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Modeling Region Affiliation with Fuzzy
Membership Based on Spatial and Social
Interactions

Jacob Kruse,a Song Gao,a and Kenneth R. Mayerb

aGeospatial Data Science Lab, Department of Geography, University of Wisconsin, Madison, USA; bDepartment of Political
Science, University of Wisconsin, Madison, USA

A key challenge in regionalization is that regions, such as urban function zones or climate zones, often have

indeterminate boundaries, making it difficult to exactly quantify their geographic extent. Political

redistricting, as a regionalization task, deals with this problem acutely, as requirements to preserve

communities of interest (COIs) do not define such communities, introducing inherent vagueness in their

boundaries. To address this issue, this work introduces a network approach that models COIs by integrating

spatial-social interactions and evaluates district assignment by quantifying the degree to which a geographic

area is connected to all other areas within each district. Furthermore, we draw on a splatial framework to

understand the different spaces in which modern human communities interact, allowing us to more

comprehensively model the community interactions that constitute COIs by using both spatial and social

interactions, as measured with human mobility flows and social network connections. By comparing how

district membership aligns across these two interaction types with the fuzzy membership methodology, it can

reveal distinct spatial patterns, while combining them can reduce ambiguity in region membership. To

demonstrate its utility, the proposed methodology is applied to a 2020 congressional district plan for the

State of Wisconsin. Beyond redistricting, this work also contributes to the geography literature by providing

a spatial interaction-based framework for quantifying regional affiliations in boundary areas. Key Words: fuzzy
membership, redistricting, regionalization, spatial networks, spatial-social interactions.

T
he delineation of regional boundaries is a

foundational issue in geography, and a key

challenge in this process is that the objects

we seek to model as regions, such as places

(Montello et al. 2003; Montello, Friedman, and

Phillips 2014; Gao et al. 2017; Bae and Montello

2018) or landscapes (Brown 1998; Hall and Arnberg

2002), often have indeterminate boundaries

(Burrough and Frank 1996; Leung 1999). This inde-

terminacy arises from spatial, semantic, or ontologi-

cal (Varzi 2001; Smith and Mark 2003) vagueness in

the definitions of such objects and their spatial rela-

tionships (Q. Guo, Liu, and Wieczorek 2008; Ding

et al. 2025). Political redistricting, as a regionaliza-

tion task, deals with this problem acutely, as politi-

cal boundaries are expected to preserve communities

of interest (COIs)—groups with shared concerns

that are likely to be affected by legislation (Malone

1997)—even though such communities are not

clearly defined by states (Forest 2004; Webster

2013). Various definitions have been proposed in

the academic literature and used in legal challenges

to existing district boundaries, but they all suffer

from semantic (S. J. Chen et al. 2022) and ontologi-

cal (Stephanopoulos 2012a) vagueness. This vague-

ness in defining the boundaries of the underlying

communities inherently creates ambiguity regarding

the appropriate placement of district boundaries.
To address the issue of vagueness in regionaliza-

tion, the GIScience literature has increasingly

turned to social sensing methods, which integrate

multiple data sources—such as social media and

human mobility data—to characterize places (Gao

et al. 2017; Zhu et al. 2020) and activity spaces (Jin

et al. 2021; Z. Chen, Zou, and Tan 2025), and

define regions with greater clarity and consistency

(Liu et al. 2015; Liao et al. 2018). These approaches

generate composite membership scores for geographic
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subunits, helping to distinguish core areas of strong

agreement from peripheral or contested zones

(McKenzie and Adams 2017; W. Chen et al. 2018).
Another membership-based approach to address-

ing region ambiguity is fuzzy logic (Zadeh 1965),

which has been used extensively for modeling spatial

objects with indeterminate boundaries in GIScience

(Cohn and Gotts 1996; Fonte and Lodwick 2004;

Shi and Liu 2004). Rather than assigning each area

exclusively to a single region, the fuzzy membership

approach calculates the partial membership that

each area has in all regions, after which a member-

ship cutoff value is applied to determine final region

assignment (Burrough and McDonnell 1989; Ahmed

et al. 2020). Although various fuzzy approaches to

region delineation have been described in the litera-

ture (Cohn and Gotts 1996; Erwig and Schneider

1997; Liu, Yuan, and Gao 2019), these approaches

predominantly rely on attribute values at specific

locations. There is currently no fuzzy approach, how-

ever, that addresses vagueness in regionalization

when the region memberships are defined with spa-

tial interactions between areas.
Spatial interactions are movements and informa-

tion exchanges across space driven by human pro-

cesses (Ratti et al. 2010; Nelson and Rae 2016;

Kang et al. 2020; Xu et al. 2022). Because they

effectively capture human interests, geographers

have used spatial interactions in numerous regionali-

zation tasks (Holtz et al. 2020; M. Li et al. 2021;

Liang et al. 2022) to create regions that better

reflect underlying human dynamics and contribute

to the understanding of geographic process-oriented

regionalization (Zhang et al. 2024). Despite these

advancements, though, the application of spatial

interaction networks in political redistricting to

understand COIs remains relatively underexplored.

Two recent works in particular (Kruse, Gao, Ji,

Levin, et al. 2024; Kruse, Gao, Ji, Szabo, et al. 2024)

have used spatial interaction networks, derived from

human mobility flows, to model COIs in redistrict-

ing. In these studies, spatial interactions represent

the shared economic and civic life that state courts

generally understand as constituting a COI

(Stephanopoulos 2012a). Existing methods, however,

do not address the common need to evaluate

whether a given area is placed in a district with

other areas to which it is strongly connected—in

other words, whether COIs are preserved by district

boundaries (S. J. Chen et al. 2022).

Additionally, while existing works have used dif-

ferent types of spatial interactions to identify regions,

a conceptual framework for the use of spatial inter-

actions to represent the various human activities

that constitute communities is lacking. For such a

framework, we turn to the splatial framework devel-

oped in Shaw and Sui (2020), which offers a valu-

able conceptual lens for analyzing contemporary

human dynamics. By incorporating multiple dimen-

sions of space—including absolute, relative, rela-

tional, and mental space—this framework helps

contextualize the different types of interactions that

define modern human dynamics, such as physical

movements in absolute space and social connections

in relational space.
In this work, we present a network-based fuzzy

membership approach to modeling COIs in redis-

tricting, which, more broadly, can be used to model

regions based on community interactions. The main

contributions are threefold. First, we employ the

splatial framework (Shaw and Sui 2020) to justify

why multitype spatial interactions can better model

communities, demonstrating the robustness of this

approach using spatial and social interactions.

Second, to operationalize this new definition of

COIs for the purposes of redistricting, we present a

fuzzy membership approach that quantifies region

affiliation based on the multitype interactions. In

this approach, the strength of interactions, or affilia-
tion, between a given geographic area (e.g., a census

block group [CBG]) and a region (e.g., a political

district composed of multiple CBGs) can be assessed,

enabling an evaluation of whether the area is

assigned to the region with which it has the stron-

gest connections. Third, we show how the fuzzy

membership approach can be used to quantify the

extent to which membership ambiguity is reduced

through the combination of two types of spatial

interactions. Overall, this work benefits research on

COIs in redistricting, as well as regionalization with

spatial interaction communities, more broadly.

The remainder of the article is organized as fol-

lows. We begin by reviewing the relevant literature

on regionalization and COIs, multitype spatial inter-

actions, the splatial conceptualization of space, social

sensing, and fuzzy membership. We then introduce

the new methodology for measuring region affiliation

and district plan evaluation. The results show how

the proposed methodology can be applied in the

detailed analysis of a particular congressional
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redistricting plan, and how it can be applied to com-

pare one plan to a distribution of valid alternatives.

We then address some of the limitations of this

work and provide concluding remarks.

Related Work

Regionalization and COIs

Regionalization is the process of partitioning geo-

graphic space into spatially coherent and contiguous

units, called regions, that are internally homoge-

neous according to specified criteria. These criteria

can include demographic, socioeconomic, ecological,

health, or interaction-based measures, among others

(James 1952; Storper 1997; Helbich et al. 2013; Mu

et al. 2014; Bae and Montello 2018; Liang et al.

