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Abstract

A fuzzy logic based model (called a similarity model) was developed to represent soil spatial
information so that soil landscape is perceived as a continuum in both the parameter space and the
geographic space. The similarity model consists of two components: the similarity representation
component and a raster representation scheme. The similarity representation component uses a set
of prescribed soil taxonomic categories as the central concepts of the fuzzy soil classes and
represents a soil at a given location as a set of similarity values to these central concepts. The
collection of these similarity values forms an n-element vector called a soil similarity vector. With
the use of a raster representation scheme, soil spatial information over an area can be represented
as an array of soil similarity vectors. This similarity model has two main advantages for
representing spatial soil information over conventional polygon-based soil maps. Firstly, the
details of soil spatial information can be represented at the resolution of a raster data model rather

" than at the minimal mapping sizes as in conventional polygon-based soil maps. Secondly, under
the similarity representation, the deviation of a soil at a given location from typical soil classes can
be preserved and its properties can then take values intermediate to the typical values of the
prescribed soil types. A case study conducted in the Lubrecht Experiment Forest of western
Montana demonstrated that soil spatial information represented under the similarity model has a
higher resolution at both the attribute level and the spatial level than that in the conventional soil
map of the area,
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1. Introduction

Information about soil spatial distribution is an essential part of land surface attributes
required for a variety of environmental modeling activities since soil mediates the
energy and‘material fluxes at the earth’s surface. Soil maps produced from conventional
soil surveys are a major source of soil spatial information. There are two major
inter-related limitations for using the soil spatial information derived from conventional
soil maps with other environmental data such as digital terrain and remotely sensed data
for environmental modeling at large scales (Band et al., 1993; Moore et al., 1993; Band
and Moore, 1995). These two limitations are, firstly, attribute resolution incompatibility
and spatial resolution incompatibility between the soil information derived from conven-
tional soil maps, and secondly, environmental data derived from digital terrain analyses
and remote sensing techniques.
This paper presents a model (a similarity model) for representing soil spatial
information at the level of detail compatible with data from digital terrain analyses and
remote sensing techniques. The model is based on fuzzy logic and a raster scheme for
representing spatial data. It can be considered as a continuous spatial model (Bregt,
1992), or a layer model (field model) (Goodchild, 1989, 1992, 1993). The soil at a given
point is represented by a vector of membership values which describe the degrees of
similarity of the local soil to a prescribed set of soil taxonomic units (classes). Each
element in the vector represents the similarity (membership) of the local soil to a
prescribed soil taxonomic unit. In this way, the local soil does not need to be assigned to
one and only one soil category. The deviation of the local soil from typical soil
categories can be preserved by the varying membership values in the vector. Local soil
properties can then take the values intermediate to the typical values of the prescribed
soil classes. Using a raster representation scheme, soil spatial information over an area
«can be represented as an array of these vectors with each of these vectors corresponding
to each location in the area. The spatial :detail (spatial resolution) of soil spatial
information would then be compatible with other environmental data. y
The paper first discusses the two incompatibilities between the soil information from :
conventional soil maps and the other detailed environmental data. This is followed by a
brief overview of current research efforts to overcome the limitations of the existing
scheme for representing soil spatial information. In Section 4, the proposed similarity
model is then presented and discussed, which is followed by a case study to further )
illustrate the concepts of this model and to demonstrate the potential use of this model ©
for deriving detailed soil information. Section 6 provides a summary of this paper. ~

N

- —2. Spatial and attribute incompatibilities
2.1. The soil map production process
In order to understand the two incompatibilities and to provide a background for the

similarity model presented here, a brief overview of the soil map production process is
necessary. The mapping process can be divided into two conceptual parts (or sub-
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processes), although in real practice the two sub-processes may very well intertwine or
overlap with each other. For the convenience of this presentation, we will discuss them
as if they were completely separate processes. The first sub-process in soil map
production is classification. During the classification process, field observations on soils
are grouped into types (classes) according to their diagnostic properties (SCS, 1975;
CSSC, 1978): Each of these soil classes is then assigned typical soil property values and
their ranges within that class. In other words, soil classification is a process of
identifying patterns (classes) of soil property values in the soil property domain (used
interchangeably with parameter domain, parameter space) (Fig. 1a). It is important to
identify these patterns so that the major pedogenic processes which control the develop-
ment of soils, and the relationships between these processes and their pedogenic
environments can be studied and understood. However, it should also be realized that
each of these classes (patterns of soil property values) is characterized by - typical
property values (the means or the modes of property values) and their ranges in this
class.. In ‘many environmental modeling applications, only the typical soil property
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Fig.. 1. Discretization of soils in the parameter domain. (a) Dots represent the locations of soils in the
parameter domain, rectangles represent the boundaries of soil classes in the parameter domain. (b) Dots
represent the centers of soil classes, the intervals between the projected centers on their respecuve axes
represent the attribute resolution on these property axes.
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values are used. The more specific property values cannot be derived using only the
range of soil property values within a soil class since the joint distribution of soil
variation with the other environmental data within a soil polygon is often unknown. The
typical soil property values are therefore the only means-of characterizing these soil
classes in the soil parameter domain. The power of describing the changes of soil
property values (attribute resolution) in the parameter domain is limited to the intervals
of the typical values of two adjacent soil classes (Fig. 1b). Intermediate soil property
- values between two typical values of two adjacent classes cannot be obtained. This
reduction of soil attribute resolution is further manifested in the second sub-process of
soil map production, the mapping process.

