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ABSTRACT
Recognizing the degree of scale effect is crucial for selecting appropriate scales in spatial analyses. However, few meth-
ods are available for quantifying this effect. Topology, which studies invariants preserved under continuous deformation, 
provides an effective means of characterizing data. Therefore, we propose quantifying the scale effect by calculating the 
distance between topological invariants of data aggregated at different scales, termed the scale snapshot topology distance 
(SSTD). We summarize data snapshots aggregated at different scales using persistence diagrams, capturing essential infor-
mation about topological invariants. We then quantify SSTD by computing the Wasserstein distance between these diagrams 
and apply it to track data variation across scale changes. Experiments on origin–destination data from five cities validate the 
effectiveness of the SSTD metric. Results demonstrate that our method identifies critical spatial scales near the consistency 
boundary of the scale effect, providing guidance for scale selection and showcasing the feasibility of topology-based spatial 
data analysis.

1   |   Introduction

The modifiable areal unit problem (MAUP) is a fundamental 
issue in geographical studies, which is acknowledged as the phe-
nomenon that arbitrary choices of spatial aggregation configu-
rations may cause different results and biases (Openshaw 1984; 
Fotheringham and Wong  1991; McMillen  2004; Martin and 
Schuurman 2020; Ye and Rogerson 2022). This problem can be 
divided into two different but related aspects, namely, the scale 
effect and the zoning effect (Fotheringham 1989; Miller 1999). 
Specifically, the former refers to the change in the results due to 
different sizes of units in which data are grouped; the latter sig-
nifies the effect brought by the manner in which the unit is di-
vided with different spatial configurations with varying shapes 

and boundaries, such as regular grids or Thiessen polygons. In 
this paper, we focus on the scale effect. The term “scale” has 
several definitions, and we adopt the spatial scale defined as 
the measurement concept throughout the paper, which refers 
to the resolution of the spatial unit for analysis (Atkinson and 
Tate 2000).

Despite the long-standing recognition of the scale effect and 
extensive research efforts, there remains a lack of estab-
lished rules or universal conventions to guide the spatial ag-
gregation process (Openshaw  1977, 1984; Nelson  2001; Mu 
and Wang 2008; Stehman and Wickham 2011; Manley 2014). 
Choosing the “right” scale relies heavily on practitioners' em-
pirical speculation due to the limited understanding of the 
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scale effect. One feasible solution is to find a quantitative way to 
measure the difference caused by different aggregation scales. 
Once the difference between the data aggregated at different 
scales can be precisely defined and measured, we can establish 
guiding principles for choosing an appropriate scale based on 
the degree of deviation between aggregations. We define data 
aggregated at different spatial scales as scale snapshots for ease 
of expression. Thus, the key to the problem can be expressed as 
follows: Given a sequence of ascending spatial scales, how can 
we quantify the differences between the corresponding scale 
snapshots?

To address this, we introduce a novel framework grounded 
in algebraic topology. Mathematically, topology involves 
the study of topological invariants preserved under contin-
uous deformation, which can be used to characterize data 
(Carlsson  2009). Therefore, we propose a novel methodolog-
ical framework that utilizes the summaries of topological in-
variants as surrogates to measure the distance between scale 
snapshots. In particular, we use persistent homology theory to 
extract summaries of topological invariants. Persistent homol-
ogy studies the structure of complex and high-dimensional 
data through a multi-level analysis and has recently been used 
in exploratory data analysis and data mining (Hajij et al. 2018). 
Leveraging persistent homology, the proposed framework 
first extracts topological invariants across dimensions and 
then produces comprehensive topological summaries for scale 
snapshots. Then, we use a mathematically well-defined met-
ric to assess the disparity among topological summaries of 
scale snapshots, which we name as the scale snapshot topol-
ogy distance (SSTD). Finally, we track how the scale snapshot 
changes across different spatial scales.

The contributions of our work are listed as follows. First, we 
propose the scale snapshot topology distance (SSTD) to mea-
sure the variation caused by the spatial scale effect by track-
ing the changes in the topology of scale snapshots. Second, in 
addition to clustering patterns to which traditional analysis 
on the scale effect is restricted, we measure the changes in 
higher-dimensional loop patterns to understand the scale ef-
fect more comprehensively. Third, we conduct case studies to 
validate the effectiveness of the proposed SSTD metric in the 
context of spatial interactions. According to our experimen-
tal results, the spatial clustering pattern evolves consistently 
across different aggregation settings, while abrupt changes in 
the high-dimensional patterns are observed. The critical scale, 
which is indicative of when the shift occurs in the topological 
evolution, can potentially provide a reference for choosing an 
appropriate spatial scale. To the best of our knowledge, this is 
the first time the scale effect has been explored with algebraic 
topology.

The remainder of the paper is organized as follows. Section  2 
introduces the related works on studying scale effects. Section 3 
introduces basic concepts in topology and persistent homol-
ogy. The theoretical foundation of applying topology to an-
alyze the scale effect and the pipeline of our work is given in 
Section  4. Next, we demonstrate the case studies in five cities 
and report our findings as well as those using traditional meth-
ods in Section  5. We further discuss the broader implications 
of the proposed framework in Section 6. In the last section, we 

conclude with a summary of the results and offer insights on 
future research directions.

