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Abstract. This paper develops a knowledge discovery procedure for extracting
knowledge of soil-landscape models from a soil map. It has broad relevance to
knowledge discovery from other natural resource maps. The procedure consists
of four major steps: data preparation, data preprocessing, pattern extraction,
and knowledge consolidation. In order to recover true expert knowledge from
the error-prone soil maps, our study pays specific attention to the reduction of
representation noise in soil maps. The data preprocessing step has exhibited an
important role in obtaining greater accuracy. A specific method for sampling
pixels based on modes of environmental histograms has proven to be effective in
terms of reducing noise and constructing representative sample sets. Three
inductive learning algorithms, the See5 decision tree algorithm, Naı̈ve Bayes, and
artificial neural network, are investigated for a comparison concerning learning
accuracy and result comprehensibility. See5 proves to be an accurate method
and produces the most comprehensible results, which are consistent with the
rules (expert knowledge) used in producing the soil map. The incorporation of
spatial information into the knowledge discovery process is found not only to
improve the accuracy of the extracted knowledge, but also to add to the
explicitness and extensiveness of the extracted soil-landscape model.

1. Introduction

It is well established that the map is a powerful medium for presenting spatial

information and geographical relationships. Much of our understanding of the

relationships among spatial phenomena is inexplicitly embedded in maps. It is often

desirable to have these understandings explicitly stated for complex map inter-

pretation as well as for future map updates. With developments in both geographic

information processing techniques and geographic data warehousing, it is possible

to extract explicitly the knowledge embedded in maps. Malerba et al. (2002) used

machine learning tools to extract information from topographic maps. Compared

to the general purpose topographic maps, thematic maps concern specific geo-

graphic features and contain specialized domain knowledge. For example, natural
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resource maps are usually created by experts through a modeling process, and thus

convey knowledge about the particular models.

Soil maps are one example of these resource maps. In soil survey, soils are

mapped based on the concept that soil is the result of the interaction of its

formative environment: S~f(E), as referred to as the soil factor equation by

Dokuchaeiv (Glinka 1927) and Hilgard (Jenny 1961). Hudson (1992) generalized

this soil factor equation to a soil-landscape paradigm, which is now the guiding

paradigm for soil surveys in the USA. When creating soil maps in soil survey, soil

experts through great effort work out the relationships between soil and its

landscape conditions and draw soil polygons based on the perceived distribution of

landscape units (Hudson 1992). The spatial configuration of the resulting soil

polygons thus implies the relationships between soil and the environmental

conditions over the landscape. Information on how the soil types are related to each

other, and why certain soil is mapped at certain landscape locations, are the implicit

knowledge embedded in the soil map. This implicit knowledge is considered to be

the soil-landscape model (Hudson 1990, 1992).

The knowledge of the soil-landscape model embedded in soil maps is valuable in

at least two ways. First, it has the potential to facilitate traditional soil survey

updates. The conventional soil survey is a manual and time-consuming process. It is

very unlikely that the soil scientist(s) who initially mapped the soils over an area

would be the person(s) to conduct the soil survey update for the area, since the

update cycle is often longer than the career span of a soil scientist. On the other

hand, the soil-landscape model used to create the soil map often exists as the soil

experts’ tacit, undocumented knowledge. Therefore, when local soil experts retire or

move out of an area, they take the knowledge with them. To remap the area during

soil survey updates, new soil experts would have to develop their own model from

scratch. This would involve a tremendous amount of fieldwork. However, if the

knowledge of the experienced soil experts could be retrieved and presented in a

proper form, the new soil scientists could then build upon it. This would greatly

facilitate the update of soil survey. Second, the knowledge of local soil-landscape

relationships, once extracted and properly formulated, could be used for automated

soil mapping, modelling, and classification. Moran and Bui (2002) used machine

learning generated rules of soil-landscape relationships to mimic the mental process

used by soil surveyors and managed to reproduce the original soil map to a

considerable extent. Zhu and Band (1996) developed a soil-land inference model

(SoLIM) to combine the expert knowledge on soil-landscape relationships with

geographical information system (GIS) and artificial intelligence (AI) techniques

under fuzzy logic to map soils. Like other knowledge-based systems, SoLIM builds

upon expert knowledge for automated inferences, and is only suitable for areas

where there are experienced local soil experts from whom the needed knowledge on

soil-landscape relationships can be obtained (Zhu 1996). For regions where there is

no experienced human expert available to provide the knowledge, a possible

alternative is to extract knowledge from other data sources. The soil map pro-

duced in previous surveys is one such potential source. The U. S. Department of

Agriculture (USDA) has been maintaining a soil survey geographic (SSURGO)

database that contains soil surveys of much of the nation’s land. The availability

and accessibility of digital soil maps make it possible to extract useful information,

in this case, knowledge on soil-landscape relationships, from the maps.
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In this paper, we present a knowledge discovery procedure that uses inductive

learning to extract the knowledge embedded in natural resource maps. We use a soil

map as an example to illustrate this procedure. Soil maps created through manual

soil surveys, like other natural resource maps, are prone to two kinds of errors:

inclusions and misplacements of boundaries. Therefore, the map product may not

represent the soil expert’s true knowledge, but may contain noise. The procedure

presented here pays particular attention to this unavoidability of errors. To reduce

the impact of errors (noise) in the maps and recover the expert knowledge, as part

of the whole procedure we designed a sampling strategy for data preprocessing.

