𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑖

𝑎 , 𝑒𝑖
𝑡)𝑒𝑖

𝑎, (3) 

where 𝑐𝑜𝑛𝑐𝑎𝑡(·)  is a concatenation operator that concatenates two matrices into one; 𝑒𝑖
𝑎 ∈ 𝑅1×256, 𝑒𝑖

𝑡 ∈

𝑅1×256 and 𝑒𝑖
𝑎,𝑡 ∈ 𝑅1×512 are embeddings of activity-type 𝑎𝑖 , time-ID 𝑡𝑖 and the concatenated results of 

those two, respectively. Specifically, 𝑒𝑖
𝑎,𝑡

 includes three types of embedding: Home-type embedding, Work-

type embedding and Other-type embedding. 
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To make use of the order of the sequence, we add positional encoding 𝑃𝐸(𝑝𝑜𝑠,𝑖) ∈ 𝑅1×512 to the input 

embedding 𝑒𝑖
𝑎,𝑡

 in the encoder and the decoder stacks through sine and cosine functions of different 

frequencies: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) , (4) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) , (5) 

𝑒�̃� = 𝑒𝑖
𝑎,𝑡 + 𝑃𝐸(𝑝𝑜𝑠,𝑖), (6) 

where 𝑝𝑜𝑠, 𝑖 and 𝑑𝑚𝑜𝑑𝑒𝑙 are the position of the activity type in the sequence, the dimension of each feature 

embedding, and the total dimension of the embedding, respectively. Furthermore, the encoder’s input 

embedding [�̃�1, �̃�2, ⋯ , �̃�168] and the decoder’s input embedding [�̃�1, �̃�2, ⋯ , �̃�167] can be represented as �̃�𝑒𝑛 ∈

𝑅168×512 and �̃�𝑑𝑒 ∈ 𝑅167×512. 

Then we use the encoder and decoder to obtain the embedding 𝐸′̃𝑔𝑐 ∈ 𝑅167×512 for generation. With the 

Transformer encoder and the embedding �̃�𝑒𝑛 ∈ 𝑅168×512 as input, we gain the embedding �̃�𝑔𝑐 ∈ 𝑅168×512 

enhanced by global activity context and take it as the key (𝑲 ∈ 𝑅168×512) and value (𝑽 ∈ 𝑅168×512) matrices 

for the Transformer decoder. The decoder then uses the Multi-Head Self-Attention mechanism to combine the 

key (𝑲), value (𝑽), and the embedding of its input �̃�𝑑𝑒 ∈ 𝑅167×512 to generate the final embedding. 

�̃�𝑔𝑐 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟_𝑒𝑛𝑐𝑜𝑑𝑒𝑟(�̃�𝑒𝑛), (7) 

𝑲, 𝑽 = �̃�𝑔𝑐, �̃�𝑔𝑐 , (8) 

𝐸′̃𝑔𝑐 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟_𝑑𝑒𝑐𝑜𝑑𝑒𝑟(�̃�𝑑𝑒 , 𝑲, 𝑽), (9) 

Finally, the Linear transformation and the Softmax layer are applied to the output of the decoder to obtain 

the probability matrix 𝑀𝑝𝑟𝑜𝑏 ∈ 𝑅167×𝑁𝑎 of the target activity sequence. This matrix is then used to train the 

model with the cross-entropy loss function:  

𝑀𝑝𝑟𝑜𝑏 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑖𝑛𝑒𝑎𝑟(𝐸′̃𝑔𝑐)), (10) 

where each row of 𝑀𝑝𝑟𝑜𝑏 corresponds to a probability vector of the activity type in the target activity sequence. 

In the training phase, we use Adam as the optimizer and set the learning rate as 0.0001. To avoid the “over-

fitting” problem, we adopt the “early stopping” strategy (Prechelt, 1998). The 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎 is set as 0.00001 

which sets the minimum change in validation loss that counts as an improvement. The patience argument is set 

as 20 which represents the number of epochs before stopping once the validation loss stops improving. 