1.1   |   Related Work

Understanding the scale effect has long been a critical concern 
in geographic research, particularly due to the widespread 
practice of aggregating individual-level data into areal units 
(Atkinson et al. 2014). In the scope of spatial distribution, var-
ious studies on how different scales can affect the statistical 
results have been performed (Gehlke and Biehl  1934; Clark 
and Avery 1976; Fotheringham and Wong 1991; Amrhein and 
Flowerdew 1992; Amrhein 1995; Amrhein and Reynolds 1996; 
Green and Flowerdew 1996; Holt et al. 1996), including mea-
surements such as mean, variance, covariance, and correla-
tion coefficients, varying from a single variable to multiple 
variables, and from linear regression to the Poisson regres-
sion model. In order to understand the effect of changing 
spatial scales, researchers have also explored its impact on 
spatial autocorrelation statistics (Qi and Wu 1996; Jelinski and 
Wu 1996), spatial interpolation (Cressie 1996) and accessibility 
(Kotavaara et al. 2012; Stepniak and Rosik 2015). Xiao (2020) 
proposed a metric named spatial aggregation entropy (SAE) 
to quantify the changes in spatial heterogeneity and uncer-
tainty caused by spatial aggregation, providing a new perspec-
tive and computable approach to spatial analysis. Zhou and 
Yeh (2021) utilized mobile positioning data to examine MAUP 
and determine unit size by calculating changes in the varia-
tion coefficient of indicators related to job-housing balance. 
Gao et al. (2022) explored the scale effects on commuting de-
mand modeling in Shenzhen by analyzing nine spatial units 
from three partitioning schemes and applying geographically 
weighted regression to assess the effects on commuting de-
mand. Briz-Redón (2022) proposed a Bayesian shared-effects 
modeling framework to quantify the global and local scale ef-
fects by analyzing the variation in covariate effects between 
different spatial scales and using posterior predictive checks 
to detect the contributing spatial units. Kosonen (2023) stud-
ied the scale effect by processing multi-scale migration and 
driving factor data, using linear regression to analyze the 
changes in variable correlations and explanatory power at dif-
ferent scales, and evaluating the impact of spatial autocorrela-
tion with Moran's I test. Huang et al. (2024) studied the scale 
effect through kernel density analysis, spatial autocorrelation 
analysis, Pearson correlation analysis, and random forest 
model, exploring the relationship between urban vertical pat-
terns and waterlogging at different scales.

For the scale effect on spatial interactions, the majority of studies 
focus on the distance decay effect, with the starting point being 
that spatial interaction is prone to attenuate with an increasing 
distance (Liu et al. 2014). Hence, researchers utilize the gravity 
model as a proxy to study the scale effect related to spatial inter-
action (Batty and Sikdar 1982; Ubøe 2004; Hagen-Zanker and 
Jin 2012; Arbia and Petrarca 2016; Stillwell et al. 2018). Apart 
from the distance decay mechanism, the structural pattern (in 
particular, the variation of the detected communities) of origin–
destination (OD) matrices across scales was also studied (Zhang 
et al. 2018; Coscia et al. 2012). That is, how the clustering pat-
terns of geographical units change from a spatial interaction 
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perspective. To summarize, existing analyses mostly rely on 
combinatorics and clustering analyses, which are limited to 
short-range interaction relationships and patterns of finite order.

1.2   |   Preliminary

In this section, we provide a brief introduction to topology and 
persistent homology, as well as the necessary notations and con-
cepts used throughout the rest of this paper.

In general, high-dimensional data can be represented in the 
form of a data cloud, that is, data points scattered around a man-
ifold in a high-dimensional space (Chazal 2016). Data that are 
different in nature are assumed to be sampled from the man-
ifolds that have disparate shapes that are invariant even with 
some deformations. Therefore, shape analysis is widely used in 
many domains to differentiate data distributions due to its great 
performance (Lum et al. 2013).

Similarly, if we use multiple scales to aggregate data, then each 
scale snapshot can form a point cloud, and the point clouds be-
longing to different scale snapshots may exhibit different shapes 
and diverse structures. We can then differentiate the scale snap-
shots based on their shapes and study the evolution of different 
structures with scale.

Topology is the branch of mathematics that analyzes and ex-
tracts insights from shapes (Ghrist  2008). This field probes 
topological invariants (e.g., connectedness and voidness) of 
shapes that are preserved under the coordinate variation, 
continuous deformation, and compression (Carlsson  2009). 
While traditional methods provide only partial information 
about the shape of the data (e.g., the connectedness provided 
by clustering methods), topology can provide a more holistic 
characterization of the data. Since data with disparate shapes 
are different in terms of connectedness and voidness, we can 
quantify the difference between data sets based on their topo-
logical characterizations.

1.3   |   Homology

An algebraic topology method called homology plays a powerful 
role in providing information about invariants that characterize 

and describe shapes (Fugacci et al. 2016). In addition to the con-
nected components (i.e., clusters), homology can extract other 
information about the given data. For example, describing more 
delicate structures, such as loops and voids that are invisible to 
other methods.

The first step in applying homology is constructing a meaning-
ful abstraction to approximate the data structure and using the 
original data as the point set. Given a distance function d and 
a threshold ϵ ≥ 0, pairs of data points xi, xj are considered to be 
close if d

(
xi, xj

)
 is less than ϵ. Then, a widely adopted abstrac-

tion, the Vietoris-Rips (VR) complex (Fugacci et al. 2016), is de-
fined as:

where � is a k-simplex composed of k + 1 affinely independent 
points, and every point pair has a d

(
xi, xj

)
 at most ϵ. Two close 

points are connected to form a 1-simplex, and a k-simplex is 
generated once all its (k-1)-simplices are connected. An illus-
tration of k-simplices and the Vietoris-Rips complex is shown 
in Figure  1. The VR complex can be utilized to approximate 
the shape of a scale snapshot, while the simplexes are the basic 
building blocks of the complex.

Given the VR complex, we can leverage homology to an-
alyze the connected components and holes, thus deriving 
information about the shape of a dataset. The homology of 
different dimensionality derives information regarding the 
topological invariants (holes) of the corresponding dimen-
sionality. Specifically, 0-dimensional homology consists of 
0-dimensional holes (connected components), 1-dimensional 
homology consists of loops (non-bounding 1-cycles), and 
2-dimensional homology corresponds to 2-dimensional holes 
(voids). For simplicity, we call them the H0, H1, and H2 fea-
tures, respectively. We can differentiate the data sampled 
from different shapes with the information on these features. 
As an example shown in Figure 2, we use the Betti number 
(Milnor  1964), a tool that counts the number of topological 
invariants of dimensions k, to demonstrate the discriminative 
power of homology. �0, �1, and �2 count the number of H0, H1, 
H2 features, respectively. All shapes have one connected com-
ponent; therefore, they share �0 = 1. However, they can be sep-
arated by the combination of �1 and �2, which counts H1 and 
H2 features.