This paper examines knowledge discovery from three perspectives: (1) the impact of

data preprocessing, particularly from the perspective of noise reduction; (2) the

effectiveness of three basic types of inductive learning algorithms: a decision tree

learning algorithm, the neural network backpropagation algorithm, and the Naive

Bayes algorithm; and (3) the effect of the incorporation of spatial information on

the knowledge discovery process. The rest of this paper is organized as follows: we

begin with a brief introduction to the conventional soil survey process to examine

how local soil scientists’ knowledge is encoded into the soil maps; this provides the

basis for our knowledge discovery methodology. The knowledge discovery

procedure is then presented. The process is illustrated through a case study.

Last, we discuss our results and draw some conclusions.

2. Basis for extracting knowledge from soil maps

The conventional soil survey is based on Jenny’s classic model:

S~f d, o, r, p, t, . . .ð Þ,
where S is the soil, d is the climatic factor, o is the biotic factor, r represents the

topographic factor, p refers to the parent material, and t is the time factor. The

ellipses after t represent unspecified factors that might be important locally or even

regionally. Basically, the equation says that soil is the result of the interactions of its

formative environmental conditions, and the factors of soil formation interact in a

distinctive manner within the so-called soil-landscape units so that soils are con-

sidered to be predictable and mappable objects based on landscape units (Hudson

1990, 1992). The soil survey and mapping process is actually an inference process

based on observable landscape conditions and expert knowledge of the local soil-

landscape model. Work by Deka et al. (1995), McLeod et al. (1995), Wright (1996),

Bruin et al. (1999), and others demonstrates the continuing success of the soil-

landscape model concept for various terrain types. Therefore, the soil-landscape

paradigm is widely adopted in soil survey practice to produce soil maps. During soil

survey, soil experts first conduct intensive fieldwork to study the local soils toward

the construction of a soil-landscape model. They then characterize the landscape

conditions by studying aerial photos using stereoscopes, and examining the

geological information. Soil surveyors then delineate the spatial extents of different

soils or combinations of different soils based on their understanding of the soil-

landscape model and the observed landscape conditions.

During the soil mapping process, the soil-landscape relationships are elaborately

worked out and implicitly applied to the soil polygon delineation. The spatial

positions of the soil polygons thus imply the relationships between different soil

types and their underlying environmental conditions. When soil experts draw the

polygon boundaries, they implicitly integrate multiple environmental data layers:
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the geology layer, the topographic layers and the land use layer observed through

stereoscoping. The basic idea of extracting knowledge from these polygon-based

soil maps is to reverse this mapping process. In other words, the relationships

between soil type and landscape characteristics can be revealed through a know-

ledge discovery approach by analysing soil maps together with the landscape

characteristics captured using GIS.

3. The knowledge discovery procedure

Knowledge discovery or data mining is ‘the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in data’

(Fayyad 1996). The knowledge discovery procedure employed in this study is a

modified version of the general steps presented by Fayyad (1996), who states that a

complete knowledge discovery process includes ‘data warehousing, target data

selection, cleaning, preprocessing, transformation and reduction, and finally con-

solidation and use of the extracted knowledge’. Our knowledge discovery process

consists of four major steps: data preparation, data cleaning and preprocessing,

pattern extraction, and finally, knowledge examination and interpretation. The

implementation flow is illustrated in figure 1.

3.1. Data preparation: data selection and compilation of a GIS database

To discover knowledge of soil-landscape relationships embedded within existing

soil maps, the first task is to choose the relevant variables that effectively describe

the soil formative environment. While environmental conditions include various

factors, only some of them influence soil-formation. According to literature in

pedology (Hudson 1992, McSweeney et al. 1994), soil-formative environmental

factors include climate, parent material, geomorphology, biology, and human

interference. While at the watershed scale the practical environmental variables

used in a soil-landscape model are usually bedrock geology, topographical

characteristics, and vegetation conditions.

It is important to point out that the specific list of environmental variables to be

used is area specific, depending on the pedogenesis in the local area. But among the

most commonly used variables in the construction of soil-landscape models are the

bedrock geology and the basic topographic variables: elevation, slope gradient,

slope aspect, and surface curvature (planform and profile). Given no other

information concerning the local soil pedogenesis, these variables should be the

starting list of environmental variables used for knowledge discovery. Most likely,

further information on local soil pedogenesis can be obtained from soil survey

reports. Furthermore, since one of our purposes in extracting knowledge from

existing soil maps is to help inexperienced local soil experts to build their own soil-

landscape model, these soil experts may want to add some potential variables to

examine. Auxiliary variables other than the basic ones are thus added in most cases.

In §4, we will add two kinds of additional variables in a case study. One kind serves

to describe complex topographic characteristics by taking into account the spatial

relations of basic topographic variables. The other kind considers topological

attributes of the soil polygons to describe spatial relations between different soil

series. It will be shown that the inclusion of variables that describe spatial relations

will not only improve the accuracy of the extracted soil-landscape model, but also

lead to a more comprehensible knowledge representation.
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Upon the determination of soil-formative environment variables in the mapped

area, the target dataset for knowledge discovery is a GIS database consisting of the

soil map and the data layers of the identified environmental variables. The

elevation, slope, aspect, and curvature data layers can all be derived directly from a

digital elevation model (DEM). Geology is often very important in soil formation.

However, detailed description of spatial variation of geology is very difficult to

obtain, particularly for surficial geology. Information on geology often exists in the

form of polygon maps, as is the soil map generated from traditional soil survey.