During the mapping stage, areas are delineated and assigned to mapping classes
(mapping units). These units can be single-class units (made of one soil class) or mixed
units (made of more than one soil class). For areas mapped as a single-class unit, all
soils within the delineated polygon are considered the same as the typical soil of that
soil class. For areas mapped as a mixed unit, each of the delineated polygons is said to
be made of several soil classes with each occupy a certain percentage of the polygon
area. The specific location of each of these soil classes within the polygon is unknown.
Soil mapping can also be considered as the process of realizing the soil classification in
geographic space (geographic domain). During this mapping process, two types of
generalization take place: class assignment generalization, and spatial generalization,

2.2. Incompatibilities as results of generalization

Class assignment generalization is the process of assigning similar soils wholly to a
single mapping unit. What is being said here is that all of these similar soils are to have
the properties of the prescribed mapping unit to which these soils are assigned. It is
because conventional soil maps are conducted under crisp logic. Under crisp logic, soil
at a given point can belong to one and only one soil class and that soil is to have the soil
properties of the soil class to which the soil is assigned. Under this notion, the difference
in soil properties between two neighboring soil objects can either be perceived as the
difference of two different mapping units (when these two soil objects are assigned to
two different mapping units) or be completely ignored (when the two soil objects are
assigned to a single mapping unit). On the other hand, data derived from digital terrain
analyses and remote sensing techniques normally retain the subtle differences in the
attribute values between the neighboring objects due to the higher attribute resolutions
of these data. For example, the attribute resolution of slope gradient can be smaller than
1%. The spatial manifestation of this attribute resolution incompatibility between soil
spatial information from soil maps and other environmental data derived from digital
terrain analyses and remote sensing techniques is shown in Fig. 2, which depicts the
changes of environmental conditions along a transect in Lubrecht, Montana (Figs. 3 and
4). Due to the higher attribute resolutions of digital terrain data and data from remote
sensing techniques, the detailed gradation of environmental properties over space can be
preserved (Fig. 2b,d). However, the change of soil A-horizon depth is perceived as a
step function in the conventional soil map (Fig. 2a). This incompatibility can have

>
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serious implications on interpretation of results from large-scale environmental modeling
applications.

Spatial generalization is related to the map scale and the cartographic techniques
employed for producing soil maps. At a certain scale, only soil objects larger than a
certain size (scale-dependent, called minimum mapping size) can be represented on soil
maps. Soil objects smaller than the minimum mapping size are either omitted completely
or merged into the surrounding soil objects (Fig. 5). Soil units C and D in (a) of Fig. 5
are too small to be represented in (b) of Fig. 5. Soil unit A in (b) of Fig. 5 is a mixed
unit consisting of soil units A and D. This inclusion may be noted in the mapping legend
as a percentage of inclusion but the spatial location of these included units are often
completely lost on small-scale maps. Therefore, the spatial resolution of a soil map is
the minimum mapping size, which can be a.few hectares on large-scale maps to
hundreds of hectares or more on small-scale maps. On the other hand, most data
generated from digital terrain analyses and remote sensing techniques have the spatial
resolution of 30 m by 30 m or higher and are capable of describing small (spacially) but

A-Horizon Depth Along the Transect in Figure 4
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Fig. 2. Data incompatibility between soil A-horizon depth (a) and other environmental data: (b) elevation; (c)
slope gradient; (d) canopy closure (remotely sensed data).
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Slope Gradient Along the Transect in Figure 4
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Fig. 2 (continued).

important environmental niches. Conventional soil maps are often not capable of
providing soil spatial information about these small but important environmental niches.
This spatial resolution incompatibility between soil spatial information from conven-
tional soil maps and other environmental data limits the interpretation of results from a
variety of large-scale environmental models.

The two incompatibilities between the soil spatial information from soil maps and
other environmental data are due to the crisp logic under which soil maps are produced
and due to the limited representation capacity of cartographic techniques at certain
scales. In reality, soil often varies gradually and the boundaries between different types
of soils are often diffuse rather than sharp (Mark and Csillag, 1990; McBratney, 1992).
It may be true that soil experts know the existence of the gradual gradation of soil
properties over space and the inclusion of different soil objects in soil mapping units but
these cannot be mapped on soil maps due to the crisp logic employed and limitations of
map scale and cartographic techniques. Therefore, the knowledge of soil scientists about
soil variation cannot be fully expressed by soil maps constructed under crisp logic with
the conventional cartographic techniques.
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3. Recent efforts at representing soil landscape as a continuum

With the understanding of the limitations of conventional soil map making techniques
for representing detail soil spatial variations, many researchers started exploring other
means of quantifying and representing soil spatial variations. These efforts have initiated
the development of two major types of approaches for deriving and representing soil
spatial information: the statistical-geostatistical approaches and the fuzzy logic based
approaches.