(1)VRϵ =
{
𝜎 =

(
x0, … , xk

)
∣ d

(
xi, xj

)
< ϵ, 0 ≤ i, j ≤ k

}
,

FIGURE 1    |    Illustration of k-simplices and the Vietoris-Rips complex. (A) 0-, 1-, 2-, and 3-simplices (from left to right). An isolated point is a 
0-simplex, a line connecting two points is a 1-simplex, a filled triangle is a 2-simplex, and so forth. (B) An example of the Vietoris-Rips complex.
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1.4   |   Persistent Homology

However, the Vietoris-Rips complex is determined by the value 
of ϵ. Given a distance function d, two units i, j are only connected 
when d(i, j) is smaller than ϵ. How we define the proximity be-
tween spatial units determines the distance function we use 
and how we calculate it. A small value of ϵ makes the complex 
sparsely connected and scattered, thus providing little addi-
tional information than the original point cloud. In contrast, a 
sufficiently large value of ϵ ends in a fully connected complex, 
revealing no information about the proximity between spatial 
units. Different choices of ϵ generate complexes with different 
topological structures.

Therefore, instead of finding an optimal threshold value and 
studying a single complex to gain limited knowledge of the 
data, we compute the persistent homology related to these scale-
dependent point clouds; that is, for each point cloud, we compute 
a sequence of Vietoris-Rips complexes by adapting a filtration 
process. The filtration is a finite sequence of complexes that 
starts from the empty complex:

where VRi is the complex corresponding to ϵi whose nodes (i.e., 
spatial units) are connected only when the pair distance be-
tween the two nodes is below ϵi. Note that we adopt a series of 
ascending threshold values, so for j < k, ϵj < ϵk.

The evolution of filtration sheds light on the persistence of to-
pological features. A topological feature born at the threshold 
value ϵi and dying at ϵj has persistence ϵj − ϵi. Persistence reveals 
the significance of the topological features. Features that persist 
across an extensive range of ϵ values are generally considered to 
be intrinsic data features.

As a toy example shown in Figure 3, we sparsely sample the 
data from a ring shape with a perturbation. We can see a large 
loop (H1 feature, the uncolored part inside connected points) 
along with two small loops when ϵ = 0.24 and the former 
continues for a large range while the latter ones disappear at 
ϵ = 0.36. Although multiple loops (H1 features) are detected 

(2)0∕ = VR0 ⊆ VR1 ⊆ VR2 ⊆ … ⊆ VRn = VR,

FIGURE 2    |    Shapes and their Betti numbers. From left to right, a point, a loop, a hollow sphere, and a torus.

FIGURE 3    |    Persistent homology was applied to data points sampled from a ring with perturbation. (A) The data cloud and the sampled ring; (B) A 
persistence diagram of the H1 features, with each orange dot representing a loop feature that appears during the filtration process and the deviation 
from the diagonal line indicating the persistence of the feature. (C) A part of the filtration process.
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during filtration, only one loop representing the ring lasts for 
a long time.

1.5   |   Persistence Diagram and Wasserstein 
Distance

The persistence diagram (PD) (Kerber et al. 2017) can be used 
to summarize and visualize the persistence information of topo-
logical features that appear in the filtration process. PD has two-
dimensional coordinates, with the x-coordinate representing 
the birth time and the y-coordinate representing the death time, 
as shown in Figure 3B. Topological features are represented by 
points distributed above the diagonal line because they “die 
after birth chronologically”. Points that are distant from the di-
agonal persist longer and are considered to be intrinsic features 
of the data. To compare PDs, we can use the Wasserstein dis-
tance, a metric that measures the difference between distribu-
tions by solving Kantorovich's optimal transport problem1. It is 
mathematically proven to be stable (Cohen-Steiner et al. 2010), 
which means that a slight variation in the data will not result in 
an enormous difference in terms of the Wasserstein distance. 
However, in other methods, for example, mutual information-
based Kullback–Leibler (KL) divergence, the divergence can be 
large even when the underlying data samples differ only slightly 
(Ozair et al. 2019).

The Wasserstein distance between two persistence diagrams 
PD

Hn
a  and PDHn

b
 is defined as:

where �:PDHn
a → PD

Hn

b
 ranges all bijections from PDHn

a  to PDHn

b
 to 

match the points in PDHn
a  and PDHn

b
, and p is commonly set to 2. 

This metric seeks a perfect match between points belonging to dif-
ferent PDs, while extra points are matched to artificial diagonal 
points if the cardinalities of the two PDs are inconsistent. Take the 
ring shape in Figure 3 as an example. If we densely sample the 
points from the ring without perturbation, we will derive a per-
sistent diagram of H1 with only one point distant from the diagonal 
line. When calculating the Wasserstein distance between PDs in 
Figure 3B and the new PD, the two points that are both away from 
the diagonal are matched. Since the new PD has no other points, 
those near the diagonal in Figure 3B are all matched with artificial 
points on the diagonal line. The final Wasserstein distance in this 
case will be small because the intrinsic features are matched, and 
the distance between short-lived parts and artificial points is neg-
ligible. For a more detailed description of the Wasserstein distance, 
please refer to Kerber et al. (2017).

Another commonly used metric for comparing persistence dia-
grams is the bottleneck distance, which also satisfies a stability 
theorem (Cohen-Steiner et al. 2005), but it focuses on the larg-
est single feature difference. Since our goal is to capture over-
all topological variation rather than just the largest individual 
difference, the Wasserstein distance is more appropriate for our 
analysis.

2   |   Methods

The main objective of this paper is to quantify the spatial scale 
effect from a topological perspective. The motivation that we 
choose topology as an analytic tool comes from the idea that data 
can be characterized by their intrinsic topological invariants.

The analytical pipeline of our topology-based framework is shown 
in Figure 4. First, we model the data aggregated under different 
scales as scale snapshots. Then, persistent homology is applied to 
extract the topological invariants in scale snapshots at multiple 
levels, and each scale snapshot is described by a persistence dia-
gram that summarizes information on its topological invariants. 
Finally, we can calculate the scale snapshot topology distance be-
tween the scale snapshots by computing the difference between 
their persistence diagrams. The details are elucidated below.