In the generation phase, the encoder takes the full-length activity sequence [𝑎1, ⋯ , 𝑎168]  and the 

corresponding time-ID sequence [𝑡1, ⋯ , 𝑡168] as inputs and produces the key (𝑲) and value (𝑽) matrices for 

the Transformer decoder. For simplicity, we only show the key and value matrices in the figure. The main 
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difference between the training phase and the generation phase is the decoder inputs. In the first generation step, 

we feed activity sequence [𝑎1, ⋯ , 𝑎167] and its corresponding time-ID sequence [𝑡1, ⋯ , 𝑡167] to the decoder 

along with the key (𝑲) and value (𝑽) matrices and compute the probability matrix 𝑀𝑝𝑟𝑜𝑏
1  . Here, we use 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟(⋅) to represent the right part of the model shown in Figure 2, including Embedding Layer, Positional 

Encoding, Transformer Decoder, Linear Layer and Softmax Layer. Instead of greedy argmax, we use top-k 

sampling (Ari et al., 2018) as the decoder strategy to increase the diversity of the output, where k is the number 

of unique activity types. Then we take the last activity type 𝑎168
1  of the output sequence [𝑎2

1, ⋯ , 𝑎167
1 , 𝑎168

1 ] 

and append it to the input of the current generation step [𝑎1, ⋯ , 𝑎167] to obtain the new input activity sequence 

[𝑎2, ⋯ , 𝑎167, 𝑎168
1 ] and its corresponding time-ID sequence [𝑡2, ⋯ , 𝑡167, 𝑡168] for the next generation step. The 

superscripts of activity types represent the generation step. This process is repeated 169 times until we obtain a 

brand-new generated activity sequence [𝑎1
2, 𝑎2

3, ⋯, 𝑎168
169] of a week. 

𝑀𝑝𝑟𝑜𝑏
1 = Decoder(𝑎1, ⋯ , 𝑎167; 𝑡1, ⋯ , 𝑡167; 𝑲, 𝑽), (11) 

[𝑎2
1, ⋯ , 𝑎167

1 , 𝑎168
1 ]  =  𝑡𝑜𝑝𝑘_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑝𝑟𝑜𝑏

1 ), (12) 

𝑀𝑝𝑟𝑜𝑏
2 = Decoder(𝑎2, ⋯ , 𝑎167, 𝑎168

1 ; 𝑡2, ⋯ , 𝑡167, 𝑡168;  𝑲, 𝑽), (13) 

[𝑎3
2, ⋯ , 𝑎168

2 , 𝑎1
2]  =  𝑡𝑜𝑝𝑘_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑝𝑟𝑜𝑏

2 ), (14) 

⋯ 

𝑀𝑝𝑟𝑜𝑏
169 = Decoder(𝑎1

2, ⋯ , 𝑎166
167, 𝑎167

168; 𝑡1, ⋯ , 𝑡166, 𝑡167;  𝑲, 𝑽), (15) 

[𝑎1
169, 𝑎2

169, ⋯ , 𝑎168
169]  =  𝑡𝑜𝑝𝑘_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑀𝑝𝑟𝑜𝑏

169 ), (16) 

The hyper-parameters of the Transformer we utilized are listed in Table 2.  

Table 2. Hyper-parameters of Transformer model used for individual activity-sequence generation. 

Hyper-Parameter Configuration 

Embedding dimension of 𝑑𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 256 

Embedding dimension of 𝑑𝑡𝑖𝑚𝑒 256 

Embedding dimension of 𝑑𝑚𝑜𝑑𝑒𝑙 512 

Feedforward layer 𝑑𝑓𝑓 1024 

Encoder layers 8 

Decoder layers 8 

Dropout 0.2 

Label smoothing 0.0 

Positional encodings Fixed absolute sinusoidal 

Decoding strategy Autoregressive top-k sampling 

Learning rate 0.0001 

Batch size 64 

Optimizer Adam 

Loss function Cross entropy 
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4.2. Spatial-location selection model based on mechanistic models 

We determine the locations (i.e., spatial units) for the activity types in each generated activity sequence 

based on mechanistic models, which can explicitly describe the individual spatial selection behavior.  