3.1. Statistical—-geostatistical efforts

The statistical approaches first extract statistical relationships between soil properties
and other landscape factors from point samples and then use the relationships together

Fig. 3, Location of the Lubrecht study area, Montana.
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Cap Wallece Guich " North Elk Creek

___—Elk Creek

Fig. 4. The pography of Lubsecht (top) and the location of the wranseet (superimposed on a DEM) fos
revealing data incompatibility between soil A-horizon depth and other enviroamental data shown i Fig, 2.
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At Large Map Scales At Small Map Scales

Fig. 5. Representation of soil bodies s different scales. 50il unit D and C on large-scale soil maps will
disappear or be merged into soil wnit A on small-scale soil maps

with the landscape data in a GIS to predict the soil properties over an area (Moore et al.,
1993; Gessler et al., 1995), These techniques assume that the relationship between soil
properties and other landscape variables are static over space and they also require a
grcat deal of ficld data to extract the relationships. Because of its assumption and the
data requirement, the usefulness of the techniques has been limited for arcas where the
relationships hetween the soils and other landscape variables are very complex and
where there is little field data available for deriving the relationships.

The peostatistical approaches explore the use of spatial autocorrelation of soil
properties in field-sampled data sets for interpolating the soil properties at the unknown
sites (for example, Burgess and Webster, 1980; McBratney and Webster, 1986: Webster
and McBratney, 1989; Webster and Oliver, 1989; Webster, 1991; Loague, 1991
Bierkens and Burrough. 1993; Zhang et al. 1995). These guantitative interpolation
techniques are based on the stationarity assumptions of geostatistics and also require a
large amount of field data to define the spatial autocorrelation. These techniques may
have limited usape for complex terrain where pedogenesis arises in a complex manner
and the stationarity assumptions of geostatistics may not be met.

3.2, Fuzzy logic based approaches

The fuzzy approaches employ fuzzy logic in the classification process (for example.
Burrough, 1989; Burrough et al., 1992; McBramey and De Gruijter, 1992; Odeh et al.,
1992a; De Gruijter et al., 1997; Lagacheric ct al., 1997). Under fuzey logic, soils can be
assigned to more than one soil class with varying degrees (fuzzy memberships) of class
assignment so that the soil gradation in the parameter space can be described using these
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varying fuzzy membership values. Some current attempts using fuzzy classification of
soils employ the unsupervised classification strategy, which means that each of the fuzzy
classes generated from a fuzzy classification does not necessarily relate to any existing
taxonomic class. It may be the intention of these efforts to form natural clusters of soils
and to examine the objectiveness of the existing soil classes. However, the good deal of
knowledge pertaining to the existing taxonomic classes are not utilized in these fuzzy
classification exercises.

Odch et al. (1992b) employed kriging techniques to create isarithmic maps of
membership values of some fuzzy classes which were derived from a fuzzy-c-means
(FCM) classification procedure. This might be one of the earliest attempts to represent
soil landscape as a continuum in geographic space in terms of a set of isarithmic maps.
However, the usefulness of these fuzzy membership maps (whether in the form of
isarithmic maps or raster layers) is yet to be explored in terms of providing more
accurate soil spatial information for a variety of management and modeling activities.

This paper presents a soil similarity model which uses the conventional soil taxo-
nomic classes as the centroids of fuzzy classes. The model employs the fuzzy set theory
for the assignment of local soils to these classes and uses a raster representation scheme
for the representation of these fuzzy membership values over space. The soil spatial
information over an area is then represented as a set of maps with each representing the
spatial distribution of membership values to a particular soil class.

4. A soil similarity medel for soil spatial information
4.1. Soil similarity representation

The limitations of soil spatial information from soil maps for environmental modeling
applications are related to the class assignment generalization and the spatial generaliza-
tion outlined above. The class assignment generalization can be reduced or eliminated if
the assignment of soil to soil classes is done under fuzzy logic. Under fuzzy assignment,
a soil object can be labeled as more than one soil type (class, or taxonomic unit) with
different degrees of assignment depending on the similarities between the soil and a set
of prescribed soil classes. The more similar the soil to a prescribed soil class, the
stronger is the assignment. Therefore, the degree of assignment is called the similarity
value between the soil object and the prescribed soil class since it measures how close
the soil object is to the centroid of the prescribed soil class in the parameter space.
Similarity value of 1 means that the soil object is exactly located at the center of the
prescribed class (typical instance) while similarity value of 0 means that the soil object
does not belong to the prescribed soil class at all. Given that there are n prescribed soil
classes, a soil at a given location (i, j), under fuzzy assignment, will have n similarity
values with each similarity value corresponding to one of the n prescribed soil classes.
“The collection of these n similarity values forms an n-element vector for the soil at that
location (Fig. 6): This vector is called Soil Similarity Vector at location (i, ), S;; = (S},
SZ, ..., 8K ..., ST), where Sk is the similarity value of the soil at point (i,j) to the

prescribed soil class k, and n is the number of prescribed soil classes (taxonomic units).

i AT R
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It must be pointed out that S{‘j is not a probability of whether a certain soil class occurs
at a location or not. It is an index which measures the similarity between the local soil at
(i,j) to soil class k.

