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Abstract

Soil information is essential to any terrestrial ecological modelling and management activity. Polygon soil maps produced
from soil surveys are currently the major source of information on the spatial distribution of soil properties for a variety of
land analysis and management activity. However, there are some major problems regarding the use of current soil maps in
geographic analysis and especially in geographic information systems (GIS). These problems include limited coverage at a
fixed scale, locational errors, attribute errors, and insufficient information in the mapping units. Much of these problems are
due to the crisp logic and cartographic techniques with which soil maps are produced. Under crisp logic standardly used in
soil classification and mapping, an area belongs to one-and only one soil mapping unit, and is separated from other mapping
units by sharp boundary lines. However, soil in a landscape is a continuum and the discretization of such a continuum into
distinct spatial and categorical groups results in a significant loss of information.

This paper presents a methodology to infer and represent information on the spatial distribution of soil. The methodology
combines fuzzy logic with GIS and expert system development techniques to infer soil series from environmental conditions.
The methodology for every point in an area produces a soil similarity vector (SSV) showing the similarity of the soil at the
point to a prescribed set of soil series. The SSV produced from this methodology can be used to infer local soil properties at
values intermediate to the typical or central values assigned to each possible series. Preliminary results from the
methodology using a limited set of environmental variables for an experimental watershed in Montana are presented.

Keywords: Fuzzy logic; Soil ecosystems; Geographical information system; Expert systems

1. Introduction

Knowledge of the distribution of soil properties
over the landscape is required for a variety of hydro-
logical, ecological and land management applica-
tions. In detailed hydroecological and other environ-
mental modelling applications, continuous soil prop-

" Corresponding author. Fax: (608) 262-0272; e-mail:
axing @solim.geography.wisc.edu

erties over an area are very much desired to approxi-
mate the resolution of other environmental parame-
ters gathered from remote sensing and digital terrain
analysis (Band et al., 1991, 1993). Unfortunately,
information on the spatial patterns of soil properties
is very difficult to directly obtain over large areas as
soils show inherently high and gradual spatial varia-
tion, and are often obscured by a vegetation canopy.

This paper presents a methodology to infer and
represent information on the spatial distribution of
soil. The methodology combines fuzzy logic with

0304-3800,/96 /$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.
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GIS and expert system development techniques to
infer soil series from environmental conditions. The
methodology for every point in an area produces a
soil similarity vector (SSV) showing the similarity of
the soil at the point to a prescribed set of soil series.
In this way, local soil properties may be inferred at
values intermediate to the typical or central values
assigned to each possible series.

Currently, soil maps produced from soil surveys
are digitized to provide the soil information required
for a variety of land analysis and management activ-
ity. However, soil maps often contain a great deal of
uncertainty as much of the quantitative and qualita-
tive knowledge of the soil scientist regarding the
occurrence of given soil categories (e.g. series) or
properties is not maintained in the map. There are
some major problems regarding the use of current
soil maps in geographic analysis (Burrough, 1986)
including limited coverage at a fixed scale, locational
errors, attribute errors, and insufficient information
in the mapping units due to the crisp logic and
cartographic techniques with which soil maps are
produced. These problems are particularly severe for
areas which are non-agricultural lands because soil
surveys are less intensive or do not exist at all.

The scale of the soil map determines the spatial
resolution of soil variation to be mapped. Soil map-
ping units are rarely single category units, even on
large-scale soil maps. This means that an area which
is mapped as the same soil mapping unit could
include many different soil taxonomic types in a
mapped complex (mixed category unit). This mixed
category unit problem is due to the cartographic
technique used in the mapping processes. At a cer-
tain scale, only soil objects larger than certain size
(scale dependent) can be represented on the soil
maps. Therefore, the knowledge of soil scientists
about soil variation cannot be fully represented by
soil maps.

There are two interrelated types of errors in soil
maps: locational errors and attribute errors. Loca-
tional errors are introduced into soil maps by im-
proper positioning of boundaries between soil bod-
ies. The introduction of locational errors is not due
purely to the mistakes made by soil mapping experts
but also due to the nature of soil boundaries. Soil
varies gradually and the boundaries between differ-
ent types of soils are often diffused rather than sharp

(Mark and Csillag, 1990). However, soils have to be
delineated into homogeneous polygons on soil maps.
Therefore, it is difficult for any soil mapping expert
to draw a boundary between two soils without intro-
ducing locational errors. The attribute error arises
when an area mapped as one soil map unit may not
be uniform in terms of properties described in the
map legend. This error is considered as attribute
error.

Studies have shown that even soil maps produced
from systematic surveys may contain large amounts
of ‘impurities’ (errors) within the units delineated
(Wilding et al., 1965; Beckett, 1971; Beckett and
Burrough, 1971). These ‘impurities’ may propagate
through geographical analysis in a GIS and make the
results from these analysis, particularly GIS-based
simulation modelling, unpredictable. While the soil
scientists conducting the survey and mapping pro-
cess may be aware of the degree of uncertainty in the
mapping, and may be able to infer more detail on
expected soil properties at a given location on the
map from their knowledge of soil-landscape rela-
tions, this information is generally not translated
onto the soil map. Therefore, there has developed an
interest in alternate methods of both gathering infor-
mation on the spatial distribution of soils, and on the
encoding of that information in a form suitable to

GIS that will incorporate uncertainty in both the

location of given soil types and in their properties.

Goodchild et al. (1992) developed an error model
for categorical data. In their model, for each pixel
(i,j), an n-elements probability vector (P) was as-
signed. Element k, ( p%), in the vector represents the
probability of the pixel falling into soil category k.
Together with a spatial dependence parameter (p)
they used the model to estimate the area of a particu-
lar soil type in a given soil polygon using a priori
information on p* and p. This is a very valuable
approach for estimating the area of particulary cate-
gory in the map. However, in our context we assume
no prior information on soil frequency or spatial
dependence, and no existing soil map. We are con-
cerned with the similarities of the soil at a point to a
set of known soil taxonomic units.

Burgess and Webster (1980a,b), Webster and
Burgess (1980), Webster and Oliver (1989), Webster
(1991), Loague and Gander (1990) and Loague
(1992) have explored the usefulness of geostatistical
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methods in measuring the spatial variability of some
soil attributes. These geostatistical methods are very
useful for simple landscapes that can satisfy station-
arity assumptions of geostatistics. However, these
quantitative interpolation techniques may have lim-
ited usage for complex terrain where pedogenesis
arises in a complex manner and the stationarity
assumptions of geostatistics may not be met. These
techniques also require a large set of field sampled
data, which is often not available for many applica-
tions. Moore et al. (1993) used multiple linear re-
gression analysis to relate soil properties to topo-
graphic attributes and used the relationship to predict
soil properties. The technique assumes that the rela-
tionship between soil and topographic attributes is
linear and it requires a great deal of field data to
extract the relationship. Because of its assumption
and the data requirement, the technique has very
limited practical use. Skidmore et al. (1991) em-
ployed an expert system approach to infer soil-
landscape units from four data layers (forest over-
storey, gradient, topographical position and soil wet-
ness index). The expert system is based on a Baysian
inference technique. However, the inference was once
again done under crisp logic and used to produce
crisp soil-landscape maps similar to conventional
soil maps.