These polygon-based maps suffer from the same kind of drawbacks (subjectivity

and scale limitation) as the conventional soil maps do (Zhu 1996). Due to its

importance in soil formation, geological information is often used to indicate

different areas of major pedogensis. Vegetation information can be obtained from

Figure 1. The knowledge discovery process.
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vegetation maps or from remote sensing images, such as tree canopy coverage

(Nemani et al. 1993) and leaf area index (Nemani et al. 1993, Fassncht et al. 1997).

However, the usefulness of vegetation information very much depends on the

ability of these data layers in relating to soil formation or soil conditions in the

given area.

It is worth noting that the variables included in our GIS database are not

necessarily the same variables used by the soil experts when they created the soil

map. Actually, it is impossible to obtain the same exact base maps that they used.

We may miss some of the layers they used because we don’t have their knowledge

of the actual soil-landscape model yet. On the other hand, it is usually the case that

we may add new layers that explicitly describe certain aspects of the landscape

characteristics. Furthermore, the data layers we use in our knowledge discovery

may be of greater accuracy or resolution than the original data soil experts used,

due to the constant improvement of data capture and data representation in GIS.

Although the use of different variables may lead to the extraction of a soil-

landscape model different in form from the original tacit knowledge of soil experts,

the better accuracy and explicit representation of landscape characteristics may lead

to a more extensive model. In section 6, we will see from a case study how the

inclusion of auxiliary data layers improves the extracted soil-landscape model to

make it more comprehensive.

3.2. Data cleaning and preprocessing

Tasks in this step usually include removing noise or outliers and eliminating

invariant or redundant representations of the data. As aforementioned, a con-

ventional soil map is produced through a manual mapping process that is not only

time-consuming, but also error-prone and inconsistent. Most soil mappers base

their soil unit delineation on visual interpretation of stereo photos. Subtle and

gradual changes in environmental conditions are often difficult to discern via

stereoscoping. It is easy to misplace the boundaries of soil polygons in the manual

delineation process. Furthermore, due to the limitations of map scale, small patches

of soil types may not be shown on a soil map, but they exist inside polygons of

other soil types as soil inclusions. The misplacement of soil boundaries and the

existence of soil inclusions result in some of the pixels being associated with

incorrect environmental conditions. These pixels are considered systematic noise

or outliers and will exert enormous influence on the accuracy of the extracted

knowledge.

In our study, the major effort we make to reduce noise and effective size of the

database is to sample only the pixels that are representative of the soil types. We

assume that the misplacement of soil lines is not exorbitant, so that the majority of

the polygon area is correctly categorized; thus the histogram mode(s) of a given

environmental variable enclosed in the soil polygons for a given soil type represents

the typical conditions under which the soil develops or is expected to occur. We

thus believe that the representative pixels are those whose environmental conditions

are at or close to the mode of environmental histograms. In implementation, for all

pixels belonging to a single soil type, a histogram is constructed for each

environmental variable, with the horizontal axis representing the intervals of the

environmental variable, and the vertical axis representing the number of pixels

whose environmental condition falls within the interval. The resulting histogram
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can be either unimodal or multimodal. A unimodal shape is the most common, with

one single mode of the histogram indicating the central concept of the soil type and

the low frequency tails representing map errors, inclusions, or transitional con-

ditions. An example of such a histogram for soil type Kickapoo based on environ-

mental variable slope gradient is illustrated in figure 2. This histogram has a modal

slope gradient of approximately 5%, which demonstrates that Kickapoo develops

mainly in areas with slope ranging from 4% to 6%. Multimodal shapes are possible

when (1) the soil type occurs at more than one typical landscape positions, or (2)

one soil mapping unit is used to represent more than one soil taxonomic units. An

example of the first situation is that soil type A occurs both on narrow ridge tops

and convex slope shoulders. The second situation happens when the map scale does

not allow for detailed differentiation of two or more soil types thus a complex map

unit is adopted.

A concern in the construction of a histogram is how to determine the number of

intervals. In our study, the number of intervals is determined to be proportional to

the number of pixels belonging to each soil type: Ni~Np/r. Here Ni refers to the

number of intervals of the histograms for a certain soil type, Np refers to the total

number of pixels contained in this soil type, and finally, r is the average number of

pixels expected to fall within each interval, which is to be determined by the

operator. With the increase of r, the number of intervals decreases, and the size of

interval increases. In a case study discussed in later sections, different choices of r

are experimented. This sampling specification allows the number of intervals for

different soil types to be adjusted according to the number of pixels belonging to

the soil type, so that the number of pixels falling within histogram mode is

comparable across different soil types. This allows each soil type to be equally

represented in the samples, thus preventing training bias and problematic

performance evaluation (Gahegan 2000).

Once a set of such histograms is constructed for each soil type, sampling is

conducted based on soil types. The individual sample set for each soil type is

produced in two steps. The first step is to sample pixels one environmental variable

at a time, that is, to sample just the pixels falling into the mode(s) of the histogram

based on the given environmental variable. We investigated two options: one is to

Figure 2. Histogram of slope gradient for area mapped as Kickapoo.
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take the entire set of pixels within the mode(s), and the other is to sample randomly

a fixed number of pixels (Nr) from each mode. The second step is to pool the

samples from all environmental variables for the soil type, and then select samples

from this pool. A single pixel may have more than one occurrence in this pool since

it could be selected based on the modes of multiple environmental variables. Two

approaches can be taken to generate non-redundant sample sets. The first approach

is the union operation, which is done by retaining only one occurrence of repeats.

