
Annals of the American Association of Geographers

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/raag21

Transferred Bias Uncovers the Balance Between
the Development of Physical and Socioeconomic
Environments of Cities

Ce Hou, Fan Zhang, Yuhao Kang, Song Gao, Yong Li, Fábio Duarte & Sen Li

To cite this article: Ce Hou, Fan Zhang, Yuhao Kang, Song Gao, Yong Li, Fábio Duarte &
Sen Li (22 Oct 2024): Transferred Bias Uncovers the Balance Between the Development of
Physical and Socioeconomic Environments of Cities, Annals of the American Association of
Geographers, DOI: 10.1080/24694452.2024.2412173

To link to this article:  https://doi.org/10.1080/24694452.2024.2412173

Published online: 22 Oct 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=raag21

https://www.tandfonline.com/journals/raag21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24694452.2024.2412173
https://doi.org/10.1080/24694452.2024.2412173
https://www.tandfonline.com/action/authorSubmission?journalCode=raag21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=raag21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24694452.2024.2412173?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24694452.2024.2412173?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2024.2412173&domain=pdf&date_stamp=22%20Oct%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/24694452.2024.2412173&domain=pdf&date_stamp=22%20Oct%202024
https://www.tandfonline.com/action/journalInformation?journalCode=raag21


Transferred Bias Uncovers the Balance Between
the Development of Physical and Socioeconomic
Environments of Cities

Ce Hou,a,b Fan Zhang,a Yuhao Kang,c Song Gao,d Yong Li,a,b F�abio Duarte,e and
Sen Lib

aInstitute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, China;
bDepartment of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong;
cGISense Lab, Department of Geography and the Environment, University of Texas at Austin, USA; dGeospatial Data Science
Lab, Department of Geography, University of Wisconsin–Madison, USA; eSenseable City Lab, Massachusetts Institute of
Technology, USA

Evaluating the balance between a city’s physical and socioeconomic environmental development is crucial for

creating sustainable and livable urban spaces. Although they might appear contradictory, they jointly support

the comprehensive sustainable urban development strategy. Traditional methods usually focus on assessing this

balance from a specific perspective, such as how neighborhood greenery shapes real estate value. Yet, they fail to

deliver a holistic balance assessment in developing the physical and socioeconomic dimensions. To fill this gap,

this study introduces a research framework that measures this balance through house prices based on transferred

bias. Using house price as an indicator shaped by both physical and socioeconomic environments, the

framework first constructs a series of deep learning models to estimate house prices through street view images

for each city. These models capture the relationship between neighborhood appearance and house price.

Second, by leveraging transfer inference, we introduce neighborhood appearance from one city into the model

trained from another city. This process identifies the transferred bias, which is the disparity between inaccurate

inference resulting from a mismatched neighborhood appearance and the trained model. Through transferred

bias, we can quantify the differences in physical and socioeconomic environments across cities and evaluate the

urban balances of these two environments. The results show that the transferred bias effectively quantifies the

disparities among cities in physical and socioeconomic environments, thereby facilitating further investigation

into the urban balance between these two environments. Key Words: deep learning, place, street view image,
sustainable urban development, transfer learning.

S
ustainable urban development emphasizes

achieving a balance among the physical and

socioeconomic domains (Brown et al. 1987;

Porter and Linde 1995; Goodland and Daly 1996;

Basiago 1998; Mensah 2019). This balance fosters the

creation of inclusive and healthy communities

(McHarg 1969; Jacobs 2016), ensures long-term sus-

tainable development (Kaur and Garg 2019; W. Zhou,

Pickett, and McPhearson 2021), and promotes eco-

nomic growth and prosperity that benefits all residents

(Basiago 1998; Pearce, Markandya, and Barbier 2013;

Purvis, Mao, and Robinson 2019). It also represents

the parity between a city’s physical and socioeconomic

environments and reflects how these two dimensions

harmoniously coexist and support each other in urban

development. By synergistically developing the urban

physical, including urban appearance and infrastruc-

ture, and socioeconomic environment, including

social, economic, and cultural atmosphere, cities can

provide a higher quality of life, reduce social dispar-

ities, and mitigate adverse environmental impacts

(Thompson 2002; Kaivo-Oja et al. 2014; Prieto-

Curiel, Patino, and Anderson 2023).

Previous studies evaluate urban development bal-

ance by proposing city development indexes based

on the physical and socioeconomic factors (Garau

and Pavan 2018; Yan et al. 2018; Benites and

Sim~oes 2021). As Funtowicz and Ravetz (1994)
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noted, however, “No single perspective can fully

encompass the reality of the whole system” (575).

Diverse sustainable development frameworks assess

the balance between urban physical and socioeco-

nomic factors from varying perspectives, often leading

to differing and sometimes contradictory outcomes

(Gasparatos and Scolobig 2012; Rodrigues and Franco

2020). Wilson, Tyedmers, and Pelot (2007) compared

six sustainable development indicator frameworks

that can evaluate the balance between urban physical

and socioeconomic environments, producing different

or even contradictory results. This highlights a signifi-

cant challenge in identifying cities or countries that

achieve balanced development.

Transfer learning, a concept wherein knowledge

gained in one domain is applied to another related

domain (Pan and Yang 2010; Weiss, Khoshgoftaar,

and Wang 2016), can potentially serve as a novel

approach to assessing different aspects of cities’ bal-

ance (Reia, Rao, and Ukkusuri 2022; Y. Ma et al.