Burrough et al. (1992) used fuzzy classification to
determine land suitability from multivariate point
observations of soil attributes, topographically con-
trolled site drainage conditions, and minimum con-
tiguous areas. In their study, the emphasis was placed
on the attribute rather than the spatial distribution of
land suitability. Odeh et al. (1992) used Fuzzy-c-
means classifier to identify fuzzy soil classes among
the soil profiles sampled from two transects. They
found that these fuzzy soil classes were very strongly
associated with various landforms. The study, how-
ever, did not show how these relationships between
landforms and fuzzy soil classes can be used to
produce continuous soil property maps.

We consider that the soil at any point or location
is similar, in varying degrees, to a prescribed set of
soil taxonomic units (such as soil series) or central
concepts. Soil at any point or location, (i,;), can be
expressed by an n-element vector, §;; = (s}j,
S5 s,.kj ... 57), where s{‘j is a similarity measure (or
membership) of the soil at point (i,j) to the pre-

scribed soil taxonomic unit k¥ and # is the number of
soil taxonomic units in the area. We call vector S the
soil similarity vector (SSV). Thus, SSV at point (i, )
will be represented as SSV;;. This representation of
soil information is different from the conventional
crisp representation. The similarity of the soil at a
location to a soil taxonomic unit is expressed in
terms of a membership value between 0.0 and 1.0
(that is, O.OSS,-"J-S 1.0), and not a yes or no. It
should be clarified that s}‘j is not probability but a
fuzzy membership which used to express the similar-
ity of the soil at point (i,) to the prescribed taxo-
nomic unit k. It is this membership value that will
provide users with the information about the similar-
ity (or confidence) of the soil at a point to soil
taxonomic unit .

The aim of this paper is to present a soil inference
model (SOLIM, Soil Land Inference Model) for
deriving these SSVs. A subsequent paper will use
these SSVs to derive soil properties. In our inference
model, we combine empirical knowledge on pedoge-
nesis with information of the soil environment de-
rived through a set of GIS techniques to infer SSVs.

In this illustration we use soil series as. our taxo-
nomic unit describing the fuzzy sets to which a soil
at a given location will have fuzzy memberships.
The reason for using soil series as our basic taxo-
nomic units is that soil series is the taxonomic unit
which has been extensively used in soil surveys and
local soil experts feel more comfortable with soil
series than any other taxonomic units. In this illustra-
tion, we employed six environmental factors (eleva-
tion, aspect, gradient, canopy coverage, parent mate-
rial, and surface profile curvature) and a knowledge
set on the relationships between these factors and
four soil series (Ambrant, Elkner, Ovando, and
Rochester soil series) in western Montana (details
about the study area and the four soil series are
described in Section 4). We then combined these six
environmental factors with the knowledge set to
infer the SSVs over an area.

The raster data model is chosen to represent data
layers and results in our method because the raster
model is more suitable for representing continuous
spatial variation of soil. The resolution of a raster
model depends on the input environmental data (such
as Digital Elevation Model (DEM), and remotely
sensed data). In other words, the method is capable
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of representing soil information at pixel resolution
and is not limited by the minimum mapping area of a
polygon based map. The method does not rely on
field sampled soil data but such data when it does
exist can be used to refine and enrich the knowledge
base of the system and therefore improve the perfor-
mance of the system.

In the next section, we discuss the theoretical
basis of the methodology. This is then followed by
the description of the methodology. In Section 4, we
give a brief description of the study area and discuss
the environmental variables employed. In Section 5,
we present and discuss the results from the method-
ology. Summary and future direction of this method-
ology are presented in Section 6.

2. Theoretical basis for automated soil inference
using fuzzy logic

2.1. Theoretical basis

The theoretical basis for soil inference is based on
the classic concept of Jenny (1941, 1980) that a soil
is a product of interaction among climatic factors,
landform, parent material, organism, and hydrologi-
cal factors over time. Therefore, we may infer the
soil type at a given location if we have local environ-
ment conditions. This can be expressed in qualitative
terms by

S=f(Cl,0g, Pm,Tp,1) (1)

where CI represents climate conditions, Og is for
organism, Pm is parent material, Tp stands for to-
pography, and ¢ is time. Eq. 1 illustrates the general
relationship between the soil and its environmental
factors. However, the details of the relationship are
different at different places. It is very difficult at this
stage to derive a mathematical formula for the rela-
tionship because of the complexity and limited un-
derstanding of both soil forming processes and the
paleo-environment. Over decades of study of soil-
environment relationships, a great deal of empirical
knowledge has been accumulated (for example,
Armson, 1977; Jenny, 1980; Gerrard, 1981; Birke-
land, 1984; Brady, 1984; Boul et al., 1989; Rendig
and Taylor, 1989). Particularly, local soil scientists
who study and map soils in their respective regions

have accumulated a detailed knowledge on soil-en-
vironment relationships. It is our belief that this
empirical knowledge can be used to approximate
relationship in Eq. 1 for soil series inference. We
approach this approximation process with the use of
a simple expert system and fuzzy logic.

2.2. Basics of expert system approach

Expert systems are software systems capable of
representing and reasoning about some knowledge-
rich domain with a view to solving problems and
giving advice (Hall and Kandel, 1992). They derive
their power from a great deal of domain-specific
knowledge, rather than from a single powerful tech-
nique, which means the emphasis is firmly on
knowledge itself rather than on formal reasoning
methods. Thus based on a great deal of knowledge,
expert systems are able to solve the domain specific
problems (usually very difficult tasks).

Most expert systems are organized on three lev-
els: data, knowledge base, and inference engine. The
term ‘data’ in expert systems refers to information
such as the environmental conditions of an area in
our study, elevation, gradient, aspect, etc. The
knowledge base contains the declarative knowledge
about a particular problem being solved, particularly
relationships among events or phenomena. For ex-
ample, the knowledge base in our study contains the
relationships between the environmental factors of a
geographic region and soil series in that area. Expert
systems separate this domain-specific knowledge
from the procedural language (inference engine) by
storing such knowledge in a knowledge base. This
makes it much easier to encode and to maintain
knowledge without affecting the execution mecha-
nism of the program. The inference engine controls
when and how specific problem-solving knowledge
is used.