The second approach is the intersection of the samples. This is accomplished by

selecting only those pixels that show up in modes of more than one environmental

histogram. With both approaches, the final set is constructed by simply combining

the sample sets for all soil types.

As aforementioned, this sampling strategy aims to reduce the noise that is

caused by errors in the original map. With the application of learning programs to

only these rectified samples, the learned result is supposed to approximate the soil

expert’s knowledge rather than the error-prone map. This sampling strategy,

therefore, is expected to improve the knowledge discovery performance.

3.3. Data transformation and pattern extraction

The central step of a knowledge discovery process is the extraction of patterns

from data. To achieve this, various data mining algorithms have been developed

(Fayyad 1996, Murray 1998, Koperski et al. 1999). The selection of suitable algori-

thms for a specific knowledge discovery task is determined by multiple factors,

including the nature of the data source, appropriate knowledge representation,

desired accuracy, and so on.

Among various data mining algorithms, inductive machine learning methods are

widely used in knowledge discovery and in various classification practices because

they offer significant advances in several ways. They usually make few assumptions

about model parameters and data distributions. They are able to deal naturally

with certain levels of noise. They scale well with the expansion of feature space, and

many of them are computationally efficient. They also have their limitations in

terms of generalization behaviour, are user-demanding in selection of operational

parameters, and so on (Gahegan 2000). Different algorithms are suitable for dif-

ferent problem configurations.
In general, it is important to choose an appropriate knowledge representation

for knowledge discovery tasks. Common knowledge representations include pro-

duction rules, decision trees (Quinlan 1986), frames (Minsky 1975, Mennis et al.

2000), fuzzy membership functions (Zadeh 1965), semantic nets, regression and

correlation analysis results, and adaptation knowledge. The knowledge representa-

tion extracted from soil maps could take the form of either rules/decision trees or

fuzzy membership functions (Zhu 1999). We chose a decision tree to represent the

extracted knowledge of soil-environment relationships in our study, because the

conditional logic associated with a decision tree structure is compatible with how

soil scientists understand the soil-landscape relationship, and thus it is an easily

comprehensible form in this specific domain. Furthermore, a decision tree is easily

transformed into rules and descriptions, which can be directly used with knowledge-

based inference systems for automated soil inference.

Decision tree induction is one of the most established learning algorithms

(Russell and Norvig 1995). With a decision tree, training data is partitioned to the
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children nodes using a splitting rule until all training samples can be categorized to

a predefined class. For example, the soil-landscape relationships could be expressed

as a decision tree, as shown in figure 3. One of its branches basically says that if the

bedrock at a site is Oneota, the slope gradient is less than 12%, and if the planform

curvature is almost linear on flat ridge tops, then the soil is expected to be ‘Valton’.

When constructing a decision tree from training data, choosing the right size for

the tree is an important problem. A tree that classifies the training data perfectly

may not be the tree with the best generalization performance when applied to real

data since (1) there may be noise in the training data that the tree is fitting; and (2)

the algorithm might be making some decisions about the leaves of the tree that are

based on very little data. This phenomenon is called overfitting, and an overfitted

tree may not reflect reliable trends in the data. To avoid overfitting, various efforts

have been made to improve the decision tree algorithm itself, including various

pruning algorithms (Esposito et al. 1997). Yet another effective way to avoid

overfitting on noisy data is to reduce noise ahead of time, given prior knowledge in

the specific application domain, as we tried to do in the data preparation stage.

In our study, we use the See5 algorithm (Quinlan 1993, 2001) to derive decision

trees from training data. See5 is based on an information theoretic approach. To

build a decision tree, See5 recursively grows a tree top-down through batch

processing of the training data, using a greedy heuristic to search for a simple tree

based on information gain (Quinlan 1993). It selects an attribute for each node with

the most information gain. First, the entropy (or impurity or disorder) of a set of

examples S is calculated as:

Entropy Sð Þ~
Xc

i~1

{pi log 2 pið Þ,

where pi is the proportion of category i samples in S, and c is the number of

categories. The information gain of an attribute is the expected reduction in entropy

Figure 3. A decision tree representation of the soil-landscape model.

Knowledge discovery from soil maps 779



caused by partitioning on this attribute:

Gain S, Að Þ~Entropy Sð Þ{ S
v

Svj j
Sj jEntropy Svð Þ,

where Sv is the subset of S for which attribute A has value v. The entropy of the

partitioned data is calculated by weighting the entropy of each partition by its size

relative to the original set.

To examine the algorithm’s feasibility in terms of learning accuracy and result

comprehensibility, we also experimented with two other algorithms. They are Naive

Bayes and neural network backpropagation (Mitchell 1997). Naı̈ve Bayes uses

Bayes theorem to predict the value of a target field from evidence given by labeled

examples. Under the assumption of conditional independence, it estimates the

posterior probabilities of all possible classifications; and the classification with the

highest posterior probability is chosen as the prediction. Although the indepen-

dence assumption is essential for the optimality of the Naı̈ve Bayesian classifier,

empirical results have shown that it performs well in many domains containing

clear attribute dependences and often outperforms more powerful classifiers.

Domingos and Pazzani (1997) justify its optimality in other sufficient conditions,

and suggest that the simple Bayesian classifier has a wide range of applicability.