2.1   |   Data Preprocessing

This part introduces how to preprocess fine-grained data to be 
applied in the topological data analysis and investigation of the 
scale effect, which is shown in Figure 4A.

First, we adopt a series of ascending scales to partition the study 
area into non-overlapping spatial units. Then, we build scale 
snapshots to represent data aggregated at different scales in 
the matrix form. Specifically, the snapshot of scale s is of size 
Ns × Ns, and the origin and destination of original origin–desti-
nation (OD) flows are redesignated to the spatial units they in-
tersect according to their geographic coordinates. After this step, 
each origin and destination of an individual trip is assigned to 
the corresponding spatial unit, and we are no longer concerned 
with their precise geographic coordinates. With the rows as orig-
inating units and columns as destination units, each entry in the 
matrix refers to the absolute value of the frequency of interac-
tions between the corresponding units; in the upscaling process 
(fine-to-coarse resolution aggregation), short-range OD flows 
may be converted to intra-unit interactions represented by di-
agonal entries. Finally, each row in the scale snapshot can serve 
as a vectorized representation of the corresponding spatial unit.

2.2   |   Topological Representation of the Scale 
Snapshots

Now that we have the scale snapshots, which are the products 
of spatial aggregations under different scales. Then, each spatial 
unit can be represented by a point in a high-dimensional space, 
and the corresponding row vector in the snapshot matrix deter-
mines its coordinate. The distance between two vectors thus de-
fines the distance between corresponding points. Each scale's 
spatial units form a point cloud (i.e., a point set with shape). 
Point clouds belonging to different scale snapshots can demon-
strate diverse shapes and exhibit versatile topological structures. 
Therefore, it is feasible to study the spatial scale effect by moni-
toring the changes in the topological structure of snapshots.

After that, we apply persistent homology to each scale snapshot. 
During the filtration, we can extract both 0- and 1-dimensional 

(3)WD
�
PD

Hn
a ,PD

Hn

b

�
=

⎛⎜⎜⎝
inf

�:PD
Hn
a →PD

Hn
b

�
x∈PD

Hn
a

∥ x−�(x) ∥p
∞

⎞⎟⎟⎠

1

p

,
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features (H0 and H1 features, respectively) for each complex. 
H0 features are clusters defined by their similarity, that is, the 
similarity in the interplay pattern for spatial interactions in our 
scenario. H1 features, however, demonstrate more subtle con-
nections. The presence of a loop structure indicates that the spa-
tial units are not mutually similar, but instead exhibit similarity 
in a gradual or gradient-like manner. We later use the two topo-
logical features, H0 and H1, as proxies to capture changes in the 
scale snapshot.

Apart from information about the numbers and the existence of 
topological features, the PD also informs us of their significance. 
The topology of the snapshot changes as the scale evolves, as 
do the corresponding PDs. Therefore, the persistence diagram 
acts as a suitable topological representation for each scale snap-
shot. In order to track the variation of different patterns in the 
scale snapshots with scale, this study summarizes H0 and H1 
separately, so that each scale snapshot has PDH0 and PDH1 as its 
representations.

2.3   |   Scale Snapshot Topology Distance

To quantify the disparity in topological features between scale 
snapshots, we define the Scale Snapshot Topology Distance 
(SSTD) as the Wasserstein distance between the persistence di-
agrams of two snapshots. Since each scale snapshot has two to-
pological representations that summarize the information of H0 
and H1, respectively. Therefore, we compare the differences of 

H0 and H1 between the scale snapshots separately, as calculated 
in Equation 4:

By definition, if a = b, then SSTD Hn
(a, b) = 0. When topological 

features evolve stably across scales, the distance between con-
secutive PDs is small. Instead, if certain topological features of 
scale snapshots experience an abrupt transition, then the PD 
related to them will change abnormally. We can use such topo-
logical changes to understand the spatial scale effect on differ-
ent aggregations. In the following, we introduce a case study of 
spatial interaction aggregations to verify the effectiveness of the 
proposed methodology.

3   |   Case Study

3.1   |   Data and Study Areas

With the proliferation of sensors and the development of location-
awareness technologies, massive individual-level data are avail-
able for analyzing spatial interactions in both physical space and 
cyberspace (Yu and Shaw 2008; Gao et al. 2013; Li et al. 2021). 
In general, the selection of an analytic scale lacks standardized 
criteria and references when aggregating individual-level data 
to predefined spatial units (Liu et al. 2018). Therefore, the scale 

(4)

Given scale b and a, SSTDHn
(a, b) =WD

(
PD

Hn
a , PD

Hn

b

)
,n = 0, 1

FIGURE 4    |    The proposed framework for studying the spatial scale effect using topology.
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effect needs to be explored via cross-scale quantitative empiri-
cal studies. Our study areas include five cities in China, namely, 
Beijing, Shanghai, Shenzhen, Wuhan, and Jiaxing, to examine 
the scale effect on spatial interaction patterns derived from taxi 
trajectories in these cities.

We collect the datasets of anonymous taxi GPS trajectories from 
major taxi companies in the five cities. The study area of each city 
is the area covered by recorded taxi trips, as shown in Figure 5. We 
delete dubious GPS records and organize valid GPS records as or-
igin–destination (OD) trip pairs based on the pick-up and drop-off 
information (Liu, Wang, et al. 2012). A summary statistic of those 
records is shown in Table 1. Among the five cities, Beijing has the 
largest number of valid trip records, Shanghai has the longest time 
span of data, and Wuhan has the broadest coverage of records.

To better understand the datasets, we compute the trip-length 
distributions of the OD trip pairs in each city. From Figure 6, we 
can conclude that the trip-length distribution of Beijing is dis-
tinct from that of the other four cities. Fifty percent of the trips 
in Shanghai, Wuhan, and Shenzhen are shorter than 5 km, with 
even more than 80% for the city of Jiaxing. However, only 10% 
of the trips in Beijing are shorter than 5 km. Overall, most of the 
trips are limited to 40 km. The trip-length distribution informs 
us of an approximate upper bound of the size of the spatial units 

used to study the spatial interactions. Taking Shanghai as an ex-
ample, if the unit size is greater than 5 km, more than half of the 
spatial interactions become intra-unit interactions, which may 
limit the discovery of fine-grained patterns.