As expert systems are highly reliant on domain-
specific knowledge, it is clear that the accuracy and
sufficiency of domain-specific knowledge will deter-
mine the success of an expert system. The process of
obtaining domain specific knowledge is called
knowledge acquisition and is considered as the bot-
tleneck of the development and application of effec-
tive expert systems (Gaines and Shaw, 1991). The
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development of knowledge acquisition techniques
has attracted a great deal of attention from the
artificial intelligence (AI) community in the past few
years (Greenwell, 1988; Brule and Blount, 1989;
McGraw and Harbison-Briggs, 1989; McGraw and
Westphal, 1990; Wielinga et al., 1990; Motoda et al.,
1991; Scott et al., 1991). Many knowledge acquisi-
tion techniques have been developed. Some of these
techniques were employed in this study to acquire
empirical knowledge on soil-environment relation-
ships from local soil scientist (see Section 3).

2.3. Basics of fuzzy set theory

Fuzzy logic is an infinite-valued logic which is
different from the classic two-valued (yes or no)
logic (crisp logic). Therefore, the membership in a
fuzzy set is not characterized by ‘yes(1)’ or ‘no(0)’,
but is more adequately considered in terms of de-
grees. As discussed in the introduction section of this
paper, soil is a spatial continuum. Soil at a point
resembles a prescribed soil series to certain extent
but may not be the same as the prescribed soil series.
Therefore, this characteristic of soil information leads
itself to fuzzy logic representation.

A fuzzy set is characterized by a set of member-
ships, each of them is defined as a real number in the
interval [0,1]. A formal definition of fuzzy set is
given as follows.

Definition 1: Fuzzy Set (Zimmermann, 1985). If
X is a collection of objects denoted generically by x,
then a fuzzy set A in X is a set of ordered pairs:

A={x.pfx)) xeX ®)
where x is an object which belongs to the sets of
objects X, p;{(x) is the degree of membership, and
;0 is the membership function of x in A which
maps X to the membership space M. The member-
ship function is very much dependent on the domain
under study.

Because membership functions are the crucial
components of a fuzzy set, the fuzzy set operations
are defined via their membership functions. There
are many ways to define the fuzzy set operations
(Klir and Folger, 1988) and it is not the scope of this
paper to discuss them all. We here discuss the basic
fuzzy set operations.

Definition 2: Intersection. The membership func-
tion py(x) of the intersection (logic ‘and’) set of
fuzzy sets A and O is defined by

py(x) = min{ ui( x), ps(x)}, x€X (3)

Definition 3: Union. The membership function
pg(x) of the union (logic ‘or’) set of fuzzy sets A
and O is defined by

wi(x) = max{ wi( x), wo( )}, x€X 4

Definition 4: Complement. The membership func-
tion py(x) of the complement (logic ‘not’) set of
fuzzy set A is defined by

py(x) ={1—pi(x)}, x€X (5)

Eqs. 3 and 4 are referred as the fuzzy minimum
and maximum operators, respectively. There are
many extensions to the above min-max definition to
the fuzzy set operations (Zimmermann, 1985). How-
ever, discussion of these extensions is not appropri-
ate here. Application of fuzzy mathematical methods
in soil science and land evaluation has been very
well discussed by many authors (Robinson, 1988;
Burrough, 1989; Burrough et al., 1992; McBratney
and De Gruijter, 1992).

2.4. Assumptions of this study

As discussed in the introduction section, at any
location, the soil will resemble, to a quantifiable
extent, one or more of soil series and the soil at that
point can be represented by an n-element SSV;;. To
derive SSV over an interested area, we first have to
derive individual element of SSV over the area, that
is, s* for k=1...n, where s* represent the fuzzy
membership map of the area for soil series k. s* is a
r X ¢ matrix, where r is number of rows (lines) and
¢ is number of columns for the area. In other words,
we first infer the similarity of the soil at every point
(pixel) to a given soil series k in the area.

To derive s*, we assume that every soil series
occurs under one or more typical environmental
configurations or ‘niches’ and has a typical set of
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soil properties. The occurrence of soil series under
these typical environment configurations is called the
instance of the soil series in geographic space. For
example, a given soil series (say, Soil Series A) may
typically occur on south facing slopes at high eleva-
tions or on north facing slopes at low elevations due
to its moisture requirement. Therefore, Soil Series A
has two instances: one on south facing slopes at high
elevations and the other on north facing slopes at
low elevations. The environmental configuration of
each of these instances of a given soil series, &, can
be characterized by a vector of environmental pa-
rameters in an m-dimensional parameter space and
can be represented by an m-element parameter vec-
tor, as Ef =(el;...e%... ef), where ef is the at-
tribute value of /th environmental variable for the
ith instance of soil series k. Inference of s* then
becomes two sub-problems: the problem of defining
the instances of the soil series in the parameter space
(typical or idealized environmental conditions), E¥,
and the problem of determining the similarity of a
soil to the soil series at a point away from the typical
occurrences of the given soil series. In other words,
the second problem addressing how the soil series
varies in response to changes from its typical in-
stances to other points in the parameter space (we
refer this as the behaviour of a soil series). If we
know the typical instances of a soil series and know
the behaviour of the given soil series in the parame-
ter space, we then are able to infer s{‘j at any point
(i,j) in the area of interest.

The typical instances, E k of a soil series in the
parameter space can be determined from the soil
series description and/or expert knowledge about
the environmental conditions of soil series from soil
experts. This knowledge is referred as ‘Type I’
knowledge in this paper. Determining the behaviour
of a given soil series in the parameter space with
respect to the environmental condition changes is
more difficult than determining the typical instances
of the soil series. However, soil scientists working in
a specific area may explicitly or implicitly under-
stand how soils vary over the changes in environ-
mental conditions in that area. It may be possible to
use this part of local soil scientists’ knowledge to
approximate the behaviour of a given soil series over
the landscape. Soil experts’ knowledge on the be-
haviour of a soil series in response to the changes of

environmental conditions is referred here as ‘Type 2’
knowledge. As discussed above, both of these two
types of knowledge can be obtained by some knowl-
edge acquisition techniques (see Section 3). As out-
lined in Eq. 1, soil is a product of interaction of soil
forming factors. In our case, there were six environ-
mental variables involved (Section 4). It was not
feasible to ask the soil experts to express Type 2
knowledge using the six variables simultaneously.
Instead, as a first approximation we assume that each
environmental factor has an influence on the forma-
tion of a soil that can be separately represented. Note
that this may lead to some problems regarding the
interaction of environmental conditions depending
on the form of inference used and the number and
nature of the instances of a given soil series. These
potential problems will be further discussed below.
Under these assumptions, the soil experts formed
the definitions of the soil series central concepts
(instances) in terms of environmental conditions, and
the influence of each of the environmental factors on
the given soil series for each instance. We then
integrated these influences to approximate the be-
haviour of the given soil series in response to the
changes in environmental conditions. The influence
was defined as the degree to which an environmental
condition favours the development of a given soil
series and was expressed as an optimality curve (Fig.
1). It was also assumed that the development of a
soil series at a given location was controlled by the
least optimal environmental condition for the soil
series instance at that location. Therefore, the inte-
gration of these influences from the environmental

10+
09 +
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07 4
0.6 +

05+

Optimality

04 -
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"% 10w % 4 s e 0 s % 10
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Fig. 1. Optimality of Ambrant soil series over canopy coverage

for ‘medium canopy coverage’.
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variables can be modelled by the fuzzy intersection
(fuzzy minimum operator).