It may have occurred that the concept of soil similarity representation used in the
similarity model is similar to the fuzzy classification used by other authors (e.g.,
Burrough et al., 1992; McBratney and De Gruijter, 1992; Odeh et al., 1992a). There
exists a major difference between the soil similarity representation and the fuzzy
classification. With the former, the centers of fuzzy classes used are predefined and set
to be the central concepts of conventional soil classes. In other fuzzy classifications, the
centers of fuzzy classes are determined by a fuzzy clustering algorithm, often in the
form of fuzzy-c-means algorithm. The reason for using existing soil classes as the
central concepts of fuzzy classes is that the existing soil classes are based on certain
classification schemes and are well studied by generations of soil scientists. There is a
good deal of knowledge on these soil classes, particularly at the soil series level which
has been used for soil mapping for many decades in the US. The knowledge about soil
classes includes the relationships between soil classes and their respective environments,
the characteristics of these soils and the information about management practice on these
soils. By using these well-defined soil classes as fuzzy classes, we.can utilize this
knowledge during the interpretation and application of the results based on fuzzy logic.

It is worth pointing out that with the use of existing soil classes, the sum of all
similarity values for a local soil to a set of prescribed soil classes (the sum of the
elements in the soil similarity vector) does not need to be unity. This is because soil
classes can be very similar to each other and it is possible for a local soil to have high
similarity values to many similar soil classes and the sum can then be over unity. It is
also possible that a local soil may be very unique and it may not bear much similarity to
any of the prescribed soil classes, and the sum of the membership values in the vector
can therefore be less than unity.

Soil Series 1, Soil Series 2, ..., Soil Series k, ..., Soil Series n

Soil at point (i)

(43
5
8lg
w
[+]

o

Soil Similarity Vector (S)
(Sy's S s vees Sify es Si)

S,,": Soil similarity value between the soil at point (i,/) and soil series &

Fig. 6. Fuzzy representation of soil information.
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The fuzzy representation of soil information using similarity vectors is very much
different from the conventional crisp representation. The soil information at a location is
represented as a vector of similarity values with each of these values capable of ranging
from O through 1. Soil information is no longer represented by the information of just
one single class as it was done under crisp logic. Under this fuzzy representation, the
class assignment generalization is minimized and the soil at a given point can be
represented as what it is, not approximated by a typical instance of a certain prescribed
soil class. In other words, §;; has a greater flexibility of representing the deviation of
soil at a point from a set of prescribed soil classes.

One use of this representation of soil information is the derivation of intermediate soil
attribute values. On a conventional soil map, the value of a given soil property at a given
location can only be the value prescribed to the soil class as which the location is
mapped even though the soil property value at the point is very different from the
prescribed value. Since S;; has a greater flexibility of representing the deviation of soil
at a point from a set of prescribed classes and it is also a vector of similarity measures to
the set of prescribed soil classes, it is possible that S;; can be used to derive a soil
property value intermediate to the typical values of the prescribed soil classes (Zhu et
al,, 1997). In other words, S,.j can be used to provide users with a finer attribute
resolution than that provided in conventional soil maps. The subtle difference between
two neighboring soil objects can now be accommodated by the subtle difference
between the two soil similarity vectors and the spatial gradation of soil information can
be preserved under this similarity representation of soil.

One other use of the similarity representation of soil information is the generation of
uncertainty information for assigning a particular soil class to the soil at a given
location. When it comes to the point that we must give a class label to the soil at a
location, we can also provide information about the uncertainty associated with this
assignment so that management decisions can be made not just based on the soil class
label but also the uncertainty involved. For example, the soils at two points (say Point 1
and Point 2) are represented by the following soil similarity vectors: (0.23, 0.25, 0.27,
0.25) and (0.1, 0.05, 0.7, 0.15), with elements representing the membership values for
soil class A, B, C, and D, respectively. These vectors tell us that the soil at Point 2 is
highly similar to soil class C but the soil at Point 1 is not so much different from the
other soil classes. If we are to assign a soil class label to each of the soils, we would
label the soils at both points as soil class C based on the highest membership value in
each of the vectors. We know that this labeling is associated with different levels of
uncertainty for each of the two points. Instead of ignoring this difference in uncertainty,
we can measure (Goodchild et al., 1994) and report the level of uncertainty along with
the class label. Under this notion, when we present a soil map to resource managers, we
also present an uncertainty map associated with that soil map so that they are better
informed in their decision-making processes.