2024). In the process of transfer learning, the adapta-

tion enables a model trained in one domain, such as a

city with its specific characteristics, to be effectively

used in another. Such adaptation significantly reduces

the potential biases due to differences between

domains (Pan and Yang 2010). These transferred
biases, however, can be instrumental in highlighting

the differences between domains (cities) because they

reflect each domain’s unique characteristics. They can

be used to evaluate disparities in urban development,

especially in comparing the physical and socioeco-

nomic environments of different cities.
To address the subjectivity in different urban bal-

ance evaluating methods and leverage the insights

offered by transferred bias, this work introduces a new

framework for assessing the balance between the phys-

ical and socioeconomic environments across different

cities. This framework focuses on analyzing house

price due to its specific position as an indicator influ-

enced concurrently by both the physical and socioeco-

nomic environments of a city. This dual aspect of

house prices makes them particularly effective in

assessing urban balance, offering insights into the

complex relationship between a city’s built environ-

ment, its social fabric, and its economic landscape

(Ryan and Weber 2007; Nilsson 2014; Lockwood

et al. 2018; Law, Paige, and Russell 2019).
Our methodology is based on a fundamental idea:

By training deep learning models to estimate house pri-

ces in various cities, each based on the specific

neighborhood appearance as captured through street

view images (SVIs), we can establish a relationship

between the physical environment and house prices

within each city (Kang, Zhang, Gao, et al. 2021;

Kang, Zhang, Peng, et al. 2021). This relationship

inherently reflects the socioeconomic conditions, as

the distinct correlations between physical environment

and house prices in different cities are primarily influ-

enced by their respective socioeconomic settings.

Consequently, transferred bias emerges when we evalu-

ate one city’s neighborhood appearance through the

model fitted in another city, thereby reflecting the sep-

arated impacts of physical and socioeconomic factors

on house prices. By comparing these distinct impacts

from urban physical and socioeconomic environments,

we can assess the balance of development between

these environments across different urban settings.
In this study, we apply our framework to ten U.S.

cities in different developmental statuses, assessing the

balance between their physical and socioeconomic

environments. The results indicate a varied spectrum

of urban balance of developments among these cities,

demonstrating the effectiveness of our framework in

distinguishing the different states of balance. The

framework proves to be a reliable and efficient method

for comprehensively unveiling the relationship between

the physical and socioeconomic aspects of urban areas,

providing practical advice for policymakers and urban

planners for evaluating and guiding the balanced

development of urban physical and socioeconomic

environments.

Related Works

Evaluations on Urban Balance and Sustainable
Development

Sustainable urban development is significantly

influenced by the balance of both physical and

socioeconomic environments (Scharlemann et al.

2020). This harmonious progression in these two

environments fosters a foundation that synergistically

advances toward sustainable development goals

(Griggs et al. 2013; Wu et al. 2022). Such balance is

crucial for achieving not only environmental sustain-

ability but also socioeconomic prosperity (United

Nations 2015b).
Numerous studies contribute to introducing

indicators that quantify the balance between these

two environments (Mori and Christodoulou 2012;
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Phillis, Kouikoglou, and Verdugo 2017; Verma and

Raghubanshi 2018). Several indicators provide a global

outlook on cities’ balanced development through both

their physical and socioeconomic environments pro-

posed by various authoritative global organizations and

commercial research institutions (Pissourios 2013;

Phillis, Kouikoglou, and Verdugo 2017). For instance,

the City Prosperity Initiative (CPI), introduced by the

United Nations, offers a framework for evaluating the

balanced development of the physical and socioeco-

nomic environments (United Nations 2015a). The

CPI includes seventeen indicators distributed across six

dimensions: productivity, infrastructure, quality of life,

equity and social inclusion, environmental sustainabil-

ity, and urban governance and legislation. Another

representative assessment tool is the Spatial Adjusted

Livability Index (SALI), developed by the Economist

Intelligence Unit (2012), which evaluates relative

comfort based on six categories and more than forty

qualitative and quantitative factors, including stability,

health care, culture and environment, education, infra-

structure, and spatial characteristics. To deal with the

ambiguity or subjectivity of these indicators, the sus-

tainability assessment by fuzzy evaluation (SAFE) pro-

poses a method to effectively evaluate the development

levels of the physical, social, and economic environ-

ments in cities using fuzzy logic (Phillis, Kouikoglou,

and Verdugo 2017).
These global indicators are overly distilled, making

it challenging to apply them for assessing specific sit-

uations within a single country or a particular region

(Verma and Raghubanshi 2018). As a result, many

studies focus on developing indexes for cities or local

areas within their countries. The United Nations’

Sustainable Cities Development Index (SCDI)

assesses urban development in seventy-seven Brazilian

cities through the physical and socioeconomic envi-

ronments (United Nations 2023). The SCDI provides

insights into each city’s progress and improvement

areas, aiding the government in creating tailored

development strategies and prioritizing actions.

Benita, Kalashnikov, and Tuncer (2021) proposed a

Spatial Livability Index for the 203 core urban areas

in Singapore, which incorporates geographically

weighted principal component analysis to assess liv-

ability based on the physical environment, socioeco-

nomic environment, and subjective perceptions.
The subjectivity of each index and the varying

emphasis of each evaluation system led to different

assessment results (Gasparatos and Scolobig 2012).

Indicators that are suitable for one region are often

difficult to transfer to another region (Wilson,

Tyedmers, and Pelot 2007; Mori and Christodoulou

2012). Tanguay et al. (2010) investigated seventeen

relevant indicators along with 188 specific evalua-

tion criteria, and the results showed that 72 percent

of the indicators were only applicable to one or two

studies, with very few indicators appearing in five or

more studies.