In summary, an expert system approach and fuzzy
set theory were used in this study to infer the soil
similarity vector (SSV) over an area from soil envi-
ronmental conditions. The employment of an expert
system approach was to capture empirical knowledge
on soil-environment relationship. Fuzzy set theory
was employed in the inference process to model the
interactions among the soil environment factors and
the spatial continuity of soil series. Fuzzy set theory
was also used to express the results from the infer-
ence processes.

3. Methodology

As discussed in Section 2, inference of s* con-

sists of two sub-problems: the problem of locating
the typical occurrences of a particular soil series in
the parameter space and the problem of determining
the behaviours of the soil series in the parameter
space. In this section, we discuss the methods for
acquiring knowledge about the typical occurrences
and behaviours of soil series in response to changes
of environmental conditions. The details of actual
inference are also outlined in this section.

3.1. Knowledge acquisition

As noted in Section 2, the knowledge about the
relationships between soil series and its environmen-
tal conditions can be divided into two types. The first
type (Type 1 knowledge) regards where a soil series
typically occurs in terms of environmental condi-
tions. In other words, the first type of knowledge
defines the instances for a given soil series. The
second type (Type 2 knowledge) regards the be-
haviours of a soil series to variation in the environ-
mental conditions from its optimal conditions. Both
of these two types of knowledge had to be extracted

from local soil experts. In Al terminology, the peo-

ple who perform the knowledge acquisition are called
knowledge engineers and the experts whose knowl-
edge is to be acquired are called domain experts.
Hoffman (1990) has discussed different methods
of knowledge acquisition for expert systems. He

concludes that there are three broad categories of
knowledge acquisition methods: task analysis meth-
ods, special task methods, and interview methods.
With task analysis methods (also called methods of
familiar task analyses), knowledge engineers study
the tasks that the expert(s) usually perform. The
specific task activities are decomposed and charted
out step by step and are analyzed at whatever level
of detail is sufficient for the purposes of the analysis.
The knowledge engineers can also use special tasks
as stimuli for a knowledge acquisition session to see
experts’ problem-solving behaviours. In any ‘given
domain, a special task will differ in some ways from
the familiar tasks in that domain. Laboratory re-
search on expertise indicates that deliberate depar-
ture from the familiar task can reveal the expert’s
knowledge and reasoning (Hoffman, 1990). Inter-
view methods, as the name implies, take the form of
dialogue between knowledge engineers and domain
experts (Greenwell, 1988; McGraw and Harbison-
Briggs, 1989; Scott et al., 1991). There are two types
of interview methods: unstructured and structured.
Unstructured interviews take the form of free-flow-
ing dialogue in which open-ended questions are asked
about the expert’s knowledge and reasoning strate-
gies. Structured interviews involve careful pre-plan-
ning of the questions and their order, and specifica-
tion of things the knowledge engineers should do.
Structured interviews reveals much of the experts’
knowledge but can be very time-consuming. Many
expert system developers used structured interview
methods to elicit expert knowledge (Hoffman, 1990).
However, these three types of techniques can be
combined for knowledge acquisition.

In this study, we employed the structured inter-
view method. We divided the knowledge acquisition
process into four structured interviews: the soil-en-
vironment key development interview, the soil-en-
vironment description interview, the optimality curve
definition interview, and knowledge verification in-
terview (Zhu and Band, 1992).

3.1.1. Key development interview

The key development interview was to designate
a dichotomous key to differentiate the soil series
using the environmental variables. This was basically
for the experts to clarify the difference between the
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Table 1
Description of typical instances of the four soil series

Soil series  Instance  Parent material  Elevation (ft)  Aspect  Gradient (%)  Canopy coverage  Curvature

Ambrant 1 Granite 4000-5000 North 15-13 Medium Convex to straight
Ambrant 2 Granite 4000-6000 South 15-60 Medium Convex to straight
Elkner 1 Granite > 4500 North 8-60 Medium Convex to straight
Elkner 2 Granite > 6000 South 8-60 Medium’ Convex to straight
Ovando 1 Granite > 4500 North 30-70 Medium to low Convex to straight
Ovando 2 Granite > 6000 South 30-70 Medium to low Convex to straight
Rochester 1 Granite 4000-4500 North 30-70 Sparse Convex to straight
Rochester 2 Granite 4000-6000 South 30-70 Sparse Convex to straight
soil series in terms of the environmental variables ric units to standard units with which our soil experts
and get them ready for the next interview, the de- were more comfortable. A simple key to the four soil
scription interview. During the key development in- series developed during this key development inter-
terview, environment data were converted from met- view is shown as follow.
OPTIMALITY OF Amhrant OVER Aspect FOR south-facing-at-4000-6000-ft
Optinality
4
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Fig. 2. Graphic user interface (GUI) for optimality definition.
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Granite Soil series soil series Ambrant change with respect to change of

; elevation?’. To elicit an answer, we provided the soil

North ficznsgoo £t (1370 m) experts with a graphic user interface (GUI) (Zhu and

Gradient > 60% Ovando Band, 1992). Fig. 2 shows the GUI used for the Type

Gradient < 60% Elkner 2 knowledge acquisition. The soil experts expressed

< 4500 ft (1370 m) thc'ei‘r knovx{ledge through t.he GUI by specitjymg the
Gradient > 60% Rochester cntlca'l po.mts for 'the optimality curve, which were

Gradient < 60% Ambrant thfar_n fit Wth a spline. The experts coulfl change the

South facing cptlcal points to ﬁt‘the curves to the}r copceptt}al

> 6000 £t (1820 m) view of the optimality for' a given §011 series with

Gradient > 60% Ovando re.s.pect to change .of a particular env1rf)nmental con-

Gradient < 60% Elkner d1t10g. If the soil dev?lopment env1r'onment was

< 6000 ft (1820 m) described by ﬁv.e env1r9nmental variables, there

Gradient > 60% Rochester would. be five spline fupctxogs. If there were two or

Gradient < 60% Ambrant more instances for a soil series, there would be two

3.1.2. Soil-environment description interview

During the description interview, the soil experts
were asked to describe the environmental configura-
tions under which each soil series occurs. In other
words, this description interview was. designed to
extract Type I knowledge from the soil experts.
During this interview, the knowledge engineer care-
fully checked the consistency of the soil experts as
descriptions of very similar soil series can be confus-
ing and soil experts might provide inconsistent envi-
ronmental configuration. Thus, the knowledge engi-
neer used the key developed during the key develop-
ment interview to check the description provided by
the experts. If a conflict existed, the knowledge
engineer would immediately point it out to the soil
experts. The result from this interview was the de-
scription of environmental conditions (environmental
configurations) for each soil series as shown in Table
L.