4.2.1. Location selection for the “Home” type 

Almost all individual activity sequences contain the “Home” type. The probability of a location being 

selected as an individual’s home location 𝑃𝑖
𝐻 is calculated as: 

𝑃𝑖
𝐻 =

𝑆𝑖

∑ 𝑆𝑖
, (17) 

where 𝑆𝑖 is the population of location 𝑖, and ∑ 𝑆𝑖 is the total population of all locations across the study area.  

4.2.2. Location selection for the “Work” type 

“Home” and “Work” are the most significant and time-lasting activities for most people (Eagle et al., 2009; 

Jiang et al., 2012), while the locations of other activities such as dining and recreation are typically constrained 

by home and work locations (Gonzalez et al., 2008; Yan et al., 2011; Wang et al., 2019). Therefore, building 

upon the determination of home location, we first select work location (if “Work” type exists in the individual 

activity sequence) and then proceed to choose locations for other activities (if “Other” type exists in the 

individual activity sequence). 

The transition probability for an individual to move from one location to another can be calculated by many 

mechanistic human mobility models, such as the gravity-based models (Zipf et al., 1946), rank-based models 

(Noulas et al., 2012), and intervening-opportunity-based models (Stouffer et al., 1940; Simini et al., 2012; Liu 

et al., 2019; Liu and Yan, 2020). Among those models, we choose the Universal Opportunity (UO) model 

proposed by Liu and Yan (2020) as our spatial-location selection model for “Work” type. The UO model is an 

intervening-opportunity-based model that has been proved to have better performance in predicting human 

mobility at different spatiotemporal scales. As shown in Figure 3, the basic rule of this model is that when 

individuals choose a destination, they will evaluate the opportunity benefits that all locations will bring to them, 

and they comprehensively compare the opportunity benefit of the origin, the opportunity benefit of the potential 

destination, and the benefits of the intervening opportunities. Specifically, the probability of an individual at 

origin 𝑖 choosing destination 𝑗 as the destination is defined as:  

𝑃𝑖𝑗 =
(𝑃𝑖+𝛼𝑠𝑖𝑗)𝑃𝑗

[𝑃𝑖 + (𝛼 + 𝛽)𝑠𝑖𝑗][𝑃𝑖 + 𝑃𝑗 + (𝛼 + 𝛽)𝑠𝑖𝑗] 
. (18) 

Here, 𝑃𝑖 and 𝑃𝑗 represent the opportunity benefit of location 𝑖 and location 𝑗, respectively. 𝑠𝑖𝑗 represents 

the intervening opportunities between them (excluding 𝑃𝑖  and 𝑃𝑗 ), which refers to the total opportunities 

within a circle centered at location 𝑖 with radius equaling to the distance between locations 𝑖 and 𝑗. 𝛼 is a 

parameter representing the preference of individuals towards high benefits when choosing locations, and 𝛽 is 

another parameter representing the preference of individuals towards short distances when choosing locations. 

The values of 𝛼 and 𝛽 range from 0 to 1, and higher values indicate a higher preference.  
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Figure 3. Illustration of the Universal Opportunity (UO) model for location selection. 

In terms of selecting the location of “Work” type in each generated individual activity sequence, 𝑃𝑖 

represents the population of the home location, 𝑃𝑗 represents the population of the potential destination 𝑗, and 

𝑠𝑖𝑗 refers to the total population (excluding 𝑃𝑖 and 𝑃𝑗) within a circle centered at the home location with radius 

equaling to the distance between the home location and the destination 𝑗.  

4.2.3. Location selection for “Other” type 

Some individual activity sequences contain one or more “Other” types. Similarly, when choosing locations 

for “Other” type, individuals compare the benefits of her/his current location, the benefits of different potential 

“Other” locations, and the intervening opportunities. Using the same mechanistic model applied in Section 4.2.2 

for work location selection, this study applies equation (18) to calculate the probability of the individual at 

current location 𝑖 choosing location 𝑗 as the destination for “Other” type.  