3.2   |   Configuration

Castro et  al.  (2013) proposed an overview of mechanisms for 
using taxi GPS data to analyze social and community dynam-
ics and claimed it is more practical to decompose the city into 
separate areas and work with this decomposition. Liu, Kang, 
et al. (2012) explored intra-urban human mobility and land use 
variations based on taxi trajectory data, discretizing the study 
area into 1000 m × 1000 m cells. Liu et al. (2016) used grids sized 
500 m × 500 km to divide the study area and used taxi data to 
classify and understand urban land use. Wei et al. (2020) iden-
tified and measured urban functional polycentricity using taxi 
GPS data aggregated across various scales, including grids sized 
3000 m × 3000 m and 5000 m × 5000 m.

Following the literature review on OD trip studies, we map 
the pick-up and drop-off points onto non-overlapping regular 
grids (Liu, Wang, et  al.  2012; Liu et  al.  2015), and we adopt 
aggregation scales ranging from 250 m to 3000 m, with 

FIGURE 5    |    Study area of Shanghai, Wuhan, Jiaxing, Beijing, and Shenzhen.

TABLE 1    |    Details of the taxi trajectory records.

Beijing Shanghai Shenzhen Wuhan Jiaxing

Time span (days) 25 30 6 10 7

Number of records 19,982,111 5,922,999 932,947 2,361,188 276,764

Coverage (km2) 515 2184 2510 7060 1337
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8 of 17 Transactions in GIS, 2025

increments of 250 m. The size of grids at scale s is s × sm2. 
Note that the proposed pipeline can be extended to other spa-
tial settings as well. The resulting numbers of spatial units 
after aggregation are presented in Table 2. Trips in Wuhan are 
more spatially dispersed than those of Beijing and Shenzhen, 
leading to more spatial units at coarser scales and fewer at the 
250 m scale.

4   |   Results

In this part, we present the topological variation analysis 
brought by the scale effect with the proposed scale snapshot to-
pology distance.

As mentioned above, every scale snapshot (OD matrix) can form 
a point cloud; that is, 12 scale snapshots for each city. In each 
OD matrix, each row that stores the frequency of spatial interac-
tions with all other units acts as the feature vector of the corre-
sponding spatial unit. The feature vectors are the coordinates of 
the spatial units in high-dimensional space. We assume that the 
similarity of spatial units in their spatial interaction behavior de-
termines the proximity, so we choose the Euclidean distance be-
tween their feature vectors to derive the proximity between all 
spatial unit pairs. The larger the Euclidean distance, the smaller 
the proximity.

We then apply the persistent homology to the point clouds 
to obtain persistence diagrams (PDs) on the chosen distance 

FIGURE 6    |    The cumulative distributions of OD trip-length in five cities.

TABLE 2    |    Number of spatial units w.r.t different scales.

Resolution Beijing Shanghai Shenzhen Wuhan Jiaxing

250 m × 250 m 8377 6087 11,905 7175 2246

500 m × 500 m 2147 3396 4391 4710 1458

750 m × 750 m 982 2366 2346 3522 1105

1000 m × 1000 m 553 1525 1491 2875 910

1250 m × 1250 m 372 1008 1036 2091 662

1500 m × 1500 m 259 717 778 1619 504

1750 m × 1750 m 195 528 606 1315 396

2000 m × 2000 m 152 407 489 1096 326

2250 m × 2250 m 122 326 404 893 268

2500 m × 2500 m 99 271 339 778 224

2750 m × 2750 m 86 219 291 680 185

3000 m × 3000 m 76 190 255 608 164
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function. The persistent homology computations are per-
formed using an efficient Python package called Ripser 
(Tralie et al. 2018). We then calculate the SSTDH0

 and SSTDH1
 

between every pair of scales based on PDs. To provide further 
visual context for the behavior of the SSTD measures across 
the five cities, we have included persistence diagrams and 2D 
projections of point clouds in the Supporting Information (see 
Appendix Figures S1–S5).

4.1   |   Variation in the Clustering Pattern

Clustering is widely used to analyze data, and the way it is 
implemented is often ambiguous due to the various choices of 
thresholds and schemes (e.g., single linkage, complete linkage) 
and a lack of robustness (Carlsson  2009). Persistent homology 
addresses this problem by summarizing the behavior of clus-
tering under a varying threshold. Therefore, in this part, we 
explore the variation in the clustering pattern of data clouds 
with SSTDH0

.

The SSTD H0
 analysis result is shown in Figure 7, where each 

line corresponds to a distinct fixed scale s and shows its SSTD 
H0

(s, x) with variable scales x (ranging 250–3000) with scale x 
on the horizontal axis. It can be seen that the line representing 
250 monotonically increases in all five cities (except for Jiaxing's 
decline at 3000), while the line representing 3000 monotonically 
decreases (except for Jiaxing's rise at 2750). Lines representing 
other scales show the V-like shape. These results all indicate 
that the variation of H0 features intuitively increases with incre-
ments in scale difference. For instance, SSTDH0

(250, 1250) (with 
a scale difference of 1000) is larger than SSTDH0

(250, 500) (with 
a scale difference of 250). It is worth noting that the more data 
we have, the smoother the observed H0 variation brought by the 
scale effect is.

The results of SSTDH0
 show a trend of an increasing distance 

with an increasing scale difference for all five cities. We quantify 
the relevance of the scale difference (with the starting scale 250 

as the base) and the differences in H0 features with quadratic 
polynomial fitting; the fitting results are shown in Figure  8. 
Each black square represents SSTDH0

 between the scale deter-
mined by its x coordinate value and the scale 250; thus, the y 
coordinate value of the first square on each subfigure is 0. As we 
can see, SSTDH0

 is polynomially related to the scale difference 
(with scale 250 as the base), and the fitting results of all five cit-
ies have high adjusted R-squared values.