Transfer Learning in Urban Analysis

All cities operate based on some common princi-

ples (Batty 2008, 2013; Schl€apfer et al. 2021). Yet,

each city is specifically shaped by its own history,

geography, and human activities, resulting in diverse

characteristics despite some shared patterns

(W. Zhou, Pickett, and Cadenasso 2017; Reia, Rao,

and Ukkusuri 2022). The transfer learning approach

enables us to not only discern these universal urban

principles but also to understand how each city’s dis-

tinct features contribute to its identity (Rountree

and Land 2000; Wang et al. 2018). Building on this,

transfer learning is also widely employed to detect

shifts in specific urban dynamics, including traffic

flow, human mobility patterns, and economic activi-

ties, across various urban scenarios (Xie et al. 2016;

R. Jiang et al. 2021). It also adapts deep learning

models for a series of similar yet distinct urban sens-

ing tasks, ranging from monitoring urban air pollu-

tion to predicting traffic flow in multiple transit

systems, thereby expanding the scope and applicabil-

ity of these models (J. Ma et al. 2019; Y. Zhang

et al. 2023).

On the other hand, when comparing the actual

situation of a city with the general principles of

urban development, we can identify the characteris-

tics and environments that correspond to each city.

These corresponding aspects might manifest as

inconsistencies or deviations from the universal prin-

ciples in certain aspects of urban development

(B. Jiang 2015). By recognizing and analyzing such

transferred bias between a city’s actual situation and

these universal principles, we gain a deeper under-

standing of each city’s specific development status,

including its strengths, challenges, and unique needs,

which provides us with urban development strategy

implications (F. Zhang and Ye 2022).

Transferred Bias 3



Exploring Urban Physical and Socioeconomic
Environment through Street View Images

SVIs directly record the physical environment of a

city. Through deep learning techniques, though, we

can infer the implicit influence of the socioeconomic

environment on the city from the physical environ-

ment (Gebru et al. 2017; F. Zhang et al. 2020). SVIs

have emerged as an outstanding tool for studying urban

environments owing to their extensive coverage, high

quality, and human-like observation perspective (Kang

et al. 2020; Hou, Li, and Zhang 2024; F. Zhang et al.

2024). By applying machine learning and geospatial

artificial intelligence techniques to these SVIs, we can

further extract valuable insights to deepen our under-

standing and analysis of urban spaces (F. Zhang et al.

2020; Wang et al. 2024). Consequently, in recent

years, SVIs have become increasingly important in

urban science, transportation, architecture, and human

perception and behavior (F. Zhang et al. 2018; Wang

et al. 2022; N. Yang et al. 2024; H. Zhou et al. 2024).

Applying deep learning to SVIs helps us to effi-

ciently extract detailed depictions of the urban physical

environment and unveil the underlying urban socio-

economic characteristics (Zhang, Xie, and Long 2023).

This combination provides a comprehensive evaluation

of both the physical and the socioeconomic environ-

ments in urban areas. SVIs have been proven valuable

in various applications: They can assess urban commer-

cial behavior (J. Yang et al. 2021), analyze street walk-

ability (Wei et al. 2024), and identify characteristics

like building age and style (Sun et al. 2022).

Additionally, these images are effective in detecting

broader social issues such as poverty and inequality

(Suel et al. 2019), criminal activities (De Nadai et al.

2020), physical disorder (J. Chen et al. 2023), and

social segregation (Yao et al. 2021).

Methodology

We develop a two-stage framework to examine the

balance of developments between a city’s physical and

socioeconomic environments using house prices, as

illustrated in Figure 1. All the cities in our study are

categorized into two types: the measured City m (the

city whose physical or socioeconomic environment sta-

tus we wish to evaluate) and the referenced City r (the
city we set as a baseline for comparison). A city can be

classified as either a measured city or a referenced city

by different processes in our analysis. In the first stage,

our framework involves training a series of deep learn-

ing models that focus on the relationship between the

physical environment (represented by SVIs) and house

prices for all the cities, respectively. In the second
stage, we apply the transfer inference, which inputs

neighborhood appearances from the measured City m
into models trained in referenced City r to infer the

house price. This process allows us to identify the trans-

ferred bias, which refers to differences between the
inferred house prices in the measured City m when

using its own model versus the model in the referenced

City r. In this process, the distribution of neighborhood

appearances across different cities is homogeneous,

allowing various deep learning models to transfer and
infer results effectively. Meanwhile, the heterogeneity

shaped by the unique neighborhood appearances of dif-

ferent cities ensures that the transferred bias accurately

reflects the differences in these cities. By analyzing this
transferred bias through different comparison strategies,

we can separately evaluate the physical and socioeco-

nomic environments across various cities and further

evaluate the balance of urban developments (underde-

veloped vs. well-developed) between urban physical
and socioeconomic environments.

Modeling the Relationship between Physical
Environment and House Prices

We employ a deep convolutional neural network

(DCNN) to capture the relationship between neigh-
borhood appearances and house prices for each city.

The model f (�) is trained by taking SVIs X as the

model’s input to predict house prices Y of the respec-

tive neighborhoods. The predicted house price is
denoted as Ŷ: This process can be described as

Equation 1. All models are adequately trained to cap-

ture the relationship between SVIs and housing prices

effectively. Consequently, this relationship across dif-

ferent cities is primarily shaped by their specific socio-
economic contexts, allowing the model to accurately

reflect the cities’ socioeconomic environment.