However, one limitation of this simple probability-based classification is that it does

not explicitly reformulate the feature space; rather it classifies future samples on the

fly. In other words, the learned concept is not interpretable.
Inductive learning with artificial neural networks uses an interconnected neural

network structure to model interrelationships between features. A neural network

usually consists of multiple layers of simple processing elements called neurons.

Each neuron is linked to certain of its neighbors with varying coefficients of con-

nectivity that represent the strengths of these connections. Learning is accomplished

by adjusting these strengths to cause the overall network to output appropriate

results. Back propagation (Mitchell 1997) is commonly used to train neural

networks with labeled examples. It is known to be able to model a rich class of

concepts through non-linear modeling. Although it provides the best predictive

accuracy for many applications, problems arise when the learned network structure

and weights need to be interpreted. Further efforts have to be made to understand

the concept representations in a neural network (Craven and Shavlik 1997).

3.4. Examining and consolidating the discovered knowledge

In the last step of a complete knowledge discovery process, the extracted pattern

is finally examined and interpreted to be of future use. In our study, the learned

decision tree is tested using independent samples from the same map to obtain

learning accuracy. Once the accuracy is satisfactory, it is considered to approximate

the soil map sufficiently and is ready to be interpreted in terms of rules and

descriptions, and to be incorporated into performance systems or simply docu-

mented and reported to interested parties.

To further validate this knowledge discovery methodology, more validation

efforts were made in our case study. We chose a specific soil map from which to

extract knowledge. We also conducted knowledge acquisition with the soil expert

who created the soil map, through an interview to acquire his knowledge of the soil-

landscape relationships over the same area. Assuming that the acquired knowledge
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is the exact knowledge that the expert applied in drawing the soil map, we

compared our extracted knowledge with this acquired knowledge to test the

accuracy. The details of this validation are described in §6.

Above we have outlined the basic knowledge discovery procedure. The actual

process can contain iterations of some steps and even loops between any two steps.

Most previous work on knowledge discovery from databases has focused on step

3—the specific algorithm taken. However, the other steps, especially the data

preprocessing step, are of considerable importance for the successful application of

knowledge discovery in practice. In this paper we pay attention to the importance

of the data preprocessing step in knowledge discovery.

4. Study site
Our study site is the Raffelson watershed in the state of Wisconsin, USA, with a

total area of approximately 4 km2. Located on the edge of the ‘driftless area’ of

southwestern Wisconsin that has remained free of direct impact from Pleistocene

era continental glaciers, the watershed is of a typical ridge and valley terrain with

relatively flat, narrow ridges. A 3-D view of the area with an orthophoto is shown

in figure 4.

Zhu et al. (2001) have demonstrated the applicability of a soil-landscape model

to mapping soils in this non-glaciated ‘driftless’ area. The soil map created from a

recent soil survey indicates 16 different soil series in the area (figure 5). This area

was chosen as the study site for knowledge discovery because the recently created

soil map is suitable for testing our methodology. During the soil mapping process,

expert knowledge of the local soil-landscape relationships was acquired through

interviews with the soil expert and was documented in the form of rules and

environmental descriptions. The same knowledge was directly applied to create the

soil map. Because this study aims to reveal the knowledge that soil experts put into

soil maps, it is essential to compare the derived knowledge with the knowledge that

leads to the creation of the same map.

As §3.1 discussed, we started with five basic variables to characterize the

formative environmental conditions of soils over the study area: elevation, slope

gradient, planform curvature, profile curvature, and geology. Aspect was not

Figure 4. Raffelson watershed, Wisconsin, USA.
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chosen because there’s almost no indication of soil type changes due to aspect. The

lack of influence of aspect can be observed on the map, where soil polygons wrap

around slopes of all aspects. Known from the soil survey report as part of the

background knowledge, bedrock geology in this area is said to be complex and

plays an important role in the soil formation. Therefore, a detailed bedrock geology

layer is included in the database. The elevation, gradient, and curvature data are all

derived from a 10-metre resolution DEM recently produced by the United States

Geological Survey (USGS). Figure 6 illustrates the appearances of these data layers

that constitute the preliminary soil-landscape database.

Considering the spatial nature of soil formation and distribution would add to

the explicitness and extensiveness of the extracted soil-landscape model. However,

the variables that describe spatial structure should be confined to those that soil

experts are familiar with or can easily understand. Considering this, we included

two kinds of variables in our case study to take into account spatial relations. One

kind serves to capture the spatial relations of soil-formative environmental factors,

and the other serves to describe spatial relations between soil types.

For the first kind, we experimented with three variables that might be related to

soil formation, according to soil experts’ suggestions. They are distance to streams,

topographic wetness index, and percentage of colluvium from competing bedrocks.

To obtain the distances to streams for given locations, stream channels are first

derived using the approach described by O’Callaghan and Mark (1984). The spatial

distance from the soil site to the closest stream is then measured. Topographic

wetness index is used to combine connectivity information based on flow direction

with slope dynamics to represent the hydrological topographic characteristics that

influence soil formation (Moore et al. 1993, Band et al. 1993). Finally, since

colluvium from different bedrocks tends to influence soil development, we calculate

the percentage of colluvium from competing upslope bedrocks for footslope loca-

tions. Specifically, for a given footslope location, the relative amount of colluvium

it received from a certain bedrock is approximated on the basis of the accumulated

upstream drainage cells originating from the given bedrock polygon. The per-

centage of colluvium from multiple competing upslope bedrocks is then computed

relatively.