4.1.1   |   Variation in the Loop Pattern

In addition to clustering patterns, persistent homology can also 
provide information about higher-dimensional features, such 
as the H1 features that reflect the data's loop pattern. Many 
applications have demonstrated the importance of loops and 
higher-dimensional features (Taylor et al. 2015; Stolz et al. 2017; 
Sizemore et  al.  2018). A previous study of Wubie et  al.  (2018) 
found that H1 appears to be sensitive to detecting small clus-
ters that other clustering methods are incapable of; H1 is also 
effective in detecting extreme patterns in data. Hence, we also 
leverage the SSTDH1

 to measure the change in high-dimensional 
patterns across scales, aimed at exploring how this type of pat-
tern evolves under the scale effect.

Different from the case of SSTDH0
, the results of SSTDH1

 are less 
regular. The variation from SSTDH1

 (s, 250) to SSTDH1
 (s, 3000) 

for all scales is cluttered together, so we only visualize the vari-
ation from SSTDH1

 (250, 250) to SSTDH1
 (250, 3000) in Figure 9. 

Although SSTDH1
 starts with an increasing tendency, there are 

more deviations than SSTDH0
 in larger spatial scales.

Intuitively, the topological distance becomes larger as the scale 
difference increases. However, the evolution of loop patterns 
(subtle structures in the data) exhibits unstable fluctuations, 
including an unexpected drop following a previously increas-
ing trend. The critical scale at which this decline occurs varies 
across cities. Beijing has the most drastic drop at the scale of 
1750 and a rebound at the scale of 2000. Shanghai and Wuhan 

FIGURE 7    |    The scale snapshot topology distance (SSTD) results w.r.t to H0. The points in each subfigure represent the pairwise SSTDH0 values 
between two spatial scales.
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10 of 17 Transactions in GIS, 2025

show similar behaviors, with a small rebound after a minor de-
cline (2000 for Shanghai and 2500 for Wuhan). Shenzhen and 
Jiaxing both have a slight downhill (at the scale of 1500), fol-
lowed by a drastic rise.

4.1.2   |   Explanatory Analysis

To explain what happened when the SSTD H1
 declines, we con-

duct an explanatory analysis. In this section, we want to ex-
amine how the clusters obtained using a conventional method 
change with scale, especially what happens at the critical spatial 
scales.

For our clustering analysis, we employed the K-means algo-
rithm as implemented in the scikit-learn package (Pedregosa 
et  al.  2011). To optimize the stability and reproducibility of 
the results, we adopted the k-means++ initialization method 
(Arthur and Vassilvitskii  2006) and performed 100 runs of 

independent initializations. This approach mitigates the sen-
sitivity of K-means to initial centroid placement and enhances 
the robustness of the derived clusters. Given a scale, we feed its 
snapshot to the K-means algorithm to derive clusters. That is, 
we take the frequency of spatial interaction between a spatial 
unit and all other spatial units as its feature and then cluster 
the spatial units according to the spatial interaction pattern. If 
two spatial units interact with other units in a similar way, then 
these two spatial units will be grouped into the same category. 
The clusters extracted for each scale are projected back to the 
geographic map, and spatial units corresponding to different 
clusters are colored differently. The number of clusters is deter-
mined by the elbow method (Kodinariya and Makwana 2013).

Figure 10 shows the evolution of the clusters at different spa-
tial scales, namely, from 250 to 3000 m. There are some empty 
grids in the maps, which are due to the lack of travel records. 
This phenomenon is more common at finer resolution, be-
cause small grids do not easily intersect with roads. We can 

FIGURE 8    |    Polynomial fitting of scale and SSTDH0
 with scale 250 as the base.

FIGURE 9    |    SSTDH1
 fluctuation with scale 250 as the base.
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observe that snapshots of the first few scales show a coherent 
clustering result. However, when the scale increases to the 
critical scale identified by SSTD H1

, notable changes emerge 
in the clustering structure through significant reorganization 
or the subdivision of previously stable clusters. Ideally, as the 
spatial scale increases, clustering should evolve in an inclu-
sive manner, such as the merging of multiple clusters or the 

gradual expansion of cluster boundaries, rather than the op-
posite way we observe.

We have marked in red the positions corresponding to the differ-
ences before and at the critical spatial scales. Beijing undergoes 
a dramatic change at the critical scale of 1750 m, so no particular 
location is circled. Moreover, any changes in the cluster results 

FIGURE 10    |    The evolution of the clusters at different spatial scales for Beijing (A), Shanghai (B), Shenzhen (C), Wuhan (D), and Jiaxing (E).
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after that scale could not be reasoned based on the previous re-
sults. In Shanghai, from the scale of 1750 to 2000 m, the clusters 
within the left marked region are reorganized, and the cluster 
within the right frame is split into two parts. Both Shenzhen and 
Wuhan have a cluster that splits into two at the critical scales 
(1500 for Shenzhen and 2500 for Wuhan), and the clusters im-
mediately merge back into one after the critical scales. Likewise, 
Jiaxing shows the clusters splitting into two at the critical scale 
of 1500, only for that partition to merge back into one at the scale 
of 2000.

The fluctuations that break the consistency of H1 evolution 
can potentially provide us with a reference for the choice of 
an appropriate scale for spatial analysis. These critical scales 
are indicative of when a disturbance occurs in the evolution 
of patterns.

4.2   |   Results Using Traditional Methods

In this section, we analyze the scale effects using traditional 
analysis methods using gravity models and network statistics 
(Arbia and Petrarca 2016; Zhang et al. 2018; Coscia et al. 2012) 
and compare the findings with our proposed method, which 
shows the effectiveness of our method for detecting critical 
scales.

4.2.1   |   Distance Decay Pattern

The gravity model is broadly used in the study of spatial inter-
actions, and is named as such because it draws its main ideas 
from Newton's law of gravity (Haynes and Fotheringham 1984). 
The gravity model assumes that the spatial interaction between 
two locations is proportional to their mass and is impeded by 
geographic distance. The elementary formulation of the gravity 
model is shown below, where Mi and Mj represent the masses 
of the origin and the destination, respectively, dij is the spatial 
distance between two places, and � indicates to what extent 
the spatial interaction is harnessed by the distance decay effect 
(Kang et al. 2012).