2022). Unlike nonspatial clustering approaches,

regionalization explicitly enforces geographic con-

straints—such as contiguity and compactness—to

ensure regions form spatially continuous and geo-

graphically interpretable units (D. Guo 2008;

DeFord, Duchin, and Solomon 2019; Aydin et al.

2021; Liang et al. 2025). This spatial continuity

aligns with the ontology of regions as coherent and

meaningful geographic entities, where adjacency and

proximity play crucial roles in their definition. By

imposing these constraints, regionalization methods

yield clusters that better reflect real-world geographic

structures, enhancing their interpretability and prac-

tical utility for applications like political redistrict-

ing, resource management, and urban planning

(Brown 1998; Hall and Arnberg 2002; Montello

et al. 2003; Duque, Anselin, and Rey 2012).
Political redistricting, as a specific type of region-

alization, faces the additional challenge of preserving

COIs—that is, ensuring that such communities are

not divided by political district boundaries (Malone

1997). This task is further complicated by the fact

that COIs are often not clearly defined, creating sig-

nificant practical difficulties (Forest 2004; Webster

2013). Borrowing from the broader regionalization

literature, these challenges can be explicitly

described using the concept of vagueness, which

includes two distinct phenomena: semantic vagueness,
relating to ambiguity in terminology (e.g., what pre-

cisely does “downtown” mean), and ontological vague-
ness, arising from unclear or gradual boundaries in

the physical or social phenomena being partitioned

(e.g., where exactly does a forest end; Leung 1999;

Bennett 2001; Varzi 2001; Montello et al. 2003;

Smith and Mark 2003; Gao et al. 2013). Thus, the

lack of clarity in defining COIs amplifies the inher-

ent semantic and ontological challenges of political

redistricting.
Regarding semantic ambiguity, many states require

the preservation of COIs, yet no states clearly define

these communities (Forest 2004; Webster 2013). To

address this ambiguity, various definitions have been

proposed in academic literature or employed in legal

arguments. For instance, Stephanopoulos (2012a)

argued that legal precedent supports the concept of a

territorial community, defining a COI as a spatially

bounded region characterized by relatively homoge-

neous sociodemographic traits, culture, and industry.

Although this definition emphasizes the geographic

aspect of COIs, it remains unclear exactly how similar

a given area must be a broader COI to justify

its inclusion. Similarly, metrics such as spatial

diversity, used to quantify district homogeneity

(Stephanopoulos 2012b), do not account for how

homogeneity changes over the spatial extent of a dis-

trict—a critical consideration, given that natural and

social phenomena frequently change continuously

over space (Burrough and Frank 1996; Cohn and

Gotts 1996).

In another approach to modeling COIs, constitu-

ents are invited to self-identify COI boundaries using

geographic information systems (GIS) software

(Makse 2012; S. J. Chen et al. 2022). Although this

method can reflect the groupings that constituents

consider meaningful, it is heavily influenced by the

demographics and participation of the individuals

contributing to the identification process.

Additionally, it is limited by the semantic vagueness

of the term COI itself, which lacks a universally

agreed-on definition. Other approaches to defining

COIs have emerged in the context of legal chal-

lenges to district boundaries. In particular, litigants

in several cases have relied on social and economic

linkages, along with geographic and historical rea-

soning, to argue that COIs were either unnaturally

split or improperly grouped together (S. J. Chen

et al. 2022). The lack of a clear, standardized frame-

work for analyzing the linkages that define COIs,

however, complicates the objective evaluation of

such claims. Following Tobler’s First Law of

Geography—that near things are more similar than

distant things (Tobler 1970)—it can be argued that

community connections and similarities are better

Fuzzy Membership Based on Spatial and Social Interactions 3



represented on a continuum of degree rather than as

binary states of existence or nonexistence.

Consequently, modeling COIs in a spatially continu-

ous manner could offer a more objective and

nuanced approach.
Similar to legal arguments that advocate for the

existence of COIs based on social and economic link-

ages, recent works use spatial interactions to quantify

COIs with the understanding that connections

between areas can help define the degree to which

two areas belong to the same COI. As described ear-

lier, spatial interactions are movements or exchanges

across space driven by human processes. These inter-

actions encompass a diverse set of phenomena,

including human mobility flows captured through sur-

veys (Nelson and Rae 2016), mobile phone calls, or

location-tracking data (Ratti et al. 2010; Kang et al.

2020; Xu et al. 2022), as well as the flows of com-

modities, information, and social connections (B. Li

et al. 2020; Rao et al. 2022). In studies using spatial

interactions for regionalization, the concept of inter-

action communities is employed, where higher vol-

umes of spatial interactions between regions serve as

indicators of stronger social and economic cohesion

(Gao et al. 2013; Dong et al. 2015; Y. Chen, Zhang,

and Liang 2019).

To the best of our knowledge, only two works in

the literature have applied spatial interactions to

redistricting. In one study, Kruse, Gao, Ji, Szabo,

et al. (2024) employed the interaction ratio to pro-

vide a plan-wide assessment of how spatial interac-

tions are directed within versus between districts.

This approach enables comparisons between district

maps to evaluate how well boundaries align with

underlying spatial interaction communities. Although

this method is effective for comparing plans, it does

not facilitate the analysis of a single redistricting map

at the subdistrict level, such as evaluating whether

geographically neighboring areas are appropriately

grouped within the same district. In another study,

Kruse, Gao, Ji, Levin, et al. (2024) evaluated the

strength and consistency of spatial interactions

between members of key subnetworks within districts

over time. Although this work examines connections

within specific subdistrict areas, it does not compare

these internal connections to those spanning district

boundaries, limiting its utility for determining

whether district plans inappropriately split coherent

COIs. Notably, both of these works use human

mobility flows as the spatial interaction studied.

Conceptualizing Spatial Interactions through the
Splatial Framework

Although the previously mentioned studies

(Kruse, Gao, Ji, Levin, et al. 2024; Kruse, Gao, Ji,

Szabo, et al. 2024) employ spatial interactions to

model COIs, they do not provide a framework for

understanding how different spatial interaction types

can be used to model human communities. For such

a framework, we employ the splatial framework

developed by Shaw and Sui (2020). In that work,

the authors noted how spatial interactions (which

they referred to as human dynamics) have rapidly

changed with the societal-wide penetration of smart

technologies (e.g., smartphones), which have drasti-

cally changed how people interact, creating a new

world in which “physical and virtual, objective and

subjective, territorial and topological worlds are

increasingly coupled and entangled for most human

activities” (442). The authors synthesized various

conceptualizations of both space and place to

describe human interactions as occurring in a variety

of overlapping spaces and places. This space–place

(splatial) framework includes absolute, relative, rela-

tional, and mental spaces.

Using this framework, the previous works on

redistricting can be considered as using interactions

that occur in absolute space. Kruse, Gao, Ji, Levin,

et al. (2024) and Kruse, Gao, Li, Szabo, et al.

(2024) used human mobility flows between CBGs,

and are thus interactions that occur in absolute

space. Human mobility flows could be considered as

occurring in relational space, but we here consider

them as occurring in absolute space, as the strength

of flows is strongly related to the geographic distance

between origin and destination, a result of the cost

of travel in terms of time and money.
Given that spatial interactions (i.e., human activi-

ties and interactions) can occur in multiple types of

spaces in the modern era, redistricting works employ-

ing interactions in multiple types of spaces have the

potential to create more robustly defined interaction

communities, as they encompass a wider range of

human activities in their measurement. In the age of

smart technology, one salient space of human activ-

ity is virtual space (Shaw and Yu 2009), particularly

regarding online social networks such as Facebook

(Meta). In the splatial framework, such social net-

works are considered as occurring in relational space,

as topology, rather than absolute coordinates, is

what defines the space. We also note that the

4 Kruse, Gao, and Mayer



attempts at modeling COIs wherein constituents

self-identify COI boundaries using GIS software

(Makse 2012; S. J. Chen et al. 2022) are employing

the mental space of the splatial framework. Even if

this approach could be combined with spatial inter-

actions to describe COIs more comprehensively, it

tends to be heavily biased by whoever is included in

the COI survey. Regarding relative space, Shaw and

Sui (2020) described it as a movable dimension of

absolute space, such as the location of objects rela-

tive to an autonomous vehicle. At present, we do

not see a use for this space in defining interaction

communities in redistricting.