Figure 5. The soil map of Raffelson watershed.
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Unlike the above three spatial variables, the spatial relations between soil types

are not soil-formative factors, but instead they serve as indicators of soil

distributions over the area. In other words, by including the topological relations

of the soil polygons in knowledge discovery, the extracted soil-landscape relation-

ships can be enriched to describe spatial patterns of soil types. The next section will

show that the extracted soil-landscape model can eventually be interpreted as

catenary sequences of soil series over landscape. Ester et al. (2001) described three

basic types of spatial relations that can be used in spatial data mining: topological,

distance, and direction relations. As for the representation of soil-landscape models,

both topological and direction relations are useful in generalizing soil distributions

over landscape. Specifically, the topological relation of direct adjacency defines

neighbors of a certain soil type. The direction relations of upslope and downslope

define relative slope positions of soils over landscape. For example, the upslope

neighbor and downslope neighbor of a certain soil type determine its position in a

catenary sequence. For areas in which aspect plays a role in soil formation,

Figure 6. The soil-landscape database for Raffelson watershed.
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directions other than up/down slope should also be considered. In our study area,

where there’s no indication of influence by aspect, we consider only the directions

along slope.

Inductive learning algorithms require that the training dataset consist of labeled

examples. A labeled example is a data record that contains values of all relevant

variables (or ‘features’) and the classified category (or ‘label’) (Mitchell 1997). In

our study, ‘features’ are the relevant environmental variables and spatial attributes,

and ‘label’ is the soil type. Therefore, a labelled example is a pixel with the known

soil category, a list of environmental conditions and spatial neighbors. Two kinds

of labelled examples were prepared. The first kind was randomly drawn from the

area and is for evaluating the different learning algorithms. This set is referred to as

the unrectified sets. The second kind was drawn from the histogram modes of

environment variables, as described in §3.2, and is for evaluating the extracted soil-

landscape model. This kind is referred to as the ‘rectified sets’.

5. Learning algorithms

We started by examining the learning accuracy of the See5 program with our

preliminary soil-landscape database. Learning accuracy means how well the deci-

sion tree can approximate the soil map, regardless of the noise that might be

present in the map. In order to measure the accuracy of the decision-tree learning

algorithm, two other well-defined learning algorithms—Naı̈ve Bayes and neural

network backpropagation—were implemented on the same data for comparisons. A

10-fold cross validation was conducted for this purpose. Specifically, a set of 416

unrectified labeled examples was randomly drawn from the study area. These

examples were then randomly divided into ten bins. Training was done ten times on

nine of the bins, with one bin left out as a test set. The ten test set accuracies were

measured for each of the three algorithms, and t-tests conducted between See5 and

Naive Bayes, and between See5 and neural network.

Using the standard See5 algorithm, decision trees were constructed from the

example sets. A typical output is shown in figure 7. The tree has a root attribute

Bedrock, from which we can trace down to a final classification of soil type along

the dotted lines. The number x/y in the parentheses after each soil type indicates the

number of examples labelled as this class in the training set (x) and the number of

examples that are incorrectly classified using this tree structure (y). If only one

number is listed, all examples are correctly classified as that category. For example,

the first path in the decision tree in figure 7 basically says: if Bedrock is Oneota,

slope gradient is less than or equal to 13.17%, the soil type would be Valton, and

there are 10 examples of this soil type in the training set, which are all correctly

classified using this tree structure.

Figure 8 shows the accuracies of See5, Naive Bayes, and neural network

algorithms from the ten-fold cross validation experiment. From the results, it is

observable that the mean accuracy of the See5 algorithm is apparently higher than

that of the Naive Bayes algorithm, but slightly lower than that of backpropagation.

Furthermore, Paired Student t-tests are conducted under a 95% confidence level.

The confidence interval of the relative performance for See5 versus neural network

is 0.004¡0.052, or (20.048, 0.056). That of See5 versus Naı̈ve Bayes is 20.1¡0.061

or (20.161, 20.039). From this result we can conclude that under a confidence level

of 95%, the See5 algorithm is significantly better than Naive Bayes, while there’s no
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significant difference between the performance of See5 and that of neural network.

Therefore, in terms of learning accuracy, the See5 and the neural network back-

propagation algorithms exhibit similar performances. As mentioned in §3.3, a

significant limitation of the neural network is that the representation is barely

comprehensible. In order to interpret a neural network, Craven and Shavlik (1996)

Figure 8. Accuracies of the See5, neural network, and Naive Bayes algorithms in a 10-fold
cross validation.

Figure 7. A decision tree built from training samples.
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used an additional decision tree learning program to re-represent the network

structure and weights with a decision tree. Given that the See5 results are already

easily comprehensible without extra effort, it is concluded to be a better approach

to extracting knowledge of soil-landscape relationships.

6. Knowledge discovery results and discussion

In this section we examine the accuracy of the extracted knowledge and the

effect of the noise reduction effort as outlined in §3.2. In order to measure accuracy,

we obtained an expert-defined test set. Specifically, the soil expert who drew the

map was provided with the orthophoto in 3-D view on a computer screen. He then

digitized on screen a set of sample points that he believes are consistent with his

understanding of the soil-landscape relationships over the area. These sample points

were then recorded, and their values for the associated environmental variables

were attached to generate a test set. Since the expert was asked to give only typical

points that are consistent with his knowledge, this test set was expected to represent

the expert knowledge instead of the map product.