Investigating decay parameter � can help us explore the un-
derlying distance decay mechanism of spatial interactions 
across scales. In this analysis, we utilize the PageRank (Page 
et  al.  1999) score as a proxy for mass. PageRank is an algo-
rithm originally used to rank web pages in Google Search, 
which measures the importance of a web page by consider-
ing its incoming links. The algorithm is suitable for any set 
of entities with reciprocal relationships (Thakkar et al. 2010), 
which makes the PageRank score a perfect candidate for 
representing the “mass”. The fitting results of the distance-
decay coefficient � at different scales are plotted in Figure 11. 
Among the cities analyzed, Shanghai consistently exhibits the 
highest � values across scales, followed by Wuhan, Shenzhen, 
and Jiaxing. Beijing has the lowest � values. The disparate � 
results suggest that the distance decay mechanism for spatial 

interaction is not uniform across cities, likely due to differ-
ences in urban size, structure, and travel behavior (Kang 
et  al.  2012). Additionally, Shanghai, Shenzhen, and Wuhan 
display a steady upward trend in � with increasing spatial 
scale, suggesting that distance friction intensifies as spatial 
scale becomes coarser. Jiaxing deviates from this pattern, 
showing a sharp decline around the 2250 m scale, possibly due 
to the short observation period or limited sample size. Beijing 
has much lower � values than other cities, probably because 
its original distance distribution is much different from other 
cities, and its long trips are more frequent.

4.2.2   |   Network Statistics

After we construct the OD matrix series as scale snapshots 
by varying the grid size, we can apply traditional network 
statistics to learn some basic features of the network at dif-
ferent scales, as depicted in Figure 12. This analysis was im-
plemented using the Python package NetworkX (Hagberg 
et al. 2008). For most metrics, we calculated them directly on 
the original directed, weighted snapshots. For the clustering 
coefficient, average shortest path length, and small-world 
property, we first extracted the largest strongly connected 
component, converted it to an undirected graph, and then per-
formed the computations.

Not surprisingly, the number of nodes and edges decreases 
with the increment in scales, but the number of edges drops 
more drastically than that of the nodes. For the statistics of 
the average weight, average degree, and average shortest path 
(ASP) in the maximum connected component, we can see 
that the average shortest path length and the average degree 
decrease with the drop in the number of nodes and edges. 
The last column describes the clustering coefficient and the 
small-worldness. Small-world networks have a high aggrega-
tion coefficient and a low average shortest path length; most 
of their nodes are not directly connected, but can be mutu-
ally accessed by a few edges. Small-worldness is evaluated 
by comparing the test network to a random network with the 

Gij = �
MiMj

d�
ij

FIGURE 11    |    The distributions of the distance decay coefficient beta 
across scales in different cities.
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same number of nodes and edges. We can see that, although 
the clustering coefficient and the ASP length increase with an 
increasing scale, the small-worldness is suppressed, indicat-
ing that the high clustering coefficient and short ASP at large 
scales are the results of the small-size network. In summary, 
the OD network at large scales gradually loses some exclusive 
features of the complex network, which is in accordance with 
(Coscia et al. 2012).

While the results from network statistics and distance decay 
analysis exhibit relatively stable variation trends, these methods 
fall short in capturing abrupt transitions induced by the spatial 
scale effect, such as the critical scales identified by our approach, 
as shown in Figure 9.

5   |   Discussion

5.1   |   Guideline for Scale Selection

According to our experimental results, clustering pat-
terns evolve consistently across spatial scales, and the 
scale effect on these patterns can be justified. However, the 

higher-dimensional H1 pattern performs with less stability and 
more abnormalities with the scale variation. Concretely, SSTD 
H1

 between scales smaller than the critical scale and the base 
scale presents a consistently increasing trend; Once the scale 
value reaches the critical scale, this consistency is violated and 
subsequently turned into chaos. The identified critical scale 
marks a fundamental shift in topological features compared to 
previous snapshots. While new consistency boundaries might 
emerge at coarser scales, we emphasize the significance of this 
first critical scale. This is because data aggregated at or before 
this critical scale retains greater fidelity to the finer-grained 
observations. Therefore, if researchers have to choose one sin-
gle scale to aggregate data, scales preceding the critical thresh-
old should be prioritized.

We propose a general framework that uses the topological sig-
nals inherent in the data to monitor changes in the data under 
scale effects. The critical scales detected by SSTD provide us 
with a reasonable range of scales for geographic studies. In a 
specific study, the researcher can safely choose scales within 
this range according to the research objective and the computa-
tional capability and should be more careful in selecting scales 
beyond this range.

FIGURE 12    |    Statistics of the OD matrices for Beijing (A), Shanghai (B), Shenzhen (C), Wuhan (D), and Jiaxing (E).
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5.2   |   Flexibility of the Proposed Framework

In the case study, we investigated the scale effect on regular 
grid-based spatial interactions, following the study design 
of previous spatial interaction studies (Liu et  al.  2015; Qi 
et al. 2011). However, the proposed framework is very flexible 
and compatible with other spatial aggregation configurations 
(i.e., irregular units); the only difference lies in the data prepro-
cessing for generating scale snapshots. Without the loss of gen-
erality, our proposed framework can also be used to study the 
scale effects on spatial distributions. The scale snapshots gen-
erated from spatial distribution data can also be represented 
as point clouds, where the attributes of interest determine the 
coordinates of each observation. In this scenario, the snapshot 
of scale s is formed as Ns ×M, where Ns is the number of units, 
and M refers to the number of attributes. Each row of the scale 
snapshot is a statistical result of the original data points as-
signed to this unit. We can then apply the persistent homology 
and calculate the corresponding SSTD between different scale 
snapshots.