Ŷ ¼ fðXÞ (1)

Assessing the Balance between Urban Physical and
Socioeconomic Environment through “Transferred
Bias”

The evaluation of the balance between physical

and socioeconomic environments involves quantify-
ing the disparities in these environments, which are

4 Hou et al.



detected through the transferred bias from both
environments. The transferred bias refers to the dis-

crepancies between inaccurate inferences resulting
from a mismatch between neighborhood appearance

and model, which is quantified through transfer
inference. The transfer inference result, represented

as Yˆmr, is calculated by introducing SVIs Xm from
the measured city (City m) into the model fr(�)
trained in the referenced city (City r). The whole

process can be described by Equation 2. When m¼ r,
the model predicts the actual house price, whereas

when m 6¼ r, it represents transfer inference. We

introduce different strategies to identify the trans-

ferred biases from their physical and socioeconomic

environments, respectively.

Ŷmr ¼ frðXmÞ (2)

Transferred bias in the socioeconomic environ-

ment ds r,mð Þ can be calculated as the difference

between the inferred house prices in the measured

City m when using its own model versus the model

Figure 1. A two-stage conceptual framework for leveraging deep learning to quantify differences in physical and socioeconomic

environments between cities using house price data. In Stage 1, a deep learning model is trained using neighborhood appearance data to

predict house prices in a given city, thereby establishing a relationship between the city’s physical environments and its housing market

dynamics. This relationship in different cities inherently reveals their disparity in socioeconomic conditions, captured by the deep

learning models. In Stage 2, this trained model in a referenced City r is applied to a different City m (the measured city). In this process,

the models are “frozen,” which means the model’s structure and parameters are fixed when being applied to other cities. By comparing

the differences between the inferred house prices in the measured City m when using its own model versus the model in the referenced

City r, the framework quantifies the city-to-city variations in both physical and socioeconomic environments. This method highlights the

concept of transferred bias as a tool to further evaluate the balance of developments between urban physical and socioeconomic

environments.
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in the referenced City r. As illustrated in Figure 2A,

when the inferred house price Ŷmr is compared with
Ŷmm (we use the inferred house price Ŷmm instead of
the actual house price Ym in City m to avoid the
bias from the model estimation when comparing it

to Ŷmr), the difference between the results Ŷmr and

Ŷmm originates from using different models, which
reflects the specific socioeconomic settings in corre-
sponding cities (Neyshabur, Sedghi, and Zhang
2020). In this manner, we can evaluate the

Figure 2. The process of calculating transferred bias from both physical and socioeconomic environments. (A) The transferred bias in

the socioeconomic environment emerged by the difference between the inferred house price at City m by using the model in measured

City m and referenced City r. (B) The transferred bias in the physical environment comes from the difference between the two inferred

results Yˆmir and Yˆmjr using one referenced City r.

6 Hou et al.



transferred bias from the socioeconomic environment

ds r,mð Þ, which can be computed using Equation 3:

ds r,mð Þ ¼ Ŷmr − Ŷmm ¼ fr Xmð Þ − fmðXmÞ (3)

On the other hand, transferred bias in the physi-

cal environment dp r,mi,mjð Þ emerges when we com-
pare two transfer inference results from City mi and
mj when using the same referenced City r’s model.

As depicted in Figure 2B, when we infer the house
prices in measured cities City mi and City mj

through the model trained in referenced City r, the
difference between inferred house price in measured
cities Yˆ mir and Yˆ m jr are both inferred by the
model in referenced City r. In this situation, the
transferred bias originated from different cities City

mi and City mj’s neighborhood appearances, which
reflects the differences in physical environments
when viewed from the perspective of City r. Hence,

we can quantify the “transferred bias” attributed
to the physical environment dp r,mi,mjð Þ using
Equation 4. When mj ¼ r, this transferred bias meas-

ures the differences in physical environments
between City mi and City r.

dp r,mi,mjð Þ ¼ Ŷmir − Ŷmjr ¼ fr Xmið Þ − fmðXmjÞ (4)

Experiments

Research Area

This work involves ten U.S. cities as the
research area: Miami, Atlanta, Boston, Detroit,

Seattle, Denver, San Jose, Austin, Knoxville, and
Madison, as depicted in Figure 3. These cities
were chosen due to their diverse physical and
socioeconomic characteristics, ensuring they repre-

sent a broad spectrum of urban types and housing
markets. These cities encompass different areas in
the United States, including cities on the West

Coast (Seattle, San Jose), East Coast (Boston,
Miami), and the Midwest (Madison, Detroit).
These ten cities also belong to different housing

market types, such as tier one (Boston, San
Francisco) and tier two (Seattle, Austin), among
others. We also include both large metropolitan
areas (Miami, Atlanta) and smaller towns

(Knoxville, Madison), as well as cities experienc-
ing growth (Boston) and those facing decline
(Detroit). This diversity in physical and socioeco-

nomic features enables a comprehensive represen-
tation of various city types and housing market
dynamics.

Figure 3. The distribution of the ten-city study area and their house price distribution pattern in the United States. The map for

different cities with their ZIP Code Tabulation Area (ZCTA)-level average house price in 10 decile ranking. The palette shows the

decile ranking of urban housing prices in each city. “High” refers to housing prices in this ZCTA, which is located in the top 0–10

percent range, and “low” refers to housing prices in the top 90–100 percent range.
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Data Set: Real Estate and Street View Image

The house price data set is requested from Zillow,

a leading online real estate market company known

for their detailed evaluations of house values across

the United States (Zillow 2012). This data set is

widely used in housing market research (Raymond,

Wang, and Immergluck 2016; Holt and Borsuk

2020; Gale and Roy 2023), allowing for a detailed

analysis of housing market trends. Here we employ

the average neighborhood-level house prices in 2018

across ten cities to obtain a fine-grained representa-

tion of the housing market.