4.2. The raster representation scheme
In order to reduce the impact of spatial generalization, a raster data model is used to
represent the spatial distribution of soil similarity vectors since the raster model is more
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suitable for representing continuous spatial variation of geographic features and phenom-
ena. The spatial resolution of a raster data model is limited only by the spatial resolution
of the original input data, not by the minimum mapping size imposed by the mapping
techniques. Therefore, each pixel (at the spatial resolution of the input environmental
data) will have its own soil similarity vector and the soil information of small yet
important environmental niches can then be provided under the similarity model. The
spatial resolution incompatibility between other environmental data and soil information
represented under this model can then be minimized.

If a soil similarity vector contains » elements, the collection of soil similarity vectors
for all pixels in a raster database of an area forms an n-element image vector, S. The
kth element, S*, in this image vector is an image representing the similarity distribution
of prescribed soil class k over the area. This spatial distribution of similarity for soil
class k is called fuzzy membership distribution (fuzzy membership map) of soil class k
over the area. It should be emphasized that this fuzzy membership map is a representa-
tion of similarity of the soils in the area to the prcscribed soil class k, and is not a
probability distribution of occurrence of the soil class k. This membership map is
different from the conventional representation of a soil class using soil polygons since it
also shows the varying degrees of belonging of the soils in the area to the prescribed soil
class k (Fig. 7).

It must be made clear that the similarity model only provides a possibility for
accurately representing soil spatial information. Whether the information represented
under the model is accurate depends on how this information is derived. The strategy
and methods for populating the similarity model have been discussed in other papers
(Zhu, 1994; Zhu and Band, 1994; Zhu et al., 1996) and are beyond the scope of this
discussion. The next section presents an example to demonstrate how this model can be
used in soil spatial information representation and to show the representation power of
this new model.

5. An example of using the similarity model
5.1. Study area

A case study was conducted using the similarity model to represent the soil spatial
information in the southeast part of the Lubrecht Experimental Forest located about 50
km northeast of Missoula, Montana, USA (Fig. 3). The study area is centered around
North Fork of Elk Creek with a north—south dimension about 5 km and an east—west
dimension of 7.5 km. The elevation in the study area ranges from 1130 m to 1950 m
with high elevations in the east and southwest and low elevations in the northwest (Fig.
4). The study area is considered as a semi-humid and semi-arid region (Nimlos, 1986).

Most of the mountain slopes in the study area are forested, dominated by Douglas-fir
( Pseudotsuga mensiesii) although lesser amounts of western larch (Larix occidentalis)
and Ponderosa pine (Pinus ponderosa) are present. Much of the timber is second
growth. There have been no large wild fires in the study area since 1937 (Nimlos, 1986).
Ponderosa pine forests occupy the low elevations, particularly the south-facing slopes
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Fig. 7. Disribution of Soil Complex Elkner—Ovando: (1) under the fuzzy representation; (b) under the crisp

represemation cmployed in conventional soil maps. Figure from Zhy and Band (19940 reproduced by
permission, Canadian Jourmal of Remaste Sensing.

due to high temperatures and lower-moisture conditions on these slopes. As elevation
increases, Ponderosa pine forests give way 1o Douglas-fir forests with a lesser amount of
western larch and lodgepole pine ( Pinus contoria). A high elevations (over 1700 m),
subalpine fir ( Abies lasiocarpa) and Engelmann-spruce ( Picea engelmannii) replace
Douglas-fir and become the dominant species,

There are four major types of parent materials in the area: Belt rocks, granite,
limestone, and alluvium (Brenner, 1968). The alluvium materials occur only in limited
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Table 1
Soil series in the study area
Soil series Parent material Soil order Soil subgroup
Ambrant Granite Inceptisol Udic Ustochrepts
Elkner Granite Inceptisol Typic Cryochrepts
Evaro Belt Inceptisol Typic Cryochrepts
Ovando Granite Entisol Typic Cryorthents
Repp Limestone Inceptisol Typic Cryochrepts
Rochester Granite Entisol Typic Cryorthents
Sharrott Belt Inceptisol Lithic Ustochrepts
Tevis Belt Inceptisol Dystric Eutrochrepts
Trapps Limestone Alfisol Typic Eutroboraifs
‘Whitore Limestone Inceptisol Typic Cryochrepts
Winkler Belt Inceptisol Udic Ustochrepts
Winkler Cool Belt Inceptisol Udic Ustochrepts

areas along the North Fork and South Fork of Elk Creek. The other three parent
materials make up the majority of the area with Belt rocks in the north, granite in the
south, and limestone through the center part of the area. Soils on these three materials
are formed from a mantle of colluvium. Belt rocks are the oldest rocks in the region and
were formed from sediments deposited during the Precambrian period in a shallow sea,
subsequently buried and then metamorphosed into quartzites, argillites and siltites
(Nimlos, 1986). Soils formed from these materials in the study area are similar, so Belt
is considered as one group of parent materials here.