The workflow for applying our methodology to other research 
data is as follows: (1) Choose a series of increasing spatial 
scales 

[
s1, s2, … , sm

]
. Note that the spatial unit is not restricted 

to a grid; it can be any spatial partitioning relevant to the re-
search context. (2) Generate m scale snapshots under the spa-
tial scales 

[
s1, s2, … , sm

]
. (3) Apply persistent homology with a 

defined distance function and generate persistence diagrams 
for each snapshot (using Python packages such as Ripser 
(Tralie et al. 2018) and Dionysus (Morozov 2017)). If the com-
putational conditions allow, persistence diagrams for features 
with higher dimensionality than H1 can be derived for a more 
holistic characterization of the scale snapshot. (4) Compute 
SSTD Hn

(
s1, si

)
 for i ∈ [2,m] w.r.t topological features with di-

mension n and plot the fluctuation as Figure 9. (5) Identify the 
critical scale by detecting the transition point in the fluctuation 
curves, which indicate significant changes in the underlying 
topological structure.

5.3   |   Stability Brought by Using a Topological 
Perspective

The additional benefit of using persistent homology is that it 
provides assurances for extracting underlying patterns when 
facing uncertainties brought by noise or inadequate sampling 
(Carlsson 2009). Although tracking H0 during filtration is simi-
lar to agglomerative hierarchical clustering, it is less sensitive to 
noise than the latter (Lee et al. 2012; Kim et al. 2015). Moreover, 
the stability theorem justifies the use of persistence diagrams 
(Cohensteiner et  al.  2007). It claims that even given data per-
turbed by noise, the persistence diagram obtained from these 
data approximates the persistence diagram derived from the 
noise-free data. Remember that we sampled data from a ring 
shape with perturbations in the toy example, but we can still de-
rive the point that represents the true ring (which is distant from 
the diagonal line). In contrast, uncertainties caused by noise or 
the results of inadequate sampling have short life spans and are 
distributed near the diagonal line, which makes them contribute 
little when calculating the Wasserstein distance.

6   |   Conclusion and Future Work

The MAUP is of particular importance to quantitative geograph-
ical studies, of which the scale effect causes variations in results. 
When using individual-level data to perform spatial analysis, 
spatial aggregation is often used. Many researchers arbitrarily 
choose the size of the spatial unit and bypass the scale effect 
due to a lack of standard methods to guide their scale selection 
process. One solution to gain more knowledge of the scale effect 
is to quantify its influence on data.

In this paper, we propose the scale snapshot topology distance 
to quantify the scale effect from a topological perspective. We 
use scale snapshots to represent data aggregated under differ-
ent scales and utilize the persistence diagram as a topological 
summary of each scale snapshot. The persistence diagram is 
obtained by introducing persistent homology, which has been 
proven to be an efficient method in various research areas. This 
technique encodes information on topological features of multi-
ple dimensions, such as the H0 feature (a connected component 
analogous to a cluster) and the H1 feature (a loop represents a 
subtle structure in data). The informative and stable properties 
of persistence diagrams make them competent surrogates for 
measuring the difference between scale snapshots. Therefore, 
with mathematically well-defined metrics, we can eventually 
quantify the scale effect by computing the distance between 
persistence diagrams.

Topology opens a new venue for the study of the spatial scale 
effect. However, additional work is needed to better explain 
the disparities in the critical scale when the topology shift oc-
curs for different cities. The relationships between the value 
of a critical scale and some characteristics of cities need to be 
further explored, which may shed light on the parameteriza-
tion of critical scales. We will consider variables that describe 
urban morphology and land use. As fractality could also imply 
scale independence, the fractal dimension can be a potential 
variable. Furthermore, a key area of future research involves a 
deeper interpretation of topological features revealed through 
persistent homology, including the alignment of H0 features 
(connected components) with traditional clustering methods 
and urban spatial partitions, as well as the meaning of H1 
features (loops) in spatial interaction patterns. Our future re-
search will focus on these issues and also expand studies to 
a broader range of regions and different types of geospatial 
datasets.
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Endnotes

	1	Named after Leonid Vaseršten, but first defined by Leonid Kantorovich; 
please refer to (Vershik 2013).
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Appendix 

Visualizations of 2D Projections of Point Clouds and Persistence 
Diagrams for Five Cities

This appendix provides supplementary visualizations to illustrate the 
data structure and topological features of the five cities across spatial 
scales. The 2D scatter plots are obtained by using PCA to project the 
original high-dimensional spatial data onto the first two principal com-
ponents (Figures S1A–S5A), with the first principal component (PC1) 
displayed on the x-axis and the second principal component (PC2) on 
the y-axis. The persistence diagrams are computed directly from the 
original point cloud data and summarize the evolution of topological 
features across scales. The generated PDs (Figures S1B–S5B) show H0 
features as blue dots and H1 features as orange dots. Predominantly, the 
H1 features are close to the diagonal, indicating noise; however, per-
sistent H1 features appear on some scales.

As spatial scale increases, 2D PCA projections across all five cities show 
a consistent trend of point clouds becoming more dispersed, reflecting 
a loss of fine-grained structural consistency. Correspondingly, per-
sistence diagrams (PDs) reveal a broader spread of features around the 
critical scales, particularly in H1, indicating the emergence of higher-
dimensional topological structures. For example, in Shenzhen and 
Jiaxing (critical scale: 1500), point clouds transition from tight clusters 
to more diffuse forms, with PDs showing more persistent H0 features 
and late-born H1 features. In Beijing (1750) and Shanghai (2000), simi-
lar to Shenzhen and Jiaxing, the dispersion and emergence of later-born 
persistent H1 features are noticeable around their critical scales, while 
in Wuhan (2500), the changes are more pronounced, with both H0 and 
H1 features exhibiting increased persistence and emergence at later 
birth times.

It should be noted that PCA-based 2D projections only retain a limited 
proportion of the variance in the original high-dimensional space. As 
a result, the scatter plots may fail to capture essential structural fea-
tures of the original data, particularly when the principal components 
explain only a small portion of the total variance. Although persistence 
diagrams preserve essential information about topological invariants, 
interpreting them visually to identify precise critical scales is inherently 
challenging. The changes in diagram structure tend to be gradual and 
subtle, often requiring subjective judgment. In contrast, the proposed 
SSTD metric offers a quantitative and systematic approach to identify 
scale thresholds where topological features change most significantly.
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