COIs as Regions with Indeterminate Boundaries

As described earlier, current COI definitions face

semantic and ontological vagueness stemming from

imprecise working definitions and challenges in

delineating communities’ true geographic expanse

(Varzi 2001; Montello et al. 2003; Webster 2013).

Although modeling COIs via spatial interactions

reduces semantic ambiguity by providing a definition

of what constitutes a COI, ontological boundary

issues persist. Existing redistricting discourse often

assesses if adjacent areas should be in the same dis-

trict based on cultural homogeneity or strong eco-

nomic links (Makse 2012; Stephanopoulos 2012b;

S. J. Chen et al. 2022). In this case, relatively few

pairs are considered. Spatial interactions, however,

can lead to N � N pairwise connections (where N is

the number of areas), making boundary indeterminacy

a significant, persistent issue due to widespread poten-

tial connectivity, as a given area could potentially be

connected to all other areas. The use of multitype spa-

tial interactions further complicates the problem. To

deal with the continuous nature of these multitype

spatial interactions, we turn to social sensing and fuzzy

logic methods, which we review next.
Redistricting problems are NP-hard and typically

use location-level attributes (Altman 1997; Cannon

et al. 2022), unlike the edge attributes of spatial

interactions considered here. Thus, we do not aim to

create a redistricting algorithm that makes optimal

districts. Instead, our research evaluates how well

existing district boundaries preserve COIs.

Specifically, we assess whether geographic areas are

placed in districts where they share most of their

spatial-social interactions. This allows for the

granular-level assessment of district placement.

Having established the need for methods enabling

regionalization based on multiple interaction factors,

we now review relevant social sensing and fuzzy

membership literature.

Social Sensing

GIScience research has developed social sensing

to better define regions and their boundaries (Liu

et al. 2015; Cao et al. 2020). Specifically, social

sensing combines diverse, human-centered data sour-

ces, such as social media interactions and mobile

phone records, to generate a more comprehensive

representation of regions with ambiguous or overlap-

ping boundaries (Liao et al. 2018). This approach

often results in clearer boundaries based on agree-

ment across perspectives (McKenzie and Adams

2017; W. Chen et al. 2018). For instance, Gao et al.

(2017) used a data synthesis approach to define

vague cognitive regions in California, integrating

social media and Internet data sources to generate

combined membership scores for all regional subu-

nits. Importantly, this type of approach enables the

identification of core versus boundary areas within

regions. With social sensing approaches, crisping

methods such as the chi-shape are typically used

after the membership scores are generated to create

clear, binary delineations between regions. In a

related work on region discovery, Yuan, Zheng, and

Xie (2012) demonstrated how integrating human

mobility flows and points of interest can enhance

the identification of functional regions, leveraging

the distribution of multiple urban functions to pro-

vide a more nuanced understanding of each area.
In related areas of study within the field of geog-

raphy, many works have employed one or multitype

spatial interactions to better understand community

social structures and regional relationships. For

example, Z. Chen, Zou, and Tan (2025) analyzed

the nonlinear relationships between migrants’ activ-

ity-space-based social segregation and traveling dis-

tances. Jin et al. (2021) quantified different border

effects (natural, infrastructural, and administrative)

on intraurban travel through a mobility-based spatial

interaction network. Holtz et al. (2020) leveraged

both human mobility flows and social media connec-

tions to study the impact of uncoordinated COVID-

19 responses across regions. By integrating mobility

data with social network data, the study quantified

how policies in one area influenced geographically

Fuzzy Membership Based on Spatial and Social Interactions 5



and socially connected regions. Similarly, M. Li

et al. (2021) proposed a model for predicting human

activity intensity that uses graph convolutional net-

works to incorporate both human mobility flows and

cellphone call records between locations. By inte-

grating spatial interaction patterns with social net-

work data, such methods yield more robust results

than those obtained using either type of data alone.

Although mobility flows and georeferenced social

media connections are typically referred to as spatial

interactions, we refer to them as spatial interactions
and social interactions, respectively, for clarity

throughout the rest of the article.

Fuzzy Membership

Much of the literature on modeling vagueness in

GIScience is based on fuzzy logic and fuzzy set the-

ory (Zadeh 1965; Cohn and Gotts 1996; Wang and

Hall 1996; Brown 1998), which represent uncer-

tainty by allowing elements to partially belong to

multiple classes. To address the aforementioned

boundary vagueness challenges in regionalization,

GIScience has adopted various fuzzy logic

approaches, such as the egg-yolk model, to represent

geographic objects or relationships that have inher-

ent vagueness (McBratney and Odeh 1997; Shi and

Liu 2004; Liu, Yuan, and Gao 2019). In such mod-

els, geographic objects, such as regions, are concep-

tualized as having core areas of complete

membership and transitional boundary zones with

partial (but homogeneous) membership (Cohn and

Gotts 1996; Wang and Hall 1996; Fonte and

Lodwick 2004).

Various regionalization methods have employed

fuzzy membership to address the vagueness and

uncertainty in determining which region a geo-

graphic area should belong to. These methods have

been applied in diverse contexts, including the iden-

tification of ecosystems and socioeconomic zones

(Burrough and McDonnell 1989; Van Ranst et al.

1996; Chavoshi et al. 2013; Ahmed et al. 2020). For

instance, Hall and Arnberg (2002) employed fuzzy

membership signatures derived from environmental

data to delineate landscape regions, allowing the

regionalization process to account for gradual transi-

tions between landscape features.

One common fuzzy regionalization method is fuzzy

clustering, often implemented with the fuzzy c-means

algorithm (Hwang and Thill 2009; Goyal and

Sharma 2016). This algorithm generalizes traditional

k-means clustering by assigning each data point a

degree of membership to multiple clusters rather

than exclusively to one (Bezdek 1981). As a region-

alization method, it has been used for a diverse set

of problems, including the delineation of housing

submarkets (Hwang and Thill 2009), the identifica-

tion of meteorological drought patterns (Goyal and

Sharma 2016), and the analysis of fuzzy soil classes

in environmental modeling (McBratney and Odeh

1997). A particularly useful concept in this context

is membership entropy, which evaluates the uncer-

tainty or dispersion of membership values in fuzzy

clustering (Pal and Bezdek 1995). Higher entropy

indicates more evenly distributed membership values

across multiple clusters, suggesting ambiguity or

uncertainty in the assignment, whereas lower

entropy suggests clearer cluster assignments. This

approach allows for a quantitative assessment of the

membership vagueness of regional subunits. Fuzzy set

theory has been specifically applied to redistricting

tasks (de Cobos-Silva et al. 2017; Taherdoost and

Madanchian 2023), but these existing works primar-

ily focus on aiding the selection of an optimal redis-

tricting plan among multiple options, rather than

directly performing regionalization.
In this work we primarily draw on the fuzzy mem-

bership literature, but we note that mathematically

similar models have been developed in the network

science literature, where a probability or strength of

membership is assigned to each node for each com-

munity. For example, factorization-based methods—

such as the BigCLAM affiliation model (Yang and

Leskovec 2013)—explicitly represent communities

with soft memberships. A comprehensive survey of

overlapping community detection algorithms is pro-

vided by Xie, Kelley, and Szymanski (2013). More

recent work has extended these models to complex

settings such as multilayer and attributed networks.

For instance, Yang, McAuley, and Leskovec (2013)

incorporated node attributes into community detec-

tion, whereas Contisciani, De Bacco, and Braunstein

(2020) developed a probabilistic model for overlap-

ping community detection in multilayer networks,

integrating both network structure and node-level

attributes. These approaches demonstrate how allow-

ing soft (or fuzzy) memberships can capture more

nuanced community structures in social networks,

which conceptually parallels our fuzzy regionalization

of spatial-social communities. In geographic studies,
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researchers have developed novel methods using

graph-based deep learning to detect geographically

overlapped communities in human mobility spatial

networks (Luo and Zhu 2022). To our knowledge,

though, none of these overlapping community detec-

tion methods incorporate multitype edge weights—

such as combining both human mobility flows and

social connectedness—as a central input to define

membership strength in our research.