Three soil orders were found to be in the study area: Alfisol, Entisol and Inceptisol
(Nimlos, 1986). Alfisols are soils with leached, gray surface horizons and subsurface
horizons with accumulations of illuvial clay. Entisols are weakly developed soils with
very little organic-matter accumulation and no illivial clay or sesquioxides and they are
usually found on ridge crests in the study area. Inceptisols are young seils with little or
no illuviated clays but brown subsoil horizons that indicate some - translocations of
sesquioxides. About 90% of the soils (in terms of areal extent) in the study area are
Inceptisols.

The soil taxonomic unit (soil classes) used in this study is soil series, listed in Table
1. The reason for using soil series as the basic taxonomic unit for the soil similarity
vectors is that soil series is the taxonomic unit which has been extensively used in soil
surveys. There has accumulated a good deal of knowledge on the relationships between
these soil series and their environments. This knowledge together with the environmen-
tal conditions contained in a GIS database can be used to infer the spatial distribution of
these soil series and to populate the similarity model (Zhu and Band, 1994; Zhu et al.,
1996).

5.2. Deriving soil similarity vectors over the study area

Zhu et al. (1996) and Zhu and Band (1994) developed a strategy for deriving soil
similarity vectors based on the classic concept of Jenny (1980, 1994) that there exist
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Fig. 8. The general process of deriving soil similarity vectors.

relationships between soils and their formative environments. The details of this strategy
and the techniques are beyond the scope of this discussion. However, a brief overview
of the soil similarity derivation for this study is given in the following paragraphs. In
general, they used geographic information processing techniques to characterize the soil
formative environments and developed a set of knowledge acquisition techniques to
capture the knowledge on the relationships between soils and their formative environ-
ments from a soil scientist (soil expert). A set of fuzzy inference techniques (collectively
called the fuzzy inference engine) were used to integrate the soil formative environments
in a geographic information system (GIS) with the soil-environment relationships to
derive soil similarity vectors over an area (Fig. 8).

In this illustration, six environmental variables were used to characterize the soil
formative environments. These are: elevation, slope gradient, slope aspect, profile
curvature, canopy coverage, and the soil parent material. Data on the first four
environmental variables were derived from a USGS 30 m by 30 m digital elevation
model (DEM). The canopy coverage was approximated with an index derived from the
Landsat Thematic Mapper imagery (Nemani et al., 1993). The soil parent material was
derived from a geological map of the study area (Brenner, 1968).

The knowledge on the relationships between the soil series and these six environmen-
tal variables was obtained from a soil expert for the study area through the use of an
iterative and structured interview process (Zhu, 1995). For each soil series, the knowl-
edge consists of six functions with each describing the relationship between the given
soil series and a specific environmental variable. The relationship between an environ-
mental variable and a given soil series was defined as the degree to which the conditions
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of this environmental variable favor the development of the given soil series in the area
(Zhu et al., 1996). In this context, the function describing a relationship between an
environmental variable and a soil series gives the various degrees of favorableness for
the development of this soil series along the gradient of this environmental variable. The
similarity value of the soil at a location to a given soil series can be thought of as the
degree to which the local environmental conditions favor the development of the soil
series.

Once the environmental data on the variables were prepared and the knowledge on
the relationships was captured, the fuzzy inference engine was used to compute each of
the similarity values for the soil at a location to each of the prescribed soil series (Zhu et
al., 1996). In general, for each location in a raster database of the study area, the fuzzy
inference engine takes the set of environmental conditions for the location and combines
them with the relationship functions for a soil series to compute the similarity value of
the local soil to the soil series. This process is repeated for the second soil series, and so
on. When all soil series are exhausted, the soil similarity vector for the location is
derived. The inference process continues onto the next location in the database and so
on. When all locations are visited by the inference engine, soil similarity vectors over
the entire area are derived.

Table 2 shows the soil similarity vectors for a few field sites in the study area.
Although each element (the fuzzy membership value) in the vectors can have a value
between 0 and 100 (unity), the sum of these values within each vector can be more or
less than 100 due to the reason given in Section 4. It should be noticed that soils at the
sites on Belt materials (Iub03_02, lub04 01, T1_16, T1_18, and T2_08) have zero
degree of similarity to soil series developed on granite and limestone materials (Am-
brant, Rochester, Elkner, Ovando, Repp, Trapps, and Whitore). This means that soils on
Belt materials do not belong to the soil series designated for the other two parent
materials at all. Within Belt materials, soils bear different similarity values to the soil
series on the Belt materials (Evaro, Tevis, Winkler Cool, Winkler, and Sharrott). It is
worth pointing out that a soil at a given point is represented by the entire vector and
every value in the vector is important since they together define the uniqueness of the
soil at a given point. For example, the soil at Site 91_03 is similar to Ambrant,
Rochester, Elkner, and Ovando at varying degrees with the strongest similarity to
Elkner. Although the soil at Site lub06_02 also has the highest similarity to soil series
Elkner, the distribution (combination) of similarity values in the vector is different from
that of Site 91_03. Under conventional mapping techniques, soils at both sites will be
assigned to soil series Elkner and will have the properties of soil series Elkner since they
both have the highest similarity values to soil series Elkner. Under the similarity
representation model, the entire similarity vector is retained for each individual soil. In
other words, the combination of the similarity values in the vector is important, not just
the highest value. It is this combination of similarity values which provides users with
information about the gradation of soil in both parameter space and geographic space.