To assess the physical environment, we employ

SVIs from Google Street View (GSV) to explore the

urban environment within each neighborhood. GSV

provides a comprehensive view of urban landscapes

from a human perspective, offering high coverage and

volume, low data bias, and cost-effective data collec-

tion compared to traditional data sources (Biljecki

and Ito 2021). Each SVI from GSV captures the city-

scape from a human viewpoint, facilitating an overall

assessment of the neighborhood’s visual appearance

without semantic segmentation. Our study employs

SVIs to observe and evaluate the visual appearance,

aiming to quantify the relationship between the phys-

ical environment and housing prices. We generate a

set of georeferenced sampling points along road net-

works at 150-m intervals using OpenStreetMap

(OSM). At each point, four SVIs facing different

directions are captured to ensure a thorough represen-

tation of the neighborhood’s physical attributes. We

request the latest recorded SVIs to ensure the timeli-

ness of physical environment information. To ensure

uniformity, SVI data sets from all ten cities are col-

lected using the same method.

DCNN Model Establishment and Validation

A DCNN model was trained to capture the rela-

tionship between the neighborhood appearance in

each city and the corresponding house prices. Each

SVI’s corresponding neighborhood house price was

input into the DCNN for training. The DCNN model

is renowned for its excellent ability to deal with the

images, and hence it is widely used for investigating

the complex relationship between neighborhood

appearances and house prices (Kang, Zhang, Gao,

et al. 2021). Our model establishment involves two

preprocessing steps to make sure all models can accu-

rately capture the relationship between neighborhood

appearances and house prices.

Before beginning the model establishment process,

we conducted a preliminary data preprocess to

exclude SVIs that were extensively obscured or irrel-

evant to the urban physical environment. We then

thoroughly investigated the sampling years and

months of these images to ensure that the physical

environments depicted were consistent with those at

the time the housing price data were collected. This

step also helped us to avoid any potential impacts of

seasonal variations on our predictive results. Such

measures not only enhanced the accuracy of our

model but also ensured consistency and comparabil-

ity across the data.

Considering that high spatial heterogeneity of

neighborhood appearances can interfere with model-

ing their corresponding house prices (W. Zhou,

Pickett, and Cadenasso 2017; Boivin 2018), we first

filter the most representative SVIs for each ZIP Code

Tabulation Area (ZCTA) through training another

DCNN-based classifier for each city. This classifier is

designed to classify SVIs into their corresponding

ZCTA. SVIs that correctly match their corresponding

ZCTA are considered to be representative in that

area. Initially, we randomly sampled the same number

of SVIs for each ZCTA to form the training data set

for each city. Only those images identified as represen-

tative were retained for further analysis.
Second, we normalize the neighborhood house pri-

ces by converting them into decile ranking and use a

classification strategy to model the relationship

between SVIs and neighborhood house prices effec-

tively. In this step, all neighborhood house price val-

ues within each city were transformed into their

respective decile ranges, denoted as D 2 {1; 2; 3; … ;

10}. For instance, if the average house price of a neigh-

borhood falls within the top 10 percent of one city,

the corresponding decile ranking D is set to 10.

Conversely, if another neighborhood’s average house

price is in the lowest 10 percent, D is 1. We then use

the representative SVIs to predict their corresponding

decile ranking of neighborhood house prices. The

result is a ten-dimensional vector D ¼ [d1, d2, … ,

d10] indicating the probability of the decile ranking to
which the result belongs. Subsequently, we integrated

the decile ranking results of predicted house prices at

the neighborhood level into the ZCTA and city levels

for further analysis.
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In addition, we validate the model’s performance

and robustness in each city from three perspectives.

First, we calculate the top-two accuracy for the pre-

dicted house price decile rankings, achieving approx-

imately 90 percent accuracy in all ten cities, which

indicates a high level of precision. Second, we com-

pute the mean absolute percentage error (MAPE) by

comparing the predicted house price with the ground

truth house prices. The absolute value of the pre-

dicted value of neighborhood house price Yˆ can be

computed as the product of the predicted probability

of house prices in decile rankings di and the values

of house prices at each decile wi within the city, as

depicted in Equation 5. The MAPE in the ten cities

is less than 10 percent, suggesting that the discrep-

ancy between the predicted and actual house prices

is minimal. Finally, we compared the distributions of

predicted and real-world house prices, finding them

to be very similar, which confirms the effectiveness

of the DCNN models trained in all ten cities. In

summary, our DCNN models can effectively estab-

lish the relationship between the SVIs and the

house prices in all ten cities.

Ŷ ¼
X10

i¼1

widi (5)

Transferred Bias across Multiple Cities

Here, we conduct different analyses of transferred

bias at ZCTA and city levels. We calculate the pair-

wise transferred bias in both physical and socioeco-

nomic environments. For the transferred bias in the

physical environment, we calculate it by comparing

the inferred house price Yˆmr at measured City m by

City r’s model and the inferred house price Yˆ rr in

City r; that is, Yˆmr – Yˆrr. Similarly, the transferred

bias in socioeconomic environments is evaluated by

Yˆmr – Yˆmm. For the city level, we used hierarchical

clustering to compare the similarity of trends in

transferred bias in physical and socioeconomic envi-

ronments among the ten cities, thereby assessing the

balance of cities in these two environments. At the

ZCTA level, calculating transferred bias in the phys-

ical environment poses challenges due to the need

to establish correspondences between ZCTAs in dif-

ferent cities. Here, we focus solely on transferred

bias in the socioeconomic environment at this level.