Having reviewed the relevant literature, we now

outline the methods for incorporating spatial and

social interaction networks into the evaluation of

political redistricting plans using a fuzzy membership

approach.

Methods

Data Sets

To demonstrate how spatial and social interac-

tions can be used to comprehensively understand the

regional affiliation of geographic subunits to congres-

sional districts, we analyze the map of Wisconsin

2020 congressional districts produced by the People’s

Map Commission (PMC), using CBGs as the geo-

graphic subunits. The PMC district borders and IDs

are shown in Figure 1.

To measure spatial interactions, we employ the

SafeGraph Neighborhood Patterns data set. This

data set records the number of anonymized mobile

device visits between locations, with visits aggre-

gated at the CBG level (4,489 CBGs in Wisconsin)

for each temporal period of the year. Importantly,

the recorded trips originate from the users’ home

locations, ensuring that the data reflect the move-

ment patterns of residents rather than transient visi-

tors. This distinction is particularly relevant in the

context of political districts, which are designed to

represent constituents residing within the district

boundaries. Following Kang et al. (2020), we infer

the population-level human mobility flows between

a given origin and destination (o − d) CBG pair

using the ratio of origin CBG population to the

number of SafeGraph mobile devices in the origin.

The equation is as follows:

Population Flowsod

¼ Device Flowsod � Populationo
Number of Deviceso

(1)

Using Equation 1, we take the Neighborhood

Patterns data set for every month in a year to pro-

duce an o − d flows matrix of the average monthly

population flows between and within Wisconsin

CBGs, where the ith row and jth column intersec-

tion is the average monthly population-level flow

counts going from the origin CBG to the destination

CBG (Figure 2).

To measure social interactions at the CBG level,

we use the Facebook Social Connectedness Index

(SCI)1 at the same year. The SCI is calculated based

on the number of friendship connections between

users in different regions, adjusted for the total num-

ber of Facebook users in each area. For two regions i
and j, the SCI is defined as:

SCIðZi, ZjÞ ¼ Number of ConnectionsðZi,ZjÞ
UsersðZiÞ �UsersðZjÞ (2)

where Zi and Zj represent two different ZIP code tab-

ulation areas (ZCTAs). The SCI reflects the relative

probability of a friendship connection between users

in Zi and Zj compared to other regions, scaled such

that the maximum SCI value in the data set is

1,000,000,000 and the minimum is 1. The SCI data

are retrieved at the ZCTA level and then converted

to an estimate of raw social connections between

CBGs. To produce a raw connection value similar to

population flows between CBGs, we estimate the
Figure 1. The People’s Map Commission congressional district

map of Wisconsin.
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raw number of friendship connections between

CBGs, RðCik,CjlÞ; by assuming that the population

in a given census unit is proportionate to the num-

ber of Facebook users. To relate the fraction of a

ZCTA’s population residing in a given CBG, we use

the Geocorr tool,2 enabling comparison between

spatial and social connections at the CBG level

(Figure 2).

Because the provided SCI metric is scaled using

an unknown factor, however, the resulting estimates

of RðCik,CjlÞ also carry that same scaling factor. As

a result, these estimates allow us to understand the

relative distribution of friendship connections

between CBGs, but the absolute number of connec-

tions cannot be directly interpreted.

Fuzzy Membership

To provide an assessment of each CBG district

membership from multiple perspectives, fuzzy mem-

bership scores are first calculated based on spatial

and social interactions, separately. The membership

function lDj
ðxÞ quantifies the partial membership of

CBG x in district Dj; based on the relative

interaction strengths between x and the CBGs in

each district. Specifically, the formula is defined as:

lDj
ðxÞ ¼

P
y2Dj

InteractionsxyPn
i¼1

P
y2Di

Interactionsxy
, (3)

where lDj
ðxÞ represents the membership of CBG x

in district Dj; indicating the proportion of interac-

tion strength that x has with all CBGs in district Dj

relative to its interactions with CBGs in all districts.

Here, Dj denotes a specific district among a set of

districts fD1,D2, :::,Dng; where j represents the

index of the district. Using the spatial and social

interaction data sets, each CBG is assigned a partial

membership in every congressional district based on

the strength of its interactions with the CBGs in

each district, resulting in one set of fuzzy member-

ships derived from spatial interactions and another

set from social interactions.
To combine the two types of spatial interactions

into a combined, interpretable fuzzy membership

score, we sought a methodology that would yield

results readily explainable to both public and legal

audiences. First, in the absence of state-specific guid-

ance regarding the relative importance of each

Figure 2. The spatial (human mobility flows) and social interaction (Facebook social connectedness index) data in Wisconsin.
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spatial interaction type, we opted for equal weight-

ing. Beyond the weighting of each spatial interaction

type, two obvious methods for combining the spatial

interactions are addition and multiplication. As

agreement between the two data sources indicates a

more robust set of community connections, we use

multiplication to amplify district membership when

strong agreement exists between partial memberships

from both perspectives. The combined fuzzy mem-

bership for CBG, denoted as lcombined
Dj

ðxÞ; is calcu-

lated as the element-wise product of the two fuzzy

membership sets, followed by renormalization to

ensure the partial memberships sum to one. The

equation is as follows:

lcombined
Dj

ðxÞ ¼
lspatialDj

ðxÞ � lsocialDj
ðxÞ

Pn
k¼1l

spatial
Dk

ðxÞ � lsocialDk
ðxÞ

: (4)

As the spatial and social interaction data sets do
not cover all of Wisconsin, only CBGs with data
from both data sets are included in the analysis. For

defuzzification, each CBG is assigned to the district
in which it has the highest fuzzy membership. If this
assignment differs from the district assignment under

the PMC redistricting plan, the CBG is considered
misassigned. Additionally, for CBGs whose maximum
membership district aligns with their PMC assign-
ment but where the maximum fuzzy membership

value is less than 50 percent of the CBG’s total
interactions, the CBG is classified as a low-member-
ship CBG. This designation indicates that, although

the CBG is placed in the correct district, it has a
relatively weak affiliation with that district. This
approach can help evaluate a geographic area’s dis-

trict affiliation and their spatial patterns.

Entropy, Information Gain, and Kullback–Leibler
Divergence

To assess how dispersed a given CBG’s fuzzy mem-
bership is across all districts, Shannon information

entropy is applied to the fuzzy membership values for
each CBG. Specifically, for each CBG x, the entropy
is calculated as:

HðxÞ ¼ −
Xn

j¼1

lDj
ðxÞ log 2ðlDj

ðxÞÞ, (5)

where lDj
ðxÞ represents the partial membership of

the CBG in district Dj; and n is the total number of
districts. To understand the degree to which

combination of the two data sets reduces entropy,

this calculation is performed separately for the fuzzy
membership sets derived from spatial, social, and
combined interaction fuzzy memberships.

To evaluate the information gained by combining

the perspectives, the information gain is calculated
twice: once comparing the spatial perspective to the
combined perspective, and once comparing the

social perspective to the combined perspective. The
information gain when comparing the spatial to the
combined perspective is calculated as follows:

Information GainspatialðxÞ
¼ HspatialðxÞ −H combinedðxÞ, (6)

and the information gain when comparing social to
combined is calculated as:

Information GainsocialðxÞ ¼ HsocialðxÞ −H combinedðxÞ,
(7)

where HspatialðxÞ; HsocialðxÞ; and HcombinedðxÞ repre-

sent the entropy of the CBG’s memberships derived
from spatial interactions, social interactions, and the
combined interactions, respectively. A positive infor-

mation gain in either case indicates that the com-
bined perspective provides a clearer, less uncertain
view of the CBG’s district membership compared to
the individual spatial or social perspectives.