5.3. The use of the similarity vectors

To illustrate the advantages of this soil similarity representation, two specific uses of
the soil spatial information represented under the similarity model are given and



A.-X. Zhu / Geoderma 77 (1997) 217-242

000

-00°0

000 000 000 000 000 000 6L6E €769 Viasl psor £0716
000 000 00 000 000 000 000 000 6¥Lr - 000 56T €97 €0014n
000 000 000 000 000 000 000 000 . S8 610 90 799 T LOGA|
000 000 000 000 000 000 000 000 I8k | SzoI €767 LE6T  £079090]
000 000 000 000 000 000 000 000 087  6LES 000 I¥6 7079040
000 000 000 000 000 000 9%6¥E OLTI 000 000 000 000 SITIL
000 000 000 000 000 000 8805 0SS 000 000 000 000 W 0IqN
000 000 000 000 000 I6sF 5069 96°EI 000 000 000 ‘000  107Loqni
000 000 000 000 000 0sss 681 107 000 000 000 000 €07 POAR
000 000 000 - 000 000 oIS 6291 000 000 000 000 000 70 v0an
088 107 6067 0% . 6808 000 000 000 000 00'0 000 000 807CL
£ET £9°11 19T #1801 000 000 000 000 000 000 - 000 000 817IL
90 (SF 0T LI 000 000 000 000 000 00°0 000 000 917 IL
89'I 86, 0% SI6L  LOSH 000 000 000 000 000 000 000  107¥090
000 I 6291 [T 000 000 000 000 000 000 - 000 000  T0T€0qn
WOIEYS  BPUIM  [00DIPIIM SMSL oAy  alowym sddei,  ddoy - opusaQg  BuNH  IOYooy jueiquy arans

. sayis ojdures ploy Mo € J0J SI0)03A AJLIE[IUIS [I0S
, T 9IgeL




A.-X. Zhu / Geoderma 77 (1997) 217-242 235

discussed in the following sections. The first use is the derivation of a spatially detailed
soil map from the soil similarity vectors of the area and is for the illustration of the high
spatial resolution which pertains to the resulting soil map. The second use is the
derivation of a spatially continuous soil property map (A-horizon depth) for the study
area and is for the demonstration of spatial gradation of soil information preserved
through the use of this similarity model.

5.3.1. The derivation of the detailed soil map

The soil similarity vectors can be hardened to produce a soil map. The hardening is
done by assigning each location the label of the soil class which has the highest
membership value in the similarity vector for that point. The newly created soil map and
the conventional soil map over the Lubrecht study area are shown in Fig. 9. It can be
observed from the two maps that the newly created soil map contains more spatial
details than the conventional soil map of the area. The different soil series occurring
along the small draws (shallow but very wide gullies, ravines or valleys) on large slopes
are shown on the newly created map but not on the conventional soil map.

In order to further illustrate the higher quality of the newly created soil map, field
observations were made to determine the soil series at 64 sites. Special attention was
paid to sample the small draws when the 64 sites were distributed over the study area.
The locations (in terms of map coordinates) of these sites were determined with a GPS
(global positioning systems) receiver, and topographic maps. With these map coordi-
nates soil series mapped at these sites on the two soil maps were also determined. The
comparison between the soil series observed in the field and the two sets of soil series
obtained from the two soil maps reveals that the soil series from the newly created soil
map match the field observations at 81% (52 out of 64), while the soil series from the
conventional soil map match the field observations at 61% (39 out of 64). The increase
in quality for the newly created soil map over the conventional one is mainly attributed
to the high spatial resolution underlying the similarity model which minimizes the
inclusion of small soil objects into larger objects.

5.3.2. The derivation of the continuous soil property map .

Zhu et al. (1997) assumed that the more similar two soils, the closer are their soil
property values and derived a soil A-horizon depth image over the study area using the
following equation:

k k
kZISij P
D=t (1

n
LS
k=1

where D;; is the soil A-horizon depth at site (i,)), D* is the prescribed soil A-horizon
depth of soil series k, and n is the total number of prescribed soil series in the area. The
so derived soil A-horizon depth image and the soil A-horizon depth image derived from
the conventional soil map are shown in Fig. 10.