3.1.3. Optimality curve definition interview

The optimality curve definition interview was de-
signed to extract the knowledge about the behaviours
of a given soil series with respect to changes of
environmental conditions. In other words, it was
structured for the extraction of Type 2 knowledge.
As discussed in Section 2, the Type 2 knowledge
acquisition was done one variable at a time. For
example, the soil experts were asked to answer the
following question: ‘How does the optimality for

or more sets of curves where each set is used to
describe an instance. Fig. 3A and B show the eleva-
tion and aspect optimality curves for instance 1 of
Ambrant soil series and Fig. 4A and B show the
elevation and aspect optimality curves for instance 2
of Ambrant soil series. The optimality curves for

AEA
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o i A L ' . s : : s
300 3400 38450 42(')0 46(‘)0 SO(I)!) S4(l)0 58(’)0 62('X) 66(‘)0 70(‘)0
Elevation (ft)

A\

Optimality

" ’ ' ' " >

: + + + + + + + + + +
0 36 72 108 44 180 216 252 288 324 360
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Fig. 3. Optimality curves for elevation (A) and aspect (B) of
instance 1 of Ambrant soil series.
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Fig. 4. Optimality curves for elevation (A) and aspect (B) of

instance 2 of Ambrant soil series.

categorical variables such as parent materials are
difficult to define using the above mentioned GUL
However, the influence of parent materials on soil
series in the study area exhibits a crisp nature. The
four soil series only occur on granite parent material
and also no other soil series were found on granite
material. Therefore, the optimality curve for parent
materials is defined by a crisp function. For example,
the optimality curve of parent materials for Ambrant
is defined as

_J1 Pm e Granite
Op= {O otherwise ()

where Op is the optimality and Pm is the parent
material.

3.1.4. Knowledge verification interview

Once the two types of knowledge have been
acquired in preliminary form, the knowledge verifi-
cation interview was carried out to refine the knowl-
edge set. The knowledge set was verified in two

parts: indoor and outdoor. During the indoor verifica-
tion, the experts were provided with the results
(images of s*) from the system and compared these
results against their perception (or mental map) of
the given soil series. If the experts were unhappy
with the results, they were allowed to modify the
knowledge base and new results were produced. Soil
experts again compared the new results with their
mental perception. This process continued until the
soil experts were satisfied with the results or the
experts required outdoor verification (field checking)
to clarify the difficult parts of the knowledge base.
During the outdoor verification, the soil experts vis-
ited the area where the system had problems making
correct inference. Information from field visits were
also incorporated into the knowledge base. The pro-
cess continued until a reasonable inference was made
for these problematic areas.

3.2. Fuzzy soil inference

As discussed in Section 2, the fuzzy minimum
operator was used to overlay the derived optimality
curves and to obtain fuzzy membership values (simi-
larity values) for all locations for given soil series
(s*). It was easy to apply the fuzzy minimum opera-
tor for those soil series which have only one instance
because the value derived from the fuzzy minimum
operator is the membership value for the given point.
However, it was a little more complex to derive the
membership value for soil series with more than one
instance. The fuzzy maximum operator was used to
derive the membership value in this situation. In
other words, we chose the maximum value from
these instances to represent the similarity to a given
soil series. For example, Ambrant soil series exists
either on north facing slopes with elevation from
4000 ft (1219.2 m) to 4500 ft (1371.6 m) (instance
1) or south facing slopes with elevation ranging from
4000 ft to 6000 ft (1828.8 m) (instance 2). For a
point which is on north facing slope and at low
elevation, it is certain that the membership value
from instance 1 is greater than the value from in-
stance 2. The membership value from instance 1 is
more appropriate to represent the similarity of the
soil at this point to Ambrant soil series than the
membership value from instance 2.

e
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The inference process was carried out using a
raster data model such that fuzzy membership scores
were computed for each grid cell. For a given soil
series the inference system took a set of environmen-
tal conditions of a pixel from the GIS database. It
then used each of the optimality curves to calculate
the optimality value from each of the environmental
variables. The fuzzy minimum operator then was
used on these optimality values to obtain the mem-
bership value for the pixel. If the soil series had
more than one instance, the environmental conditions
were used again to calculate another set of optimality
values according to the behaviours (the set of opti-
mality curves) of the soil series defined for that
instance. After all instances were exhausted, the
fuzzy maximum operator was applied to the set of
membership values obtained from the set of in-
stances for that specific soil series and the resultant
value from the maximum operator was considered
the final membership value for the pixel. The process
continued onto the next pixel until all pixels in the
area were visited. A map (s*) of membership values
for the given soil series over the study area was then

DEM of Lubrecht |

1134 m

produced. The process continued onto the next soil
series until all soil series were exhausted and then
the SSV values over the area were produced.

It should be noticed that although spatial depen-
dency was not incorporated into the inference pro-
cess, the spatial dependency was implicitly repre-
sented in the input environmental data and the opti-
mality curves.