By fitting the real commuting and non-commuting flow data in the study area, this research determines the 

best preference parameters ( 𝛼1 = 0.13, 𝛽1 = 0.61 ) for work location selection and the best preference 

parameters (𝛼2 = 0.01, 𝛽2 = 0.45) for other activity location selection. It can be seen that the parameter 𝛽 is 

larger than 𝛼 , indicating that residents have a greater preference for short distance than for high potential 

benefits in both situations. This phenomenon is particularly significant in the selection of other activity locations 

compared to the selection of work locations as 𝛽2/𝛼2 >  𝛽1/𝛼1 , which is consistent with the notion that 

individuals usually have less flexibility in choosing a nearer workplace and have limited time budget for 

conducting “Other” activities at a distant place. 

5. Results 

5.1 Data and processing 

We chose Shenzhen City, China as the study area to validate the effectiveness of our proposed method. 

Located in southern China, Shenzhen is one of the largest and most developed cities in the country. According 
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to The Seventh National Population Census of Shenzhen City1, it has a permanent resident population of 

approximately 17.56 million as of midnight on November 1st, 2020. We divided the study area into 1km grids 

and used two datasets – population data and trajectory data – for our experiments. The population data was 

obtained from WorldPop2 and comprised the 100m grid population distribution (2020 version). Figure 4 depicts 

the population distribution of Shenzhen City aggregated at the 1km grids.  

The trajectory data was sourced from the Smart Steps3, a big data company under China Unicom, one of 

the three major telecommunications operators in China, which has large population coverage. Our study utilized 

trajectories of 200,000 individuals of a week from November 1 to November 7, 2021. Each original trajectory 

is composed of a sequence of locations in the format of [𝑢𝑖𝑑, 𝑠𝑡𝑖𝑚𝑒, 𝑒𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑛𝑔], where 𝑙𝑎𝑡 and 

𝑙𝑛𝑔 denote the latitude and longitude of the location, while 𝑠𝑡𝑖𝑚𝑒 and 𝑒𝑡𝑖𝑚𝑒 denote the start and end time 

of the individual stayed at the location. We performed a spatial mapping of trajectory locations to spatial units 

of the study area, and a temporal mapping of trajectory locations to 1-hour-interval time slots (e.g., 13:00-14:00) 

of the time span (i.e., a week). If there are more than one location within the same time slot, the location with 

the longest dwell time was determined as the location for the time slot. After those data preprocessing, each 

individual trajectory can be represented as a sequence of Grid IDs with a length of 168 (24 hours/day×7 days), 

as shown in Table 3.  

Furthermore, we identified activity types from each trajectory and constructed the corresponding individual 

activity sequence, a sequence of activity types with the same time interval (i.e., 1 hour) and length (i.e., 168) as 

the trajectory. Activity types can be identified by the following rules. 

1) The location where an individual spent the longest time between 21:00 and 6:00 during the week was 

regarded as her/his home location and labeled as activity type of “Home (H)”.  

2) We determined an individual’s work location as the place where she/he spent the most time between 

9:00 and 18:00 during the week, with the exception of her/his home location. Additionally, we only 

considered a location to be a work location if the time spent there exceeded 40% of the time spent at 

the home location. If such a location exists, it was labeled as activity type of “Work (W)”. It should be 

noted that, if an individual works at the same spatial unit as her home, her work location will be 

recognized as “Home” type. But this does not affect the generated spatio-temporal trajectories after the 

spatial-location selection phase. For example, considering an individual whose daily activity sequence 

is “home (0:00-8:00) – work (8:00-18:00) – home (18:00-24:00)”. If her workplace is located close to 

her home (in the same 1km grid), our method would identify her activity sequence as “home (0:00-

8:00) – home (8:00-18:00) – home (18:00-24:00)” and determine her location between 8:00 and 18:00 

as the grid the same with her home, which is still in line with the reality.  

 
1 http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_8771927.html 
2 https://www.worldpop.org 
3 http://www.smartsteps.com 

http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_8771927.html
https://www.worldpop.org/
http://www.smartsteps.com/
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3) If a location was neither labeled as “Home (H)”, nor labeled as “Work (W)”, it would be labeled as 

“Other (O)”. Different other activity locations of the same individual were labeled as “Other1 (O1)”, 

“Other2 (O2)”, etc., which can reflect the relative richness of different individuals’ daily activities.  