The contrast between the two images is strong and clear. The image of depth based
on the similarity vectors (Fig. 10, top) shows a spatially continuous pattern of A-horizon
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Fig. 9. The soil map derived from the similarity vectors (lop) and the conventional soil map of the Labnech
stdy area (bosomb
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Fig. 10, The A-harizon depth image inferred from the soil similarity vectors (lop) and the A-horizon depth
image derived from the conventional soil map (bottom) of the Lobrecht area. Figure from Zhe and Band
(1594), reproduced by permission, Canadian Journal of Remote Sensing,
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Fig. 11, Scaner plot of the depths based on the similarity vectors vs, observed depths (1op) and that of the
depths from the soil map vi. ohserved depths (hattom) for the 33 field sies.

depth over the area while the image of soil A-horizon depth derived from the
conventional soil map (Fig. 10, bottom) inherits the exact spatial pattern of the
conventional soil map, on which the soil landscape is discretized into distinet and
discreet spatial units and the soil property variation is perceived as a step function. Since
the study area is in a semi-humid to semi-arid region of western Montana, the soils on
north-facing slopes and at high elevations were better developed than soils on south-fac-
ing slopes and at lower elevations due to the limited moisture conditions at the low
elevations and on south-facing slopes. The A-horizons are deep for these better
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developed soils. Although both images show this trend, the depth image based on the
similarity vectors shows a gradual change of depth over space while the depth image
from the soil map shows the changes only occurring at the boundaries of neighboring
soil polygons. This supports the argument that soil spatial information represented using
the similarity model can preserve higher levels of detail at the attribute level (higher
attribute resolution and better spatial gradation) than that in conventional soil maps.

From the comparison of two A-horizon depth images, it can also be observed that the
depth image based on the similarity model shows soil A-horizon depth at a greater
spatial detail. The variation of soil A-horizon depth on different facets of small draws
can be very well identified in the A-horizon depth image based on the similarity model.
The depth image derived from the conventional soil map shows the depth by polygons
and there is no variation of soil A-horizon depth within each of these polygons. This
uniform distribution of soil A-horizon depth within a mapped soil polygon cannot be
realistic for this mountainous area. This comparison suggests that the soil spatial
information represented under the similarity model has a much higher spatial resolution
(better spatial details, fewer spatial inclusions) than that represented in conventional soil
maps.

In order to verify the accuracy of the soil A-horizon depth based on the similarity
model, observations of soil A-horizon depth were made at 33 field sites during the
summer season of 1993. The scatter plot of the depths based on the soil similarity
vectors versus the field observed depths at these sites and that of the depths from the
conventional soil map versus the field depths are shown in Fig. 11. From these two
plots, it can be observed that the depths based on the similarity vectors at these field
sites are more closely associated with the field-observed depths than the corresponding
depths obtained from the soil map. Although both correlation coefficients are highly
significant (numbers in the white boxes in the two plots), the correlation between the
depths from the similarity vectors and the observed depths is much stronger than that
between the depths from the soil map and the observed depths. It further illustrates that
the similarity representation model has less attribute generalization than the model used
in conventional soil maps.

6. Discussion and conclusions

The two incompatibilities (attribute resolution and spatial resolution) between the soil
information from conventional soil maps and other environmental data from digital
terrain and remote sensing techniques are results of the class assignment generalization
under crisp logic and spatial generalization due to the scale and cartographic techniques
used in the soil-map-making process. This paper presents a similarity model to over-
come the two generalizations in soil spatial information representation. The model uses
the soil similarity vector based on fuzzy logic for representing a soil in its parameter
domain so that it overcomes the class assignment generalization problem. In the spatial
domain, a raster data model is used to provide the capability of representing soil spatial
information at a very fine spatial resolution. The employment of the raster data model
helps to minimize the spatial generalization which often occurs in the production of
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conventional soil maps. Through a case study in the Lubrecht Experimental Forest,
Montana, it has been demonstrated that the similarity model has a greater capacity for
representing soil spatial information in both the parameter space and the geographic
space than the model used in the conventional soil map.

It must be realized that this similarity model is only a way for representing soil
spatial information at the level of details compatible with other detailed environmental
data. It provides soil scientists a more flexible method for depicting their understanding
of soil landscape than the model underlying conventional soil maps. It should also be
pointed out that although the similarity model is capable of representing soil spatial
information at higher spatial and attribute resolutions, the accuracy of the soil informa-
tion represented under this model entirely depends on the accuracy of the similarity
vectors which in turn relies on the process of generating these vectors (Zhu and Band,
1994; Zhu et al., 1996).

In this paper, the knowledge-based approach for deriving soil similarity vectors taken
by Zhu et al. (1996) was used as an example on how to derive soil similarity vectors.
There are also other means (such as supervised fuzzy classification) for deriving soil
similarity vectors. Research in developing methods for deriving these similarity vectors
is clearly needed. The two usage examples of the similarity model given in this paper
are only simple demonstrations of the usefulness of this model. Further research on the
usage of this model for deriving detailed soil spatial information is also needed and the
impacts of this detailed soil spatial information on environmental modeling and manage-
ment activities need to be thoroughly examined.
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