4. Study area and environmental variables em-
ployed

4.1. Study area

The study area for testing our methodology is the
south east part of the Lubrecht Experimental Forest
located about 50 km northeast of Missoula, Montana,
USA. The study area is centred around North Fork of
Elk Creek. The elevation in the study area ranges
from 1130 m to 1950 m with high elevation in the
south and low elevation in the north (Fig. 5). Ross
and Hunter (1976) estimated that the mean annual

Fig. 5. Digital elevation model of the Lubrecht experimental forest.
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4.1, Study area

The study area for testing our methodology is the
south east part of the Lubrecht Experimental Forest
located about 50 km northeast of Missoula, Montana,
USA. The study area is centred around North Fork of
Elk Creek. The elevation in the study area ranges
from 1130 m to 1950 m with high elevation in the
south and low elevation in the north {Fig. 5). Ross
and Hunter (1976} estimated that the mean annual

Fig. 5. Digitnl elevation model of the Lubrecht experimental forest.
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precipitation for the Lubrecht area is between 50 and
76 cm. Approximately 44% of the precipitation falls
during the winter (November through March) and
24% falls during the summer (June through August)
(Nimlos, 1986). Most of the mountain slopes in the
study area are forested, dominated by Douglas-fir
(Pseudotsuga menziesii) although lesser amounts of
western larch (Larix occidentalis) and ponderosa
pine (Pinus ponderosa) are present. A small portion
of the study area (the northwest) is covered by
fescue /bluebunch wheatgrass. There are five types
of parent materials in the area: Belt rocks, Granite,
Limestone, Tertiary sediments, and Transported ma-
terials (Nimlos, 1986). The transported materials are
lacustrine sediments and recent alluvium with the
former in the northwest part and the latter distributed
along the river streams in the study area. Landform-
parent material associations are particularly strong in
the study area. Landforms on Belt rocks, granite, and
limestone are relatively steep mountainside slopes.
Landforms on Tertiary-age sediments are gently un-
dulating benches with low slope gradients. Alluvial
and lacustrine deposits are nearly flat.

There are four soil orders in the study area:
Alfisols, Entisols, Inceptisols, and Mollisols (Nimlos,
1986) and 22 mapped soil series. In this paper, we
only discuss the inference of four soil series: Am-
brant, Elkner, Ovando, and Rochester. These soil
series are present only in the southern part of the
Lubrecht Experimental Forest (Fig. 6). The charac-
teristics of these soil series are shown in the Ap-
pendix (Missoula County Soil Survey, 1983).

4.2. Environmental variables used

This study employed elevation, parent material,
aspect, canopy coverage, gradient, and surface pro-
file curvature to characterize the soil forming envi-
ronment. It may be noticed that in the data variable
list there are no data variables which directly mea-
sure climatic factors. Although the study was con-
ducted on a small drainage basin, great differences in
terms of micro-climate do exist within the basin.
However, these differences in micro-climate are well
expressed by variations in elevation, aspect and gra-

Elkner-Ovando

Soil Complexes In Southern Lubrecht

Ambrant-Rochester

Fig. 6. Soil map of Ambrant—Rochester and Elkner—-Ovando complexes.
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dient. Therefore, climate variables are not included
in the data variable list.

Information on elevation, aspect, gradient, and
surface profile curvature were obtained from a digi-
tal elevation model (DEM) of the study area. The
DEM was supplied by the GIS Laboratory of School
of Forestry, University of Montana (Fig. 5). The
accuracy of the DEM is comparable with the accu-
racy of the level 1 USGS 7.5-min DEMs (U.S.
Geological Survey, 1990). The aspect (Fig. 7) and
gradient (Fig. 8) were generated with a third-order
finite difference method (Horn, 1981). The surface
profile curvature (Fig. 9) was calculated based on the
method of Zevenbergen and Thorne (1987).

Canopy coverage was approximated with an index
derived from remotely sensed data (Thematic Map-
per). Recent research suggests that reasonable esti-
mates of canopy closure can be gained with middle
infrared wavelengths (MIR) (Butera, 1986; Baret et
al., 1988). Nemani et al. (1993) have used the changes
in MIR (TM band 5, 1.55-1.75 pm) response to
canopy closure in combination with red to infrared

Slope Aspect

Flat Area |
North
East

ratios to estimate leaf area index (LAI) in the study
site. In this study, we use the MIR to estimate an
index of canopy cover

MIR — MIR ;,
CcC=100{1 - (7)
MIR,, — MIR_,

max

where CC stands for canopy coverage index, MIR
and MIR_, are middle infrared radiances from
completely closed and completely open canopies
in/around the study area, respectively. Note that Eq.
7 was not correlated with actual ground estimates of
canopy cover and therefore should be considered an
index, rather than an estimate of actual percentage
canopy cover. The reflectance data were acquired
from the LANDSAT Thematic Mapper on 16 July
1984. The TM (Thematic Mapper) Band 5 was
preprocessed for topographic correction (Egs. 8 and
9) before it was used in Eq. 7. Eq. 8 is based on the
equation given by Civco (1989):

CDN=DN+ DN[(I-1)/I] (8)

Fig. 7. Slope aspect of study area.
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where CDN is the corrected digital number, DN is
the original digital number, I is the mean of the
scaled (0 to 100) incidence values of the whole
scene, and [ is the scaled (0 to 100) incidence value
at the location of that DN. I is calculated according
to the following formula (Colby, 1991).

I'=100(cos( &) cos( Z) + sin( ) sin( Z) cos( D))

)
where a is the slope gradient (in degrees), Z is the
zenith angle of the sun at the time of the image was
taken, and D is the difference between the azimuth
of sun and the slope aspect. Fig. 10 shows the
canopy coverage of the study area.

Information on parent material was obtained from
the geological map of the study area (Brenner, 1968)
(Fig. 11). It was recognized that the inclusion of soil
parent material from geological maps would also
affect the performance of the system because geolog-
ical maps potentially contain human errors.

These variables have by no means exhausted the
soil formation factors and the interaction of these
factors on soil ‘development. They were used to

Canopy Coverage

0%

demonstrate the potential of the new methodology of
soil information gathering and representation.

5. Results and discussion

The results from our method of soil inference can
be presented and compared to the soil map in three
aspects: spatial patterns (spatial level), attribute de-
tails (attribute level), and specific points (point level).
The existing soil map contains only the complex of
Ambrant—-Rochester and the complex of Elkner—
Ovando. In order to compare the results from the
new methodology presented in this paper with the
existing soil map, we derived the fuzzy membership
map for the Ambrant—Rochester complex from the
membership map of Ambrant soil series and that of
Rochester soil series using fuzzy maximum operator.
The same procedure was applied to the membership
map of Elkner and that of Ovando for the creation of
the fuzzy membership map of Elkner-Ovando com-
plex.

Fig. 10. Canopy coverage index of study area.
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Fig. 12A and B show the distribution of fuzzy
membership values and soil map, respectively, for
the Ambrant—Rochester complex. Fig. 13A and B
show the distribution of fuzzy membership values
for the Elkner—Ovando complex and the distribution
of this complex on a soil map, respectively. Visual
inspection indicates that Fig. 12A and B, and Fig.
13A and B show very similar spatial patterns, respec-
tively. There are, however, apparent differences be-
tween the membership maps and the soil maps. The
main difference is that the membership maps reveal
more details at the spatial level. Using a raster-based,
fuzzy logic mapping, the degree of similarity of soil
series allows much greater spatial resolution than is
feasible using a polygon-based, binary system (in or
out of a set). The general shapes for the soil com-
plexes on the membership images follow the land-
scape better than the ones on the soil maps where
inclusion or exclusion from a region is based more
on restrictions deriving from the scale of the map
than on local conditions. On the soil maps, areas

Tertiary Deposits
Recent Deposits
Belt Rocks
Limestones
Granite Rocks

mapped as belonging to these soil complexes are
necessarily larger and more generalized mapping
features. However, on the membership images, not
all pixels within an area have high possibility values,
which means that the similarity of the local soil to
the central concept of the series responds to local
variations in the apparent soil forming environment,
as can be observed in the field. Therefore, our
method is capable of eliminating the minimum map-
ping size problem in conventional soil mapping and
by allowing more detail spatial patterns of soil infor-
mation to be represented.