Using the above steps, this study constructed 50,000 individual activity sequences from 50,000 individual 

trajectories randomly sampled from the trajectory dataset with a total of 200,000 individual trajectories.  

It is worth noting that in addition to extracting individual activity sequences from trajectory data, it is also 

possible to extract such sequences from resident travel survey data (Jiang et al., 2012). The latter may include 

a more diverse range of activity types (e.g., shopping and recreation) and avoid the issue of mistakenly 

identifying the “Work” type as the “Home" type when workplace and home are close in space. 

 

Figure 4. Map of study area and population distribution in 1km grids. 

Table 3. Example of an individual trajectory and the corresponding activity sequence of a week. 

Time slot 0:00-1:00 1:00-2:00 … 23:00-24:00 00:00-01:00 … 23:00-24:00 

Time ID 1 2 … 24 25 … 168 

Grid ID 1957 342 … 342 342 … 913 

Activity type Home (H) Other 1 (O1) … Home (H) Home (H)  Other 2 (O2) 

5.2. Generation results of individual activity sequences 

5.2.1. Evaluation metrics 

This study applied BLEU (Bilingual Evaluation Understudy) to evaluate the performance of activity 

generation model. BLEU is a precision-based metric initially proposed for evaluating the quality of text which 

has been machine-translated from one natural language to another. It computes the n-gram overlap between the 
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reference and the candidate sequences: 

𝐵𝐿𝐸𝑈𝑛 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑛 − 𝑔𝑟𝑎𝑚)𝑛−𝑔𝑟𝑎𝑚𝜖𝑝𝑝𝜖𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑛 − 𝑔𝑟𝑎𝑚′)𝑛−𝑔𝑟𝑎𝑚′𝜖𝑝′𝑝′𝜖𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
, (19) 

where 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑛 − 𝑔𝑟𝑎𝑚) is clipped by the maximum number of times the given n-gram appears in the 

corresponding reference sentence. For example, if a particular 𝑛 − 𝑔𝑟𝑎𝑚 appears twice in the candidate, but 

once at most in the reference, then we consider the matched 𝑛 − 𝑔𝑟𝑎𝑚 count as 1 not as 2. Here we use 

𝐵𝐿𝐸𝑈1 to compare each generated activity sequence (i.e., the candidate sequence) with the real one (i.e., the 

reference sequence), and use the averaged value of all real－generated sequence pairs as the evaluation metric 

for the activity-sequence generation model.  

5.2.2. Result analysis 

We compared activity sequence generation models with and without prior-clustering by K-medoids. In 

addition to Transformer utilized in our method, we also selected RNN, LSTM, and GRU as a comparison. Each 

model generated 50,000 synthetic activity sequences trained on 50,000 real activity sequences by a sequence-

to-sequence scheme similar to the Transformer introduced in Section 4.1.2.  

Table 4 shows the evaluation results based on the BLEU metric. We can see that all sequence generation 

models with prior-clustering outperformed those without prior-clustering. This is because the clustering－

generation strategy can avoid the dampening effect appeared when heterogenous activity sequences training in 

the same model. Moreover, Transformer showed an excellent performance even without prior-clustering, 

proving the suitability of Transformer in modeling human activity sequences.  

Table 4. Evaluation of different activity-sequence generation models based on BLEU metric.  

Model type Model without prior-clustering with prior-clustering 

RNN-based 

RNN 0.7037 0.8426 

GRU 0.7056 0.8367 

LSTM 0.6907 0.8513 

Attention-based Transformer 0.9891 0.9954 

Figure 5 illustrates the real activity sequences of 50,000 individuals of a week and the corresponding 

activity sequences generated by Transformer (with prior-clustering) and another comparative model, 

MarkovDiaryGenerator (MDG), the diary generator of the trajectory generation model DITRAS (Pappalardo et 

al., 2018). MDG calculates the probabilities of individuals following or deviating from their regular activity 

patterns and utilizes a Markov-based model to generate individual activity sequences. Since it is not a sequence-

to-sequence generation process, we cannot apply the BLEU metric and compare it in Table 4.  