We discuss the spatial distribution of transferred bias

and the similarity between different ZCTAs.

Results

Transferred Bias across U.S. Cities

Figure 4 visualizes the city-level pairwise trans-

ferred bias in physical and socioeconomic environ-

ments among tenU.S. cities. Hierarchical clustering

reveals different patterns in the transferred bias of

both physical and socioeconomic environments. The

physical environments of cities like Seattle, Boston,

Atlanta, and Madison, along with the socioeconomic

environments of Seattle, Boston, Atlanta, Knoxville,

and San Jose, show an obvious negative transferred

bias compared to cities outside their cluster. This

negative bias suggests that their physical or socioeco-

nomic environment development is underestimated

by others, highlighting their urban environments as

superior to those in the other cluster. Therefore,

these cities are recognized as well-developed in their

respective physical or socioeconomic areas.

Conversely, the physical environments of cities such

as Knoxville, San Jose, Denver, Austin, Detroit, and

Miami, and the socioeconomic environments of

Denver, Madison, Detroit, Austin, and Miami

display a noticeable positive transferred bias when

compared with cities outside their cluster. This posi-

tive bias indicates that the development of their

physical or socioeconomic environments is overesti-

mated by others, suggesting that their urban environ-

ments are relatively inferior. Consequently, these

cities are classified as having underdeveloped physi-

cal or socioeconomic environments.

The Balance between Urban Physical and
Socioeconomic Environment

To evaluate the balance of the urban physical and

socioeconomic environment of these ten cities, we

categorize their development statuses based on their

well- or underdeveloped conditions of physical and

socioeconomic environments provided by Figure 4.

Cities that exhibit either well-developed or underde-

veloped conditions in both environments are classi-

fied as balanced. In contrast, cities that own a

mismatched result, such as a well-developed physical

environment alongside an underdeveloped socioeco-

nomic environment or vice versa, are labeled unbal-

anced. This classification is visually represented in

Figure 5A. Furthermore, we delineate the balanced

cities based on their development status in both the

physical and socioeconomic environments. Cities
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characterized by well-developed conditions in both

physical and socioeconomic environments are
characterized as well-developed cities; whereas
those with underdeveloped conditions in both two

environments are noted as “developing” cities. It

is important to note that here, the terms balanced
or unbalanced and well-developed or developing
refer to a relative measurement within the context

Figure 4. Hierarchical cluster map of the city-level transferred bias matrix from physical and socioeconomic environments. (A) The

element at position (i, j) is denoted as the transferred bias in physical environment dp ¼ Ŷ ij − Ŷ jj. (B) The element at position (i, j) is

denoted as the transferred bias in socioeconomic environment ds ¼ Ŷ ij − Ŷ ii.

Figure 5. (A) A quadrant map categorizing cities based on their urban physical and socioeconomic development levels. Cities are

classified within a 2� 2 matrix, depending on whether their physical and socioeconomic environments are well-developed or

underdeveloped. (B) The scatter plot of overall transferred bias from the physical and socioeconomic environments. Cities are categorized

through their physical and socioeconomic environment status.
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of the cities involved; we acknowledge that abso-

lute balanced or developing conditions do not

exist.
We also find that cities with the same develop-

ment status tend to cluster with each other from the

perspective of transferred bias. This clustering pat-

tern is highlighted in Figure 5B, which is made by

averaging ten cities’ transferred bias in physical and

socioeconomic environments according to the direc-

tional cues from hierarchical clustering shown in

Figure 4 separately and plotted them on a scatter

plot. The result also shows that balanced cities,

which include both developing cities and

well-developed cities, occupy the top and bottom

positions on the plot, respectively. In contrast,

unbalanced cities are positioned between these two

groups, which indicates the intermediate stage of

urban development.

The Local Spatial Pattern of Transferred Bias

Figure 6 describes the transferred bias in the

socioeconomic environment among cities at the

ZCTA level. The ZCTA-level transferred bias in

the physical environment is achieved by transferring

the same model between two regions. When the spa-

tial regions are inconsistent, however, it becomes

difficult to investigate the transferred bias between

them. This inconsistency hinders our understanding

of the spatial characteristics of the transferred bias.

Therefore, we only present the transferred bias

within the socioeconomic environment here. The

result shows that transferred bias by evaluating the

neighborhood appearances of the same city with dif-

ferent referenced cities (each column in Figure 6)

exhibits consistent local spatial patterns and spatial

autocorrelation. The differences in these similar

transferred bias local patterns, however, reflect dis-

parities in the socioeconomic environments among

the referenced cities. For example, when focusing

on Boston’s transferred bias (the third column of

Figure 6), we observe a consistent pattern across var-

ious models estimating the city’s house prices. There

is a tendency for the central urban areas to be over-

estimated, whereas the suburban peripheries are

underestimated. The underestimation is deepened in

cities with less appealing socioeconomic environ-

ments, however, such as Denver, Detroit, and

Miami.

Conversely, in cities with socioeconomic environ-

ments similar to Boston, like Seattle and Atlanta,

the transferred bias is closer to zero, indicating a

more accurate prediction by the models for these

areas. On the other hand, when we examine

Detroit’s transferred bias, as depicted in the fifth col-

umn of Figure 6, the spatial pattern of bias remains

consistent. Yet, in contrast to Boston, cities with

socioeconomic environments similar to Detroit, such

as Denver and Miami, exhibit transferred biases

closer to zero. This suggests a more accurate estima-

tion for these locations. In contrast, cities like

Seattle and Boston, which have different socioeco-

nomic environments from Detroit, display obvious

transferred biases. Furthermore, the local-level trans-

ferred bias reflects the fine-grained similarities in the

socioeconomic environment between cities. A prom-

inent example comes from the transferred bias by

evaluating San Jose through Seattle as the refer-

enced city. The transferred bias in the eastern region

is nearly zero, indicating that these areas are very

similar to Seattle in terms of their socioeconomic

environment.