6.1. The impact of different sampling options

Sample sets were constructed based on different sampling options in data

preprocessing—either by taking the entire mode(s) or by randomly sampling from

the mode(s), either using the union operation or using the intersection operation to

pool modal samples. Each sample set was then used to derive a decision tree to

investigate how the decision tree behaves in response to the different sampling

options. Table 1 shows the sampling parameters of 32 different sample sets along

with their resulting tree accuracies on the expert-defined test set. The parameter r

determines the number of intervals in the histogram of an environmental variable

(see §3.2), while the parameter N indicates the number of samples randomly

extracted from each mode interval.

It is observable that the results from all intersection sample sets are apparently

worse than those from the union sets. Actually the decision trees built from many

of the intersection sets are not even complete, because for some of the soil types

there are no training samples. Because the intersection sample set contains only

pixels falling into multiple modes, the number of samples for different soil types

differs. It often results in incomplete sample sets due to the fact that some soil types

Table 1. Rectified sample sets: sampling parameters and the resulting accuracies.

Pooled via INTERSECTION Pooled via UNION

Sampling parameters Sample size Accuracy Sample size Accuracy

r~3 N~5 29 0.43 286 0.83
Entire mode 67 0.40 1298 0.83

r~5 N~5 28 0.49 289 0.86
N~10 103 0.52 517 0.83

Entire mode 111 0.40 1777 0.83
r~10 N~10 67 0.65 564 0.83

N~20 246 0.71 940 0.86
Entire mode 284 0.60 2881 0.86

r~20 N~20 178 0.71 1051 0.86
Entire mode 699 0.77 4728 0.86
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occupy only a very small portion of the area. Even if the sample sets are complete

with bigger sample sizes, the severely uneven allocation of samples among the soil

series can introduce bias into the training process, thus impairing the learning

accuracy. Table 1 also shows that, although the sample sizes are usually much

bigger if we take the entire mode rather than randomly sample from it, there’s no

significant difference between these two options in terms of test set accuracy under

the union strategy. Given that the See5 algorithm is not computationally intensive,

we say that taking the entire mode or sampling a few pixels from the mode basically

has a negligible impact on the results.

6.2. The effect of data preprocessing

In order to examine the effect of our data preprocessing strategy, we first used

six rectified sample sets generated through data preprocessing to derive decision

trees, and then fed the expert-defined test set to determine the accuracy of each

decision tree. The results of these tests are shown in table 2. The expert-derived

sample set was also fed to the decision trees generated using the See5 algorithm

based on the 10 fold unrectified example sets. The accuracy for each of the 10-fold

decision trees is listed in table 3. The mean accuracy of the 10-folds is 0.75. Since

the examples used to derive the 10 decision trees were not preprocessed using the

strategy described in §3.2, we treat the above accuracy (0.75) as the knowledge

discovery accuracy without data preprocessing.

Tables 2 and 3 show that the accuracy of each of the decision trees derived using

the rectified sample sets is higher than the mean accuracy from the sample sets

without data preprocessing (see figure 9). This provides one piece of evidence that

the data-preprocessing step is effective in reducing noise and outliers from the

original map.

6.3. Comparison of the decision tree results with documented expert knowledge

A decision tree representation can be easily converted into rule sets by tra-

versing all paths of the tree. The rules can then be compared with the environ-

mental descriptions directly obtained from the local soil expert for validation.

Table 4 shows part of such a comparison between the result from a rectified sample

set and the documented expert knowledge. The comparison reveals that consistency

is high between the environmental descriptions for soil series constructed from the

Table 2. Accuracies of decision trees derived from rectified sample sets.

Set1 Set2 Set3 Set4 Set5 Set6

Size 286 272 289 285 517 504
r 3 3 5 5 5 5
N 5 5 5 5 10 10
Accuracy 0.83 0.80 0.86 0.86 0.83 0.80

Table 3. Accuracies of decision trees derived from unrectified sample sets.

Fold 1 2 3 4 5 6 7 8 9 10 Mean

Accuracy 0.80 0.71 0.74 0.71 0.80 0.74 0.74 0.74 0.74 0.74 0.75
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decision tree result and those acquired directly from the local soil expert. The best

consistency is found for soil series developed on bedrock Oneota and Glauconite.

Results for soil series developed on Jordan sandstone are not as good. The reason is

that Jordan sandstone occupies only a very small area in the watershed, where, due

to the limited spatial resolution, soil polygons on the soil map may not effectively

capture the expert knowledge. For the continuous environmental variables, the

decision tree program has generated breaks automatically. From the comparison in

table 4, we see that most of these algorithm-derived breaks are fairly close to those

provided by soil experts. Therefore, we can say that the knowledge discovered from

the soil map has effectively approximated the knowledge that was used to create the

soil map by soil experts.

We also compared the previous results, obtained without data preprocessing, to

the documented expert knowledge. The breaks of the continuous features are less

Figure 9. Accuracies measured on the expert-defined test set.

Table 4. Comparisons of decision tree results with documented expert knowledge.

Soil series Environmental Variable Tree result Expert Knowledge

Valton Geology Oneota Oneota
Elevation w1298.68 w1300
Gradient v~12.57% v12%

Dorerton Geology Oneota Oneota
Elevation v1298.68 1150–1250
Profile Curvature Linear-convex Linear-convex
Planform Curvature Convex Convex

Elbaville Geology Oneota Oneota
Elevation v1298.68 1150–1250
Profile Curvature Slightly convex-concave Concave-slightly convex
Planform Curvature Slightly convex-concave Concave-linear

Greenridge Geology Glauconite Glauconite
Gradient v~14.37% 4–12%

Norden Geology Glauconite Glauconite
Gradient 14.37–28.84% 12–30%

Urne Geology Glauconite Glauconite
Gradient w28.84% w30%
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accurate than those from the rectified sample sets, due to the inclusion of noises

(table 5).