Kullback–Leibler (KL) divergence is used to quan-
tify the degree to which the social and spatial mem-
bership entropy distributions differ from the

combined entropy distribution for each district,
offering insight into the alignment of each perspec-
tive with the integrated view. For a given district D,
the KL divergence of the social perspective from the
combined perspective is given by:

KLðSocialjjCombinedÞ ¼
X

x2D
/SocialðxÞ log

/SocialðxÞ
/CombinedðxÞ

,

(8)

where /SocialðxÞ and /CombinedðxÞ represent the nor-

malized distributions of fuzzy membership entropies
for each CBG x in the social and combined perspec-
tives, respectively. Similarly, the KL divergence of

the spatial perspective from the combined perspec-
tive is calculated as:

KLðSpatialjjCombinedÞ ¼
X

x2D
/SpatialðxÞ log

/SpatialðxÞ
/CombinedðxÞ

:

(9)

Fuzzy Membership Based on Spatial and Social Interactions 9



To assess the statistical significance of the

observed KL divergence, a permutation test is con-

ducted. For each district and entropy type (social or

spatial), the observed KL divergence is compared to

a distribution generated from 1,000 permuted sam-

ples. In each permutation, entropy values within

each district are shuffled to remove any geographic

relationships, and the KL divergence between this

permuted distribution and the combined entropy dis-

tribution is calculated. The resulting p value repre-

sents the proportion of permuted KL divergences

that were as extreme or more extreme than the

observed value (Good 2000). This test evaluates

whether geographic entropy structures significantly

influence the information gain within each district.

A significant result would indicate that the observed

spatial or social distribution aligns with the com-

bined distribution in a nonrandom, geographically

patterned way.

Plan Evaluation

Using the data sets and formulas already

described, the following analyses are conducted to

demonstrate how spatial and social interactions can

inform the district memberships of CBGs. In the first

analysis, the partial membership of each CBG in its

assigned congressional district is examined, allowing

for the identification of CBGs that are not strongly

affiliated with their assigned district. It further

explores the alignment and divergence of COI affili-

ations based on spatial and social interactions.

In the second analysis, we explore the impact of

combining spatial and social memberships on incor-

rectly assigned and low-membership CBGs. By com-

paring the combined memberships with spatial and

social memberships individually, this analysis reveals

if spatial or social interactions play a dominant role

in defining connections between districts.

Results

Overview of Social, Spatial, and Combined Fuzzy
Memberships Across Districts

The maximum fuzzy memberships from spatial,

social, and combined perspectives, respectively, are

shown Figure 3, where the CBG color corresponds to

maximum fuzzy membership value for that CBG.

Misassigned CBGs are shown in purple, and low-

membership CBGs are shown in tones of white and

brown. Overall, mobility-based spatial interactions

produced higher maximum membership values,

resulting in fewer misassigned CBGs and fewer low-

membership CBGs relative to the fuzzy memberships

derived from social interactions. These results can be

seen in Figure 3, where the left map shows the

CBG-level maximum membership values based on

social interactions (Facebook friendships), and the

middle map shows maximum membership values

based on spatial interactions (human mobility flows).
The combination of social and spatial fuzzy mem-

berships through element-wise multiplication and

normalization generates a fuzzy membership set that

Figure 3. Maximum fuzzy membership value for each census block group (CBG), from social, spatial, and combined interactions.

Element-wise multiplication of fuzzy memberships for each CBG produces much higher maximum membership values for most CBGs,

showing that the spatial and social interaction data sets tended to agree on their maximum membership districts.
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increases the membership value where both spatial

and social perspectives align, while diminishing the

value where they do not. As seen in the right-most

map in Figure 3, combination results in more CBGs

achieving a maximum fuzzy membership value of

close to 1 compared to the social and spatial interac-

tion maximum partial membership maps on the left.

Additionally, there are significantly fewer misassigned

and low-membership CBGs in this combined

approach. Table 1 illustrates this, with the misas-

signed and low-membership counts shown in bold if

they are less than or equal to the corresponding

counts from the social perspective, and underlined if

they are less than or equal to the corresponding

counts from the spatial column. Generally, there is an

averaging effect across districts for the number of mis-

assigned CBGs. The combined number of misassigned

CBGs typically falls between the counts observed

from the social and spatial perspectives. It is usually

closer to the count from the spatial perspective, how-

ever, suggesting that fuzzy memberships based on spa-

tial interactions tend to show stronger affiliations

with their primary district. In contrast, social

interaction-based fuzzy memberships appear more dis-

persed, indicating weaker dominant affiliations.
For low-membership counts, all districts except

one show a substantial decrease after combining

both social and spatial perspectives. This trend sup-

ports the idea that, in most cases, the majority mem-

bership district for each CBG aligns across their

residents’ social and spatial dimensions. Regarding

the locations of misassigned and low-membership

CBGs from all perspectives, CBGs located along dis-

trict borders are the most likely to be misassigned or

low membership. Indeed, this pattern is evident in

all three maps in Figure 3, where purple CBGs indi-

cate misassigned CBGs, and white and brown CBGs

represent low-membership CBGs. Similarly, CBGs

that are farthest away from other districts tend to

have the highest membership, although this is not

always the case.

When taken as a whole, the more focused mem-

berships from the spatial perspective, along with the

tendency of misassigned and low-membership CBGs

to be along district borders, likely reflects the role of

distance in the underlying spatial interaction net-

works. Although people are still more likely to form

friendships with people who are geographically close

(Bailey et al. 2020), social interactions are generally

less constrained by distance compared to mobility-

based physical interactions. Additionally, the social

interaction network used here reflects the number of

Facebook friendships between CBGs. As friendships

are generally established and then maintained, they

do not require the cost of distance to be paid regu-

larly. In contrast, spatial interactions (e.g., a trip

between CBGs) require an investment of time,

money, and more, every time the trip is made. As

such, people in one CBG can maintain many friend-

ships with those in distant CBGs at a relatively low

cost, whereas the investment of physically moving

between such CBGs is much greater. Accordingly, it

would be expected that the fuzzy memberships of

CBGs based on social interactions would be more

dispersed geographically, whereas those based on spa-

tial interactions would be much more localized. This

is indeed reflected in the misassigned and low-

membership counts of each respective category.

Table 1. Counts and percentages of misassigned and low-membership census block groups by district

Social Spatial Combined

District Misassigned Low-membership Misassigned Low-membership Misassigned Low-membership

1 98 (16.4%) 59 (9.9%) 11 (1.8%) 27 (4.5%) 58 (9.7%) 12 (2.0%)

2 15 (3.1%) 37 (7.6%) 11 (2.3%) 6 (1.2%) 2 (2.5%) 1 (0.2%)

3 24 (4.2%) 65 (11.3%) 9 (1.6%) 17 (3.0%) 12 (2.1%) 0 (0.0%)

4 2 (0.3%) 236 (33.6%) 0 (0.0%) 10 (1.4%) 0 (0.0%) 1 (0.1%)

5 24 (4.5%) 192 (36.0%) 10 (1.9%) 21 (3.9%) 15 (2.8%) 5 (0.9%)

6 20 (3.3%) 72 (11.8%) 10 (1.6%) 13 (2.1%) 13 (2.1%) 0 (0.0%)

7 12 (2.0%) 17 (2.8%) 5 (0.8%) 7 (1.1%) 7 (1.1%) 0 (0.0%)

8 17 (3.2%) 28 (5.2%) 11 (2.0%) 9 (1.7%) 15 (2.8%) 0 (0.0%)

Note: Values in the combined column are bold if they are less than or equal to the corresponding social values and italic if they are also less than or

equal to the corresponding spatial values, indicating stronger alignment or lower counts in the combined metrics compared to the individual social and

spatial measures.
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Fuzzy Memberships in Districts 1 and 4

To further demonstrate how the spatial, social,

and combined fuzzy memberships can be used to

understand district affiliation in local communities, a

deep examination of Districts 1 and 4 is provided

(see Figure 1 for district reference on the map).