At the attribute level, on the soil maps, the soil at
a location is assigned to one and only one soil series.
In this case, the expected properties for the soil at
that location can only be set as the expected proper-
ties for the assigned series with no transitional prop-
erties between soils dependent on landscape and
environmental conditions. From our method, the soil
at a location is presented as a SSV (soil similarity
vector) with each of its elements representing infor-

Fig. 11. Lithology of study area.
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Fig. 12A and B show the distibution of fuzzy
membership values and soil map, respectively, for
the Ambrani—Rochesier complex. Fig. 13A and B
show the distribution of fuzzy membership values
for the Elkner—Ovando complex and the distribution
of this complex on & soil map, respectively. Yisual
inspection indicates that Fig. 12A and B, and Fig,
13A and B show very similar spatial pattems, respec-
tively. There are, however, apparent differences be-
tween the membership maps and the soil maps. The
main difference is that the membership maps reveal
more details at the spatial level. Using a raster-based,
fuzzy logic mapping, the degree of similarity of soil
series allows much greater spatial resolution than is
feasible using a polygon-based, binary system (in or
out of a set). The general shapes for the soil com-
plexes on the membership images follow the land
scape better than the ones on the soil maps where
inclusion or exclusion from a region is based more
on restrictions deriving from the scale of the map
than on local conditions. On the soil maps, areas
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mapped as belonging o these soil complexes are
necessarily larger and more generalized mapping
features. However, on the membership images, not
all pixels within an area have high possibility values,
which means that the similarity of the local soil to
the central concept of the series responds o local
variations in the apparent soil forming environment,
as can be observed in the field. Therefore. our
method is capable of eliminating the minimum map-
ping size problem in conventional soil mapping and
by allowing more detail spatial patterns of soil infor-
mation o be represented.

Al the attribute level, on the soil maps, the soil af
a location is assigned to one and only one soil series.
In this case, the expecied properties for the soil at
that location can only be set as the expecied proper-
ties for the assigned series with no transitional prop-
erties between soils dependent on landscape and
environmental conditions. From our method, the soil
at a location is presented as a S5V (soil similarity
vector) with each of its elemenis representing infor-

Fig. 11 Lithology of study area
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| Ambrant-Rochester |

Fig. 17 (A) Membership map of Ambrani—Rochester complex. (B) Soil survey map of Ambrant—Rochester complex.
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Table 2 Table 3
SSV values for points on the NW-SE transect shown in Fig. 14 SSV values for points on the SW—NE transect shown in Fig. 14
Point Ambrant Rochester Elkner Ovando Point Ambrant Rochester Elkner Ovando
1 0.2644 0.0210 0.3541 0.3605 1 0.1330 0.0000 0.6264 0.2407
2 0.4595 0.0000 0.1746 0.3659 2 0.0362 0.0000 0.5202 0.4436
3 0.3824 0.0669 0.2467 0.3040 3 0.2053 0.1226 0.3334 0.3387
4 0.1617 0.0281 0.3630 0.4472 4 0.4665 0.0000 0.4451 0.0884
S 0.1250 0.0000 0.4928 0.3822 5 0.5506 0.4457 0.0025 0.0012
6 0.5239 0.3947 0.0310 0.0504 6 0.5378 0.4474 0.0045 0.0103
7 0.0296 0.0000 0.5389 04314 7 0.7857 0.0983 0.1160 0.0000
8 0.7156 0.0000 0.2844 0.0000 8 0.6718 0.1527 0.1165 0.0591
9 0.3953 0.0363 0.4628 0.1054 9 0.1554 0.0466 0.4763 0.3216
10 0.1898 0.1017 0.4647 0.2437 10 0.0878 0.0000 0.5861 0.3261
11 0.4958 0.5025 0.0011 0.0006 11 0.1115 0.0000 0.6845 0.2040
12 0.4901 0.4257 0.0402 0.0439 12 0.0452 0.0000 0.4862 0.4686
13 0.0403 0.0000 0.4406 0.5192 13 0.9791 0.0000 0.0000 0.0209
14 0.0708 0.0000 0.6273 0.3020 14 0.6694 0.0000 0.1116 0.2190
15 0.2852 0.0000 0.6248 0.0900
Points in the table are about 180 m apart on the transect (NW-SE) 16 0.1280 0.0122 0.4233 0.4365
starting from NW. 17 0.1261 0.0000 0.4632 0.4106
18 0.1931 0.0000 0.7076 0.0993
mation of the degree of similarity to each of the 19 0.0846 0.0000 05196 03958
candidate soil series (Tables 2 and 3, Fig. 14). It may a 0.1518 0.0000 0.3918 04563
then be possible to infer soil properties intermediate Points in the table are about 180 m apart on the transect (SW-NE)
to the finite set of candidate soil series and thus starting from SW.

Fig. 14, Location of the two transects.
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On soil map

Table 4

Hardened results and mapped ‘soils for points in Tables 2 and 3
Hardened from Table 2

Point Hardened as On soil map

1 Elkner~QOvando Ambrant—Rochester
2 Ambrant—Rochester Ambrant-Rochester
3 Ambrant—Rochester Elkner~Ovando

4 Elkner—QOvando Elkner—Ovando

5 Elkner—Ovando Elkner—Ovando

6 Ambrant—Rochester Elkner—Ovando

7 Elkner—Ovando Elkner-Ovando

8 Ambrant-Rochester Ambrant—Rochester
9 Elkner—Ovando Ambrant—Rochester
10 Elkner—Ovando Ambrant-Rochester
11 Ambrant-Rochester Ambrant-Rochester
12 Ambrant—Rochester Ambrant—Rochester
13 Elkner—Ovando Elkner—Ovando