As shown in Figure 5(a), for the real activity sequences, the optimal number of clusters is eight and four 

significant patterns can be identified, which can be described as follows.  

a) “Home-stay” pattern, indicates that individuals’ daily activities are dominated by “Home” type. This 

pattern accounts for approximately 59.41% of individuals. The “Home-stay” pattern accounts for a 
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large proportion. This is because activity sequences in our study were identified from the trajectories. 

If an individual's workplace is in the same spatial unit as her/his home, it will be recognized as "Home" 

type. However, this would not make a difference on the trajectory generation result based on our 

proposed spatial-location selection model in Section 4.2. 

b) “996-working” pattern, indicates that individuals’ activities from Monday to Saturday (starting at 9:00 

AM and ending at 9:00 PM) are dominated by “Work” type. This pattern accounts for approximately 

9.64%. 

c)  “995-working” pattern, indicates that individuals’ activities from Monday to Friday (starting at 9:00 

AM and ending at 9:00 PM) are dominated by “Work” type. This pattern accounts for approximately 

10.64%. 

d)  “965-working” pattern, indicates that individuals’ activities from Monday to Friday (starting at 9:00 

AM and ending at 6:00 PM) are dominated by “Work” type. This pattern accounts for approximately 

7.20%.  

Figure 5(b) illustrates that the individual activity sequences generated by Transformer (with prior-

clustering) exhibits four significant patterns that are highly similar to the real ones, which obviously has better 

performance than the Markov-based MDG shown in Figure 5(c). This is because in the Markov-based model, 

the transition probabilities between two consecutive activity types are based solely on the previous one. As a 

result, the newly generated activity sequences would overlook the long-term temporal patterns. In contrast, the 

Transformer has powerful ability in capturing the sequence patterns due to its attention mechanism.  

 

Figure 5. Clustering results of the real and the generated individual activity sequences. 

5.3. Generation results of individual trajectories 

In this section, we compared our proposed Act2Loc method with the baselines, which are two mechanistic 

models including DITRAS (Pappalardo et al., 2018) and w-EPR (Wang et al., 2019), and three machine learning 

models including LSTM, SeqGAN (Yu et al., 2017), and MoveSim (Feng et al., 2020).  
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As for the Act2Loc, we firstly sampled and generated 200,000 individual activity sequences based on 

50,000 real activity sequences using the activity-sequence generation model, and then generated the 

corresponding 200,000 trajectories using the spatial-location selection model.  

5.3.1. Evaluation metrics 

Five commonly used metrics are applied to depict the spatiotemporal characteristics of a trajectory dataset 

(Luca et al., 2021), and the Jensen-Shannon (JS) divergence is used to evaluate the difference in probability 

distributions of each metric between the real and the generated trajectory data. 

1) Duration: the time consistently spent at the same location visited by an individual. 

2) Displacement: the distance between two consecutive distinct locations visited by an individual. 

3) LocNum: the number of unique locations visited by an individual. 

4) Radius: radius of gyration, the feature distance around the centroid of an individual's trajectory 

calculated as: 

𝑟𝑔 = √
1

𝑛
∑ (𝑟𝑖 − 𝑟0)2

𝑛

𝑖=1
, (20) 

𝑟0 = ∑
𝑟𝑖

𝑛

𝑛

𝑖=1
, (21) 

where 𝑟𝑖 is the coordinate of trajectory point 𝑖, 𝑟0 is the centroid of the trajectory, and 𝑛 is the 

number of trajectory points. 

5) I-rank: the visiting frequencies of top-10 locations (sorting in descending order) visited by an 

individual.  

The formula for calculating JS divergence is: 

JS(𝑝|𝑞) =
1

2
𝐾𝐿(𝑝|𝑚) +

1

2
𝐾𝐿(𝑝|𝑚), (22) 

𝐾𝐿(𝑝|𝑞) = ∑ 𝑝𝑖 log (
𝑝𝑖

𝑞𝑖
)

𝑛

𝑖=1

, (23) 

where 𝑝, 𝑞 and 𝑚 correspond to the probability distributions of a metric for the real generated trajectory 

dataset, the generated trajectory dataset, and the average of their sum, respectively. A lower value of JS 

divergence signifies a greater similarity between the two probability distributions and indicates a higher level 

of fidelity of the generated synthetic trajectories. 