From the social interaction network perspective,

District 1 had the highest number of misassigned

CBGs, at ninety-eight (16.4 percent of the CBGs in

that district), compared with two (0.3 percent) mis-

assigned CBGs in District 4. The majority of misas-

signed CBGs in District 1 are located within the

Milwaukee city boundary, and of the misassigned

CBGs in District 1 that fall within Milwaukee’s

boundary, 100 percent have their highest fuzzy mem-

bership in District 4. This indicates that the social

interactions of those CBGs are strongly directed

within the city of Milwaukee, rather than without.

Looking at low-membership CBGs reveals a differ-

ent story, however. From a social network perspec-

tive, District 4 has only two misassigned CBGs but

includes 236 (33.6 percent) low-membership CBGs,

suggesting that many CBGs in this district exhibit

highly divided membership between two or more dis-

tricts. Most of the low-membership CBGs in District

4 are located on the southeastern side of the district,

close to Districts 1 and 5, suggesting a large degree

of social community overlap between these regions.

Indeed, looking at the second maximum fuzzy mem-

bership district for low-membership CBGs in District

4 that are outside of the city of Milwaukee, 96 per-

cent of them are District 5. From the social perspec-

tive alone, such low-membership CBGs could likely

be placed in either District 4 or 5, as their member-

ship is relatively evenly dispersed between CBGs in

those two districts.
Focusing now on the combined membership val-

ues for District 1 (Table 1), it is clear that combin-

ing the social and spatial fuzzy memberships has a

balancing effect on the number of misassigned

CBGs. Compared to using only social connections,

which results in ninety-eight misassigned CBGs, the

combined misassigned CBG count decreases to fifty-

eight. Conversely, the combined count of fifty-eight

is higher than the number of misassigned CBGs

when only the spatial perspective is used. In terms

of low-membership CBGs, the combined approach

yields twelve, which is significantly lower than for

either the social or spatial perspectives alone.

Looking at the low-membership CBGs (from the

spatial perspective) in District 1, all twenty-seven

became misassigned after combination with the

social perspective, showing how combining the two

perspectives is most likely to change the district

assignment of CBGs that have relatively weak mem-

bership in their majority district from a given per-

spective. In terms of location, the twenty-seven

CBGs in District 1 that go from low membership to

misassigned after combination are primarily located

near the southern border of Milwaukee (Figure 4).

Low-membership CBGs (indicated by white and tan

colors) in the spatial fuzzy membership map align

with low-membership and misassigned CBGs in the

social perspective. The geographic clustering, along

with fact that all twenty-seven CBGs of the misas-

signed CBGs in District 1 have their majority mem-

bership in District 4, strongly suggests that this area

corresponds to a community that is deeply tied to

the rest of the city of Milwaukee and District 4. In

terms of the practical importance of these findings

to redistricting, these patterns suggest that these

CBGs from District 1 might be among the first can-

didates for district reassignment if the PMC map

were to be redrawn.

Despite instances of misalignment, many CBGs

within Districts 1 and 4 reach nearly full member-

ship (a fuzzy membership value of 1.0) in their desig-

nated districts after combination. Indeed, District 4

initially had the highest number of low-membership

CBGs (236) from the social perspective alone. After

combining perspectives, however, both the misas-

signed and low-membership counts for District 4

dropped to zero, underscoring the extent of agree-

ment between the data sets and illustrating how

uncertainty in one perspective can be mitigated

through alignment with the other.

Election Outcomes for Districts 1 and 4

As shown in the analysis of CBGs in District 1

that fall within the border of the city of Milwaukee,

there is strong geographic clustering in the district

affiliation of CBGs near district and city lines.

Because such geographically based communities

might also be reflected in political affiliation, the

2020 presidential election voting outcomes for

precincts in Districts 1 and 4 are briefly examined.

Figure 4 presents the fraction of votes cast for

Biden (the Democratic candidate) as a percentage

of the total votes cast for Biden and Trump
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(the Republican candidate) within these precincts.
This map reveals that the majority of precincts in
central Milwaukee exhibit high voting percentages

for Biden, with precincts in the city center having
an average 86 percent vote share for him.

Overall, the combined fuzzy memberships offer a

multifaceted perspective on the COI connections
that district boundaries aim to encapsulate, enabling
the identification of areas where district boundaries

place CBGs in districts with which they are not
most strongly affiliated. Although the number of
misassigned CBGs decreases or remains the same
using the combined approach, the CBGs that are

still misassigned after combination would be the first
to evaluate for district reassignment when develop-
ing a new redistricting plan, as such CBGs have the

strongest ties to communities outside of their cur-
rently assigned district. Likewise, CBGs with low
membership in their current district could be evalu-

ated for reassignment, given that they only share
weak connections within their currently assigned
district.

In terms of how this type of analysis could be for-
malized as a framework for analyzing redistricting
plans, one approach might be to evaluate the num-

ber of misassigned CBGs in each district and com-
pare these numbers across districts. If certain
districts have many more misassigned CBGs than

others, these outliers could be addressed first in
developing a new plan. For instance, using the com-
bined partial memberships, District 1 has fifty-eight

(9.7 percent) misassigned CBGs and twelve (2.0 per-
cent) low-membership CBGs, which is much higher
than the best-performing district, District 4, which
has no misassigned CBGs and one low-membership

CBG. The large differences in the number of misas-
signed and low-membership values between the
worst district and the rest provides a clear starting

point for evaluating which district boundaries should
be reconsidered. In the context of legal challenges
to a congressional district plan, plan statistics for

misassigned and low-membership CBGs could be
compared to the distribution of those same statistics
for an ensemble of plans, which we explore later.

Figure 4. Cutaway maps focusing on Districts 1 (lower district) and 4 (higher district) illustrate different perspectives on census block

group–level interactions and affiliations: (A) social interactions (top left), (B) spatial interactions (top right), (C) combined interactions

(bottom left), and (D) Biden’s vote share by precinct in the 2020 election (bottom right).
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Entropy Analysis of CBGs

The previous sections explore how the combina-

tion of two data sources can be used to evaluate

CBG district affiliation, focusing primarily on how

this combination affects the value of the maximum

fuzzy membership. Although maximum fuzzy mem-

bership is useful for assessing CBG district affiliation

(e.g., identifying misassigned and low-membership

CBGs), this approach can obscure the extent to

which correctly assigned CBGs have divided mem-

berships across multiple districts. To address this,

entropy—a measure of class dispersion—is used here

to analyze the extent to which CBGs exhibit divided

memberships. In the context of evaluating CBG dis-

trict membership from multiple perspectives, infor-

mation gain can reveal how combining spatial and

social perspectives can reduce membership ambiguity

across all districts in which a CBG has partial mem-

bership. By comparing entropy from spatial and
social perspectives, independently, to the entropy of

the combined perspective, the information gain for
each CBG can be calculated, offering insight into
how much clearer or less dispersed each CBG’s

membership becomes after integrating the data
sources.

As shown in Figure 5, the combined fuzzy mem-

bership map (upper right) exhibits significantly lower
entropy than either the individual social or spatial

maps. The maps in the lower part of Figure 5 illus-
trate the changes in entropy when transitioning

from the social and spatial perspectives to the com-
bined perspective, both of which demonstrate a sig-
nificant decrease in entropy, reflecting information

gain. The results indicate that all CBGs, from both
spatial and social perspectives, experienced

Figure 5. Fuzzy membership entropy and information gain for social, spatial, and combined perspectives in Wisconsin congressional

districts in the People’s Map Commission proposal. The top row displays the entropy of fuzzy membership values from social (left), spatial

(center), and combined (right) data sets.
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information gain from combination. Overall, the

social interaction perspective saw the greatest

decrease in entropy from combination, with the spa-

tial interaction perspective showing much more

modest decreases in entropy. Generally, CBGs near-

est to district borders have the highest entropy, with

combination producing the most information gain in

the district interiors.

District-Level Entropy Distributions

In the context of evaluating a given district pro-

posal, it might be desirable to compare how different

districts perform in terms of divided membership.

This would provide a quantitative measure of the

extent to which all geographic subunits (e.g., CBGs)

within each district exhibit divided membership.