Discussion

Transferred Bias Effectively Helps Us to Evaluate
the Balance of Urban Environments

The results from the transferred bias effectively

distinguish the different states of cities, offering clear

insights into their development status. Here is a brief

characterization of all the city types based on the

classification previously illustrated:

� Well-developed cities: Cities like Boston, Seattle, and

Atlanta are classified as well-developed cities due to

their exceptional physical environments and thriving

socioeconomic environments. These cities are

renowned worldwide for their strong economic power

and appealing urban and natural landscapes, position-

ing them well for sustained growth and development.

� Developing cities: Denver, Austin, Miami, and Detroit

fall into the category of developing cities. These cities

tend to face challenges in both economic growth and

physical environment quality. In addition, this part

also includes some declining cities. Cities like Detroit

and Miami have seen significant downturns from

their previous prosperity. Others struggle to establish

stable economic sectors and urban infrastructure,

indicating a pattern of ongoing decline.

Transferred Bias 11



� Unbalanced cities: According to our analysis, San Jose,

Knoxville, and Madison are identified as cities with a

mismatch between their physical and socioeconomic

development. San Jose, for instance, might not have

the most impressive urban landscapes but it is

experiencing rapid economic expansion. Conversely,

Figure 6. The transferred bias in the socioeconomic environment across ten cities at ZIP Code Tabulation Area (ZCTA) level. The

map at position (i, j) represents the transferred bias generated by evaluating the street view images of i row cities with j column cities as

referenced cities; i.e., ds ¼ Ŷ ij − Ŷ ii.
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Madison, with its appealing urban aesthetics, lags in

socioeconomic development. These cities are actively

working to address the imbalance between their phys-

ical and socioeconomic environments.

Additionally, an interesting phenomenon is that the

transferred bias can not only reflect the status of

urban development but also show the process of

urban evolution. A good example is the unbalanced

cities positions between developing cities and well-

developed cities in Figure 5B. The mismatch

between the city’s physical and socioeconomic envi-

ronments represents an unstable state that is difficult

to detect but crucial. Unlike developing cities and

well-developed cities that have achieved a stable

development and resource utilization phase

(Wiechmann and Pallagst 2012), these unbalanced

cities are facing a transitional phase, potentially

evolving into stable states of either developing or

well-developed cities as their urban development

progresses (Cohen 2004; Z. Chen and Lu 2016). It is

particularly important for policymakers to guide

these cities toward becoming well-developed cities

and transferred bias can be an effective and

insightful tool for them. Developing cities and well-

developed cities have reached different types of bal-

anced urban development. Well-developed cities

enjoy the advantages brought by balanced urban

development, whereas developing cities face the

drawbacks of their balanced development. Balanced

and well-developed cities like Boston and Seattle are

more likely to achieve sustainable and livable urban

development, which is attributed to the harmonious

balance between their physical and socioeconomic

environments (Puleo 2011; Sale 2019). Developing

cities like Detroit, however, encounter many chal-

lenges, which arise from a long-term lack of ade-

quate physical and socioeconomic developed

motivation, often resulting in unsustainable develop-

ment status. Such a type of development exacerbates

resource distribution inequalities and contributes to

the “Matthew effect” in urban development, which

can significantly affect residents’ quality of life

(Glaeser et al. 1992; Glaeser 2012; Florida,

Mellander, and King 2020).
Figure 7 shows that the Matthew effect drives cit-

ies into divergent paths of urban development. In

Boston, a typical trend is observed where downtown

house prices are higher than those in the suburbs.

Conversely, Detroit presents an opposite trend,

where suburban house prices are higher than those

in the city center. This inversion becomes even

more apparent when Boston’s house price is inferred

with Detroit as the referenced city. This phenome-

non suggests that the reversed trend originates not

from the disparity in the physical environment, but

from the socioeconomic environment shaping each

city. Detroit’s long-term economic downturn has

fueled a suburbanization trend within its urban area

(Cooke and Denton 2015), leading to an abnormal

socioeconomic structure, highlighting the profound

impact of socioeconomic environments on urban

evolution.

Implications to Sustainable Urban Development

Both physical and socioeconomic environments

are crucial for sustainable urban development

(Cheng 2003). Interestingly, sometimes the imbal-

ance between these environments can act as a cata-

lyst for development, particularly with strategic

urban management and government intervention

(Bertaud 2010). This indicates the importance of

proactive and targeted governmental actions, espe-

cially in cities with clear mismatches between their

physical and socioeconomic conditions. Our study

particularly highlights such imbalances in cities like

San Jose and Madison. San Jose experiences

Figure 7. The house price patterns in Boston and Detroit

(figures in upper left and lower right) and the transfer inference

house price by applying Boston’s (Detroit’s) neighborhood

appearance into Detroit’s (Boston’s) model (figures in upper right

and lower left).

Transferred Bias 13



remarkable economic growth and social welfare, yet

its physical environment lags behind. This environ-

mental imbalance has contributed to social segrega-

tion and widened wealth disparities within the city

(Himmelberg, Mayer, and Sinai 2005; Rothwell

2019). To mitigate these issues, it is vital for San

Jose to use its economic prosperity to improve urban

infrastructure and services, thereby aligning its physi-

cal environment with its socioeconomic achieve-

ments. Conversely, Madison presents a contrasting

scenario with its commendable physical environment

but relatively lower socioeconomic performance.