The Common Part of Commuters (CPC) metric is also adopted to measure the similarity of mobility flows 

between locations that are aggregated from the synthetic and the real trajectories. CPC is calculated as: 

𝐶𝑃𝐶 =
2 ∑ ∑ min(𝑇𝑖𝑗

′ , 𝑇𝑖𝑗)𝑁
𝑗=0

𝑁
𝑖=0

∑ ∑ (𝑇𝑖𝑗
′ + 𝑇𝑖𝑗)𝑁

𝑗=0
𝑁
𝑖=0

, (24) 
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where 𝑇𝑖𝑗 is the mobility flow from location 𝑖 to 𝑗 aggregated from the real trajectory data, and 𝑇𝑖𝑗
′  is the 

mobility flow from location 𝑖 to 𝑗 aggregated from the generated trajectory data. The CPC metric is bounded 

between 0 and 1, and a higher value reflects greater consistency between the real and the generated mobility 

flow, and hence, a higher degree of fidelity of the generated trajectory data.  

5.3.2. Overall performance 

Table 5 presents the JS divergences toward the five spatiotemporal metrics and the CPC metric. Our 

proposed Act2Loc method outperforms the baselines in all metrics (with the lowest JS divergence values and 

the highest CPC value), indicating that it can generate synthetic trajectories aligning statistically closer with the 

real data. Specifically, Duration, LocNum and I-rank are mainly determined by the activity-sequence generation 

model, reflecting that Transformer with prior-clustering can help capture and preserve the temporal patterns of 

the real data. While the good performance of space-related metrics at individual level (i.e., Radius, Displacement) 

and collective level (i.e., CPC) reflects the effectiveness of our proposed spatial-location selection model in 

reproducing the spatial distribution of the real data.  

From those results, we can see that the combination of machine learning and mechanistic models can 

achieve better performance than using solely machine learning or mechanistic models. Both types of models in 

Act2Loc have leveraged their strengths at the right places. Moreover, Act2Loc can generate trajectories using 

only a smaller size of individual activity-sequence data and population distribution data, which has a low 

requirement for data.  

Table 5. Performance comparison of Act2Loc and baseline models. 

Model type Model 
JS Divergence 

CPC 
Duration LocNum I-rank Radius Displacement 

Mechanistic 

models 

DITRAS 0.0113 0.3629 0.0020 0.0112 0.0165 0.2926 

w-EPR 0.4771 0.6920 0.0108 0.4476 0.0120 0.0910 

Machine learning 

models 

LSTM 0.0087 0.4143 0.0920 0.2851 0.0026 0.3798  

SeqGAN 0.0125 0.0330 0.0162 0.1960 0.0895 0.4534 

MoveSim 0.1623 0.6930 0.0039 0.6710 0.1898 0.0079 

Hybrid model Act2Loc 0.0059 0.0001 0.0018 0.0016 0.0012 0.4593 

5.3.3. Ablation experiments 

To test the effectiveness of our proposed spatial-location selection model, we substituted the UO model 

with other mechanistic models for selecting “Work” and “Other” locations. Four classical models are utilized 

for substitution and comparison, i.e., the Gravity model (Zipf et al., 1946), the Rank-based model (Noulas et al., 

2012), the Radiation model (Simini et al., 2012), and the Opportunity Priority Selection (OPS) model (Liu et 

al., 2019). It is worth to mention that the Radiation model (Simini et al., 2012) and the Opportunity Priority 

Selection (OPS) model (Liu et al., 2019) are also intervening-opportunity-based models and are covered by the 

UO model using its two parameters (𝛼 , 𝛽 ). When 𝛼 = 0  and 𝛽 = 1 , the UO model is equivalent to the 

Radiation model, while when 𝛼 = 1 and 𝛽 = 0, the UO model is equivalent to the OPS model.  
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Table 6 displayed the trajectory generation results based on the five different mechanistic models with 

individual activity sequences generated by the same model introduced in Section 4.1. We can see that metrics 

such as Duration, LocNum and I-rank seem not to be related to the choice of mechanistic models. This is because 

those metrics have been determined once the activity sequences have been generated. As for space-related 

metrics, such as Radius, Displacement and CPC, the UO model exhibits the best performance than other 

mechanistic models, indicating that it can better reproduce the spatial distributions of the real data. This may be 

because the UO model covers and balances the Radiation model and OPS model using its parameters (𝛼, 𝛽) 

and can better predict human mobility by taking both advantages of the two models.  