Such a measure could serve as a starting point for

identifying districts that are most in need of modifi-

cation to better align their boundaries with underly-

ing COIs. Accordingly, the entropy distribution of

the combined fuzzy memberships in each district is

shown in Figure 6. Overall, District 5, which covers

suburban and rural areas to the west and north of

the city of Milwaukee, has relatively high entropy

among its CBGs, in terms of the district median and

interquartile range. The high entropy values in

District 5 reflect more divided membership across

the district, with the majority of high-entropy CBGs

located along district borders with neighboring dis-

tricts. This aligns with the misassigned and low-

memberships counts for District 5 in Table 1, as

District 5 has the second highest count in each of

the categories. Conversely, District 8 shows a distri-

bution of entropy values skewed lower than those of

other districts, suggesting that many of its CBGs are

well-placed within the district. This might also be

influenced by the fact that much of District 8 bor-

ders Lake Michigan and the state of Minnesota,

rather than another congressional district, as CBGs

along district borders tend to have higher entropy

values. This factor alone, though, does not fully

explain District 8’s lower entropy, as District 7,

which borders Lake Superior and has the Mississippi

River as its entire western boundary, shows an

entropy distribution more in line with other districts.

District 1 exhibits the widest interquartile range,

indicating significant variability in divided member-

ship within the district. This suggests that some

regions within District 1 have considerably higher

levels of divided membership, whereas others are

more cohesively situated within the district. The

large spread suggests potential outlier areas with pro-

nounced divided memberships, compared to regions

that are well-aligned within the district. Many of

the highest entropy CBGs in District 1 are located

Figure 6. Box plots of entropy values for each congressional district, showing the distribution of dispersed membership values among

census block groups within each district.
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near the border of District 4, reflecting the high

count of low-membership and misassigned CBGs in

District 1 near its border with District 4, as discussed

in the previous section (see Figure 4).

KL Divergence

To quantitatively evaluate the changes in entropy

at the district level, the KL divergence for each dis-

trict is plotted in Figure 7. A higher KL divergence

indicates a greater difference between the individual

(social or spatial) entropy distributions and the com-

bined distribution, suggesting that one of the per-

spectives (social or spatial) is more distinct from the

combined membership structure within that district.

In all districts, the KL divergence shows that the dif-

ference between the social membership entropy dis-

tribution and the combined membership entropy

distribution (blue bars) is greater than the difference

between the spatial membership entropy distribution

and the combined distribution (red bars). This sug-

gests that the spatial membership entropy distribu-

tion is more closely aligned with the combined

membership entropy distribution compared to the

social membership entropy distribution. In Districts

4 and 5, the differences between social and spatial

divergences are small, indicating a relatively bal-

anced influence from both perspectives on the com-

bined fuzzy memberships.

Overall, the social membership entropy tends to

diverge more from the combined membership

entropy. This, along with the lower entropy across

virtually all of the combined membership CBGs,

shows that the social fuzzy memberships generally

saw greater information gain than the spatial fuzzy

memberships, a sign that social fuzzy memberships

tend to be more dispersed, and spatial fuzzy member-

ships less dispersed. As the goal of combining the

spatial and social perspectives is to build a multiper-

spective evaluation of CBG district affiliation, a key

component to consider is if the combination of per-

spectives increases confidence in the calculated affil-

iation or not. As all CBGs, from both perspectives,

saw decreases in entropy after combination, we can

have more confidence that the combined fuzzy mem-

bership values reflect an aligned perspective on

COIs. The KL divergence test then quantifies the

extent of the information gain and helps us under-

stand which data source contributes most to the

increase in fuzzy membership alignment.

The global reduction in entropy from combina-

tion does not necessarily imply alignment with the

correct district; rather, it reflects a less divided

Figure 7. Comparison of Kullback–Leibler (KL) divergence between social, spatial, and combined membership entropy distributions

across districts.
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membership distribution across multiple districts,

pointing to strong agreement between the two types

of interactions, albeit with some regional variation.

In particular, the areas with smallest information

gain also tend to be the areas with the highest

entropy to begin with—CBGs near district borders.

The overall agreement between the spatial and

social perspectives, however, gives us confidence

that the spatial and social interactions are capturing

different perspectives of the same underlying interac-

tion communities.
To evaluate the statistical significance of the KL

divergence results, a permutation test is conducted.

The null distribution represents what the entropy

differences would look like if there were no real geo-

graphic structure or alignment between spatial,

social, and combined distributions; that is, if the

combination of the two perspectives was not causing

reductions in entropy in particular CBGs. Table 2

summarizes the p values for each district, indicating

whether the divergence between the individual

social or spatial membership entropy distributions

and the combined membership entropy distribution

is statistically significant.
The results highlight district-specific patterns in

how social and spatial perspectives align with the

combined entropy structure. Districts 1, 4, and 8

exhibit a significant divergence between the social

membership entropy distribution and the combined

membership entropy distribution (p< 0.05), suggest-

ing that social memberships experienced substantial

changes in entropy when combined with spatial

data. Notably, District 8 shows significant divergence

for both the social and spatial perspectives, indicat-

ing substantial changes in both distributions upon

combination. This suggests that, for District 8, the

social and spatial perspectives differ markedly from

each other, leading to a distinct combined structure.

Conversely, Districts 2, 5, 6, and 7 show no signifi-

cant divergence for either the social or spatial per-

spectives, implying that both distributions closely

align with the combined distribution. This lack of

significant divergence suggests that, for these dis-

tricts, the combined map integrates both perspec-

tives without substantial alteration, maintaining the

consistency of the social and spatial input maps.

Notably, all four of these districts exhibit informa-

tion gain, as seen in Figure 5, but the information

gain shows low variability across CBGs within each

district. This uniformity suggests that entropy

changes, although present, are consistent across the

district and do not form concentrated spatial clus-

ters, leading to an overall alignment of spatial or

social perspectives across the combined map.

Together, these findings indicate that the combined

membership entropy distribution often aligns more

closely with the spatial perspective. This closer

alignment suggests a stronger influence from spatial

fuzzy membership values, indicating that those values

were generally less dispersed.

Fuzzy Membership Ensemble Evaluation

The evaluation of district plans using metrics such

as fuzzy membership entropy naturally leads to the

topic of plan optimization, as these metrics can serve

as objective functions in optimization algorithms.

The inherent computational complexity of the redis-

tricting problem (NP-hard), however, renders the

determination of a globally optimal solution compu-

tationally intractable for most real-world political

redistricting scenarios (Altman 1997). Therefore, as

a methodological shift, outlier analysis has emerged

as a prevalent analytical framework for evaluating

district plans. This approach assesses the quality of a

proposed plan by comparing it against an ensemble

of diverse, valid alternative configurations (Duchin

2018; Herschlag, Dibaeinia, and Bonica 2022).
This method has been effectively used in legal

challenges to state-level redistricting plans and is

expected to play an increasingly prominent role in

redistricting litigation (Ramachandran and Gold

2018). In this study, we apply outlier analysis to

evaluate the quality of the PMC map by comparing

its fuzzy membership metrics against a sample

Table 2. p values for Kullback–Leibler divergence of
social and spatial membership entropy distributions

relative to the combined membership entropy distribution
in each district

District Social Spatial

Significant divergence

from combined

1 0.00 1.00 Social

2 1.00 1.00 None

3 0.92 1.00 None

4 0.00 1.00 Social

5 1.00 1.00 None

6 1.00 1.00 None

7 1.00 1.00 None

8 0.00 0.00 Both
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distribution of 10,000 district plans generated using

the ReCom algorithm (DeFord, Duchin, and

Solomon 2019). Each plan in this ensemble is ana-

lyzed using combined fuzzy memberships, with three

key metrics calculated across all districts: (1) the

sum of entropy, (2) the count of misassigned CBGs,

and (3) the count of low-membership CBGs. The

PMC plan is then compared to this distribution to

identify whether it exhibits outlier characteristics,

providing valuable insights into its reasonableness

with respect to these measures (Figure 8).