Challenges in spurring robust economic growth and

sustaining urban infrastructure are prominent here

(Barker et al. 2021; Immergluck 2022). Economic

stabilization policies could leverage Madison’s solid

infrastructure to unlock its growth potential

(McManamay et al. 2019).
For developing cities, immediate governmental

intervention is essential to stimulate urban redevel-

opment (Fekade 2000). This involves policies focus-

ing on economic diversification, job creation,

infrastructure development, and revitalization of

housing and neighborhoods. Such strategies are cru-

cial to stimulate economic growth, attract businesses,

and foster community ownership, with stakeholder

collaboration being key to their success. It is also

crucial, though, for governments in currently thriv-

ing cities to assess their environments and remain

careful about potential imbalances continuously.

This forward-looking approach is necessary to ensure

sustainability and to prevent future challenges.

Limitation and Future Work

Although the transferred bias demonstrates its

unique value, it inevitably comes with limitations.

The primary challenge lies in its applicability and

scalability to different cities with greater discrepan-

cies in physical and socioeconomic environments.

We recognize that the effectiveness of transferred

bias is dependent on the degree of homogeneity or

heterogeneity between cities. If cities are too similar,

the method struggles to effectively distinguish dis-

crepancies between them. Conversely, quantifying

transferred bias between extremely heterogeneous

cities might also be challenging in getting valuable

insights, such as using Boston as the referenced city

to measure non-Western cities like Naples or Tokyo.

This is because these cities share few commonalities

in both physical and socioeconomic environments.

In this article, our study addressed the impact of city

heterogeneity by specifically selecting a series of dis-

persed cities across the United States for our experi-

ments, and this approach yielded promising results.

The experimental outcomes indicate that, although

these cities generally show high homogeneity in

their featured representations, they exhibit signifi-

cant heterogeneity in specific areas of feature space,

which helps the transferred bias to effectively cap-

ture the difference of their developmental condition

in physical and socioeconomic environments as illus-

trated in Figure 8. It is still worth discussing, how-

ever, whether the transferred bias is still effective

when applied to cities with greater heterogeneity,

such as cities disseminated around the world. For

example, if we apply the transferred bias to more

complex and dynamic environments, such as those

encompassing cities, rural areas, and even waste-

lands, we must consider whether we can still effec-

tively discern the differences in urban development

and distinguish between different types of regions.

From a fundamental perspective, the challenges

posed by the transferred bias also touch on the pro-

found question of what a city is, encouraging us to

rethink this question from the dimension of differ-

ences. Above all, defining a city from the perspec-

tive of transferred bias provides a fresh perspective

for reillustrating cities, which is also an important

direction for our explorations in the future.
Another limitation of transferred bias is the lack of

interpretability, as selecting different cities as referen-

ces can result in variations in the ranking of other cit-

ies. For instance, Denver and Madison are identified

as cities with similar socioeconomic environments in

this study. When using Denver as the reference city

for evaluating other cities’ socioeconomic environ-

ment, San Jose ranks sixth, suggesting a relatively

favorable socioeconomic condition. When Madison

was chosen as the reference city, however, San Jose

ranked third, indicating a comparatively poorer socio-

economic environment. This phenomenon suggests

that the dimensions emphasized by the transferred

bias could vary depending on the referenced city. In

this study, we primarily focused on the overall pattern

presented by the transferred bias to explore the gen-

eral physical and socioeconomic environment devel-

opment of various cities, providing us with an

effective result. This macro perspective, however,

inevitably overlooks subtle differences in the rankings
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of individual cities, which reflect unique characteris-

tics in specific dimensions of these cities. Future

research will focus on enhancing the interpretability

of the transferred bias, aiming to uncover the specific

dimensions and features emphasized and captured by

the model during the transfer process. This effort is

expected to build a more transparent and understand-

able framework, thereby providing more practical

guidance and insights for policymakers, industry prac-

titioners, and researchers.

Conclusion

In summary, our study introduces a novel framework

that leverages transferred bias to understand the balance

between a city’s physical and socioeconomic environ-

ments. This framework first captures the relationship

between the neighborhood appearance and house prices

in different cities, then quantifies the transferred bias in

physical and socioeconomic environments by comparing

the transfer inference result with the inference result

between the measured city and referenced city. Based on

the transferred bias, we can further evaluate the balance

between the physical and socioeconomic environments.

The result shows that transferred bias is effective for eval-

uating the balance of physical and socioeconomic envi-

ronments, thereby facilitating further investigation into

sustainable urban development and the evolution pro-

cess. The primary challenge lies in its applicability and

scalability to different cities with greater discrepancies in

physical and socioeconomic environments, as well as

weak interpretability. Despite these challenges, this

approach is valuable for stakeholders and policymakers

aiming for a comprehensive understanding of urban

development at a broader scale. Furthermore, although

our research predominantly focuses on housing markets,

the concept of transferred bias has the potential for wider

application. It also has the potential to investigate the

balance of reciprocal factors in the context of urban stud-

ies, such as the dynamics between commercial and resi-

dential zones or the interplay between globalization and

localization. Sustainable urban development requires a

synergistic relationship between physical and socioeco-

nomic environments, emphasizing the need for govern-

ment efforts to create a balance between physical and

socioeconomic environments, a key objective for sustain-

able urban development.
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