14 Elkner—Ovando Elkner-Ovando

Hardened from Table 3

Point Hardened as

1 Elkner—Ovando

2 Elkner—Ovando

3 Elkner—Ovando

4 Ambrant-Rochester
5 Ambrant-Rochester
6 Ambrant—Rochester
7 Ambrant—Rochester
8 Ambrant-Rochester
9 Elkner—Ovando

10 Elkner-Ovando

11 Elkner—Ovando

12 Elkner—Ovando

13 Ambrant-Rochester
14 Ambrant—Rochester
15 Elkner—-Ovando

16 Elkner—Ovando

17 Elkner—Ovando

18 Elkner-Ovando

19 Elkner—Ovando

20 Elkner—Ovando

Elkner—Ovando
Elkner—Ovando
Elkner—Ovando
Elkner-Ovando
Ambrant-Rochester
Ambrant—Rochester
Ambrant—Rochester
Ambrant—-Rochester
Elkner-Ovando
Elkner—Ovando
Elkner—Ovando
Elkner—Ovando
Ambrant—Rochester
Ambrant—Rochester
Elkner—Ovando
Elkner—Ovando
Elkner-Ovando
Elkner—Ovando
Elkner—Ovando
Elkner-QOvando

approximate the continuum of soil properties over
the landscape. At this point, this latter inference of
intermediate soil properties is under investigation.
In order to compare the inferred results with soil
maps at the point level, we hardened the SSV to
produce a crisp representation of soil information for
the points in Tables 2 and 3. We assigned to the
point the soil complex which has the highest mem-
bership value in the SSV for the point. For example,
Point 1 and 2 in Table 2 are assigned as Elkner—
Ovando and Ambrant—-Rochester soil complexes, re-
spectively. Table 4 lists the hardened results (in-
ferred complexes) and the mapped soil complexes
for the points in Tables 2 and 3. From Table 4, it can
be seen that the inferred complexes in general agree
with the mapped soil complexes for these points (for
28 of 34 points, the inferred complexes match the
mapped complexes). Among the six points at which
the inferred results do not match with the mapped
information, four (except points 6 and 10 in Table 2)
have membership distributed evenly over the two
complexes. This could mean that the soil at these
points do not strongly belong to any of these two
complexes but demonstrate even similarities to these

two complexes. At points 6 and 10 in Table 2 the
inferred results strongly disagree with the mapped
information. The disagreement at these areas is cur-
rently under investigation.

6. Conclusions

This paper presents a methodology for soil infor-
mation gathering and representation. The methodol-
ogy consists of structured knowledge acquisition
techniques, fuzzy inference techniques, and GIS
techniques. The knowledge acquisition techniques
were used to acquire knowledge about soil—environ-
mental relationships. The GIS techniques were used
to derive data on the environmental variables. A set
of fuzzy inference techniques were employed to infer
soil series based on the acquired knowledge and
environmental data provided by the GIS techniques.
The fuzzy membership images produced from the
new method have potential advantages over standard
soil survey maps in terms of revealing spatial pat-
terns of soil information, detailing attribute informa-
tion and in terms of production cost. Rigorous field
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testing is required to quantify the potential advan-
tages of this technique in the derivation and repre-
sentation of the spatial pattern of soil types and
properties, and is in progress at this point.

There are several research directions for improv-
ing this new methodology. At this stage, we were
using a lithologic map as the parent material map.
More research needs to be done to provide more
accurate parent material maps. Secondly, in this
illustration, only the primitive topographic indices
(such as slope gradient, slope aspect, curvature, and
elevation) were used. No geomorphic features (such
slopes, ridges, terraces, and bottom lands, etc.) were
used at this point. It is obvious that the inclusion of
these geomorphic features will further improve the
quality of the inferred soil information. Additional
and improved information on the vegetation canopy
from remotely sensed data would allow the extension
of the technique over larger areas. In addition, an
expansion of the knowledge set to incorporate spatial
dependency of soil information (such as catenary
relationships) would provide the ability both to facil-
itate the inference of specific soil properties from the
SSV, and to improve soil pattern prediction by pro-
viding further information on landscape/soil con-
text.
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Appendix A. Characteristics of the four soil series
A.l1. Ambrant series

Deep, somewhat excessively drained soils formed
in colluvium derived from granite; the profile is
neutral to medium acid.

The A horizon is sandy loam and contains 15 to
35% pebbles; light brownish grey (10YR 6/2); mod-
erate fine granular structure; soft, very friable, non-
sticky, and nonplastic.

The AB horizon is coarse sandy loam and con-
tains 15 to 35% pebbles; light brownish grey (2.5Y
6/2); weak file and medium blocky structure parting
to moderate fine and medium granular structure; soft,
very friable, nonsticky, and nonplastic.

The C horizon is coarse sand or loamy sand and
contains 35 to 60% pebbles; light browish grey
(2.5Y 6/2); massive; slightly hard, very friable,
nonsticky, and nonplastic.

A.2. Elkner series

Deep, somewhat excessively drained soils formed
in colluvium derived from granite; the profile is
medium acid or slightly acid.

The A horizon is sandy loam and contains 0 to
15% pebbles and 0 to 5% cobbles; pale brown
(10YR 6/3); weak coarse granular structure; soft,
very friable, nonsticky, and nonplastic.

The AB horizon is coarse sandy loam and con-
tains 0 to 15% pebbles and 0 to 5% cobbles; light
yellowish brown (10Y 6 /4); weak coarse subangular
blocky structure; slightly hard, very friable, non-
sticky, and nonplastic.

The C horizon is loamy coarse sand and contains
15 to 25% pebbles and 0 to 10% cobbles; light
yellowish brown (10YR 6/4); massive; loose, non-
sticky, and nonplastic.

A.3. Ovando series

Deep, excessively drained soils formed in collu-
vium derived from granite; the profile is medium
acid or slightly acid.

The A horizon is sandy loam and contains 15 to
35% pebbles and 0 to 1% stones; light yellowish
brown (10YR 6/4); moderate very fine and fine
granular structure; soft, very friable, nonsticky, and
nonplastic.

The AB horizon is loamy coarse sand and con-
tains 35 to 50% pebbles and 0 to 10% cobbles; very
pale brown (10YR 7/4); single grain; loose, non-
sticky, and nonplastic.

The C horizon is loamy coarse sand and contains
50 to 60% pebbles and 10 to 20% cobbles; pale
brown (10YR 6/3); single grain; loose, nonsticky,
and nonplastic.
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A.4. Rochester series

Deep, excessively drained soils formed in collu-
vium derived from granite; the profile is neutral.

The A horizon is sandy loam and contains 15 to
35% pebbles; light browish grey (2.5Y 6/2); weak
coarse granular structure; soft, very friable, non-
sticky, and nonplastic.

The C horizon is loamy coarse sand or coarse
sand and contains 35 to 60% pebbles; light brownish
grey (2.5Y 6/2); weak medium and coarse subangu-
lar blocky structure; soft, very friable, nonsticky, and
nonplastic.
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