Table 6. Ablation of different mechanistic models in spatial-location selection model. 

Model 
JS Divergence 

CPC 

Duration LocNum I-rank Radius Displacement 

Gravity model 0.0059 0.0001 0.0018 0.0372 0.0351 0.2459   

Rank-based model 0.0059 0.0001 0.0018 0.0247 0.0402 0.3665   

Radiation model 0.0059 0.0001 0.0018 0.0146 0.0241 0.3899  

OPS model 0.0059 0.0001 0.0018 0.0326 0.0398 0.3674 

UO model 0.0059 0.0001 0.0018 0.0016 0.0012 0.4593 

5.3.4. Visualization analysis 

Figure 6 illustrates four generated individual trajectories of a week under the four activity patterns shown 

in Figure 5(b). To conveniently compare those trajectories, we selected individuals living at Minzhi Street 

(marked as a red dot) and working (if applicable) at Futian Street (marked as a blue dot). Figures 6(a) 

demonstrate an individual trajectory without a workplace outside the home location. In such situation, the other 

activity locations are mainly concentrated around the home location, which reflects the constraint effect of the 

residence. Figures 6(b)-(d) demonstrate individuals who commute between their homes and workplaces but 

with different working hours. In these cases, other activity locations are generally distributed around the 

residences and workplaces, reflecting the characteristic that individuals' other activity locations, such as dining 

and recreation, are typically constrained by their residences and workplaces (Gonzalez et al., 2008; Yan et al., 

2011; Wang et al., 2019). Moreover, individuals with longer working hours tend to have fewer other activity 

locations, and those other activity locations tend to be closer to their residences and workplaces. In contrast, 

individuals with shorter working hours tend to have more, consecutive, and distant other activity locations. This 

is because activities of “Home” and “Work” dominate human daily life, individuals with a busy work usually 

have limited time budgets to conduct “Other” activities in a distant place (Dijst et al., 2002). Overall, the 

generated trajectories' spatio-temporal characteristics are consistent with human mobility behavior in the real 

world.  
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Figure 6. Illustration of generated individual trajectories under the four significant activity patterns. 

6. Discussion and conclusions 

This study proposes a novel trajectory generation method, Act2Loc, to generate synthetic trajectories that 

are statistically close with the real data. The method firstly employs machine learning models to generate 

individual activity sequences that can well preserve the human daily activity patterns, then applies mechanistic 

models to enable the spatial-explicit selection of activity locations. The combination of these models results in 

a high-quality and transparent spatio-temporal trajectory generation method. In addition, Act2Loc only needs 

small-sample individual activity sequences and population distribution data as inputs, which are easy to obtain. 

From a perspective of scientific theory and methodology, this approach enables us to adaptively combine and 

leverage the strengths of both machine learning and mechanistic models and offers new insights on the 

knowledge-guided GeoAI for human mobility studies. While from a perspective of practice, this method directly 

addresses the limitations of raw trajectory data, such as personal privacy concerns and issues related to data 

redundancy, missing, and noise, which can substitute the real data and be applied to applications of epidemic 

simulation, transportation management, digital twin city construction, etc.  

In future work, we seek to improve our study from several perspectives. Firstly, we aim to enhance the 

modeling capability for individual mobility behavior to generate a trajectory dataset that more closely aligns 

with reality while maintaining low requirements for input data. Secondly, we plan to release a synthetic 
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trajectory generation tool that allows users to generate a specified number of trajectories based on low-cost data 

requirements. Thirdly, we intend to apply our method to more cities to validate and improve its transferability 

and robustness. Lastly, we will explore other coupling modes of machine learning and mechanistic models to 

better leverage their advantages in trajectory generation. 
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