Using a two-tailed t test, the results indicate that

the PMC map is a significant outlier for both the

sum of entropy and misassigned CBG metrics, with

two-tailed p values of 0.0009 and 0.0004, respec-

tively. This suggests that these values are unusually

low compared to the distribution of values across all

assignments. The low-membership CBGs metric,

however, does not show the PMC map to be a sig-

nificant outlier, with a p value of 0.3634, indicating

that this value is more typical within the distribu-

tion. For the metrics evaluated here, being an outlier

on the low end of the distribution indicates that the

PMC map performs better than the vast majority of

plans, meaning it produces fewer misassigned CBGs

and a lower sum of entropy compared to most plans.

Conversely, an outlier with a high value would indi-

cate that the map performs worse than the majority

of plans. Overall, the outlier analysis helps gives

context to the fuzzy membership analysis of the

PMC plan. One aspect of the fuzzy membership

results that particularly benefits is the location of

the misassigned, low-membership, and high entropy

CBGs, which tend to be located along district

boundaries. Looking at the PMC map by itself, we

might believe that district boundaries are unneces-

sarily splitting interaction communities, given the

relatively high incidence of misassigned, low-

membership, and high-entropy CBGs along the

boundaries. Any imposition of an artificial political

boundary on top of the underlying interaction net-

works, however, would produce district assignments

where boundary CBGs are the most likely to be

have highly divided memberships, given the distance

decay effect in spatial and social interactions.

Therefore, comparison with a distribution of alterna-

tive maps helps us understand if the boundary effects

present in the PMC map are within a normal range,

or if they are indeed outliers in one way or another.

Discussion

As noted previously, CBGs without spatial or

social interaction data were excluded from the analy-

sis. Although this limitation is less critical in a

research context, its impact could be significantly

more pronounced if the proposed methodologies

were applied in a legal setting to evaluate voting dis-

tricts. To address the issue of missing data, various

approaches can be considered. These include impu-

tation techniques to estimate missing values, sensi-

tivity analyses to assess the impact of missing data,

or incorporating supplementary data sources to

improve coverage. A common method is to estimate

missing values, often using spatially weighted

nearest-neighbor estimates in geographical analyses.

As seen in the social and spatial interaction patterns

for District 7 in Figure 3, however, neighboring

CBGs can sometimes have very different member-

ships. This might occur if one CBG represents a

Figure 8. Outlier analysis of People’s Map Commission (PMC). Compared to the ReCom distribution, the PMC values for the sum of

entropy and misassigned census block groups (CBGs) count were outliers, whereas the low-membership CBG count was not.
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town with strong connections to other districts (e.g.,

as a transportation hub), whereas adjacent CBGs

consist of local residents with primarily local interac-

tions. In the context of redistricting, CBGs that are

centrally located within a district are less likely to

change districts, so missing data are less critical for

these CBGs. For CBGs near district borders, how-

ever, estimates of interactions might need to be

made more carefully. If data are missing from only

one source—such as if a CBG has spatial interaction

data but lacks social interaction data—using the

available data might suffice, especially given the

high degree of overlap between the two estimates.

Alternatively, other data sources can be used to fill

gaps when more critical data sets, like human mobil-

ity flows, which very closely reflect general human

activity, are unavailable.
Regarding data representativeness, both interaction

data sets in this research were collected in one year.

To derive more stable estimates of district affiliations

based on spatial and social interactions, we recom-

mend using long-term data sets spanning several

years. Unfortunately, this was not feasible in our case

due to social media data availability constraints.
Given that this work evaluates political districts,

it is natural to wonder why political data, such as

voting patterns, were not employed in the fuzzy

membership calculations. To explain this, we note

that term political redistricting refers to the political

nature of the process and outcomes—rather than

implying that districts should be drawn based on par-

tisan affiliation. As described earlier, district bound-

aries are typically grounded in nonpartisan principles

such as preserving COIs and ensuring compactness.

Furthermore, COIs are generally not defined in

terms of political affiliation, either. In terms of redis-

tricting law, states vary widely in how they permit

the use of political data (e.g., voting history or party

registration): Some prohibit its use entirely

(National Conference of State Legislatures 2021a),

others restrict its use to neutral evaluation (National

Conference of State Legislatures 2021c), and a grow-

ing number explicitly require it to assess partisan

fairness or competitiveness (National Conference of

State Legislatures 2021b). Rather than use political

data to measure region affiliation, we instead focus

on measuring region affiliation in terms of commu-

nity interactions, which we believe is more in line

with the literal definition of COIs as communities

with interests in common.

Finally, we briefly highlight how this type of analy-

sis could be applied to understanding contested

regions. Contested regions emerge when two or more

groups claim the same piece of land as belonging to

them, often leading to conflict. Although a variety of

factors, such as political, ethnic, geographic, religious,

and historical considerations, contribute to these dis-

putes (Murphy 2004; Schultz 2017), the use of fuzzy

membership methodology with spatial interaction

networks to analyze regional affiliations could offer a

present-day perspective on the divided affiliations of

such places. By providing a detailed description of the

contemporary affiliations and interactions within

these regions, this approach could offer valuable

insights into the modern communities that engage

with and use these contested spaces.

Conclusion

In this work, we present a spatial interaction-

based fuzzy membership framework to provide subdis-

trict level evaluations of region affiliation, where

multitype interactions represent the various COI

connections that a given geographic area has with

other areas in each district. To more comprehen-

sively model the spatial interaction communities

that constitute COIs in this work, we draw on both

the social sensing literature and the splatial frame-

work described by Shaw and Sui (2020) to justify

the use of multiple interaction types, ultimately

employing both spatial and social interaction types.
The combination of spatial-social interactions

helps focus fuzzy membership when they are aligned,

and increase membership dispersion when they are

not, allowing for a more nuanced understanding of

the interactions that underlie COIs across districts.

By evaluating regional affiliation at the CBG level,

this work introduces a novel method to assess

whether a given CBG is assigned to the most appro-

priate district based on the strength of its connec-

tions with other CBGs—a perspective currently

underexplored in redistricting literature. The pro-

posed methodology is first applied to evaluate a

given plan independently, and then extended

through outlier analysis, demonstrating how it can

be integrated into existing methods of redistricting

analysis. The use of fuzzy memberships in relation to

political boundaries also illustrates how the proposed

methodology can be applied to understand border
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regions more broadly, a topic that is highly relevant

in fields such as geography, political science, and
other regionalization-related disciplines.

Several future research areas could be explored.
Although spatial and social interaction data sets

were employed to capture various types of human
interaction, additional data sets could be explored
for use in measuring COI connections. Additionally,

the modeling of COIs with multitype interactions
could be compared with the COIs that are reported
by constituents. If a constituent claims that some set

of areas are part of the same COI, this claim could
be quantitatively compared against the interaction
strengths for those same areas. This would also pro-

vide a more objective way of deciding on which
COIs to prioritize when multiple, overlapping COIs
are identified and contested by constituents.

Furthermore, the proposed methodology can be

extended to evaluate COIs in relation to natural
boundaries such as rivers, lakes, or mountain ranges.
Intuition might suggest that communities separated by

these features are weakly connected, but our quantita-
tive spatial interaction measures offer a means to
objectively assess the actual strength of connections

between such communities. This approach allows for
a direct comparison of intuitive assumptions against
empirical interaction data, providing a more robust

understanding of COI formation in the presence of
natural barriers. In selecting spatial interactions for
this study, we used human mobility flows and social
network connections to capture a broad range of

interactions relevant to communities. The methodol-
ogy is adaptable to any interaction type deemed rele-
vant to a specific COI definition, however, whether

established by states or researchers.
This research contributes to the redistricting liter-

ature by developing novel approaches to modeling

COIs and assessment of region affiliation using spa-
tial and social interactions. This use of fuzzy mem-
bership on spatial interactions also contributes to
the geography and GIScience literature on region

boundaries, providing a methodological framework
for quantifying the divided regional affiliation of
vague or contested boundary areas.
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Notes

1. See https://dataforgood.facebook.com/dfg/tools/social-
connectedness-index/.

2. See https://mcdc.missouri.edu/applications/geocorr.
html.
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