6.4. Effects of spatial information

For our case study on the Raffelson watershed, the consideration of two kinds

of spatial information is suggested by soil experts in addition to the basic environ-

mental variables, as described in §4. In order to examine the effect of including

spatial information in the knowledge discovery process, we use the same expert-

defined test set to measure the changes in accuracies.

First, the three variables that portray spatial relations of soil-formative environ-

ments are added to the database. They are distance to streams, topographic wetness

index, and percentage of colluvium from competing bedrocks. Ten rectified sample

sets are generated to derive decision trees using See5. The test set accuracies of the

ten resulting trees are compared to the accuracies obtained using only the basic

environmental variables. Table 6 shows the result of this experiment, which

indicates that the mean accuracy increases from 0.83 to 0.865 with the addition of

the new variables. A paired t-test under a 95% confidence level gives the interval of

relative performance (0.024, 0.056), indicating a significant improvement. In the

Table 5. Comparisons of decision tree results with documented expert knowledge.

Soil series

Environmental
Variable

Tree result (without
data preprocessing) Expert Knowledge

Tree result
(mode sampling)

Valton Geology Oneota Oneota Oneota
Elevation w1194.95 w1300 w1298.68
Gradient v~9.86% v12% v~12.57

Lamoille Geology Oneota Oneota Oneota
Elevation w1194.95 w1250 w1298.68
Gradient w9.86% 12–20% w12.57%

Dorerton Geology Oneota Oneota Oneota
Elevation N/A 1150–1250 v1298.68
Gradient w27.37% w30% N/A
Profile Curvature N/A Linear-convex Linear-convex

Table 6. Decision tree accuracies with and without using spatial information.

Run

Accuracy with
preliminary
database

Accuracy after
spatial topographic
variables added

Accuracy after
spatial neighbor
variables added

1 0.83 0.89 0.89
2 0.80 0.83 0.89
3 0.86 0.86 0.91
4 0.86 0.86 0.89
5 0.83 0.86 0.89
6 0.80 0.89 0.89
7 0.83 0.86 0.91
8 0.86 0.91 0.91
9 0.83 0.83 0.89
10 0.80 0.86 0.86
Mean 0.83 0.865 0.893
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decision tree results, we see that two of the three newly added variables appear as

tree nodes to separate soil series. They are wetness index and percentage of

colluvium from competing bedrocks. It is the presence of these two features in the

decision tree that accounts for the increase of accuracy. On the other hand, the

other variable, distance to streams, does not affect the knowledge discovery

performance in that it is found not to play a role in the soil-landscape relationships

in this area. A merit of decision tree inductive learning is that it does not necessarily

use all the given features to construct the decision tree result, but adaptively selects

the most relevant variables. This is especially important when applying the process

to other areas, where the actual soil-landscape model behind the soil map is

unknown, and the environmental variables used by the soil experts who created the

map are untraceable. It is then necessary to include a wide range of variables in the

database to examine various potential factors in the soil-landscape relationships.

Last, we added another two variables into the above database to portray the

topological relations between soil types. The two variables are the upslope neighbor

and downslope neighbor of a given soil type. See5 was run on ten rectified sample

sets to derive decision trees, and the test set accuracies are listed in table 6. The table

shows that the mean accuracy has further increased from 0.865 to 0.893. A paired

t-test, again, confirms the significance of the improvement, with a confidence

interval (0.010, 0.036). An examination of the decision tree results shows that a

considerable portion of tree nodes are now associated with these two variables. It is

thus evident that the inclusion of spatial neighborhood information has led to a

significant improvement of the knowledge discovery performance. Furthermore, the

explicit spatial relationships between different soil types make it possible to create

catenary sequences of soil series, which are commonly used in soil survey to

illustrate soil-landscape models. For example, figure 10 shows part of a resulting

decision tree. The tree branch on bedrock Oneota can eventually be generalized to

the catenary sequence displayed in figure 11. Specifically, when the decision tree

says the upslope neighbour of a certain soil type is ‘None’, it usually denotes that

this soil type develops on ridge tops. Similarly, if one’s downslope neighbor is

‘None’, this soil may be at the lowest drainage ways. When two soil types appear to

be each other’s downslope (or upslope) neighbours, they are most likely at similar

Figure 10. Part of a decision tree result with spatial neighbour information.
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slope positions and separable only by other environmental variables. Soil types

Elbaville and Dorerton are examples of this case. By looking at previous decision

tree results generated without using the spatial neighborhood information, we see

that Dorerton develops on convex positions, while Elbaville is more related to linear

and concave curvatures.

7. Conclusions and future efforts

This paper presented a knowledge discovery procedure to extract knowledge

from soil maps. It shows that inductive machine learning algorithms can be applied

to extract useful knowledge from previously underutilized soil maps. Previous

research has demonstrated the success of decision tree learning algorithms in soil

data modeling. Eklund et al. (1998) used decision tree induction in a knowledge-

based system for secondary soil salinization analysis. Moran and Bui (2002)

investigated the use of decision tree-generated rules for soil classification. Although

that study showed that decision tree induction can be used to model existing soil

maps, it is more desirable to recover true expert knowledge from the error-prone

soil maps. Therefore, our study has paid specific attention to the reduction of

representation noise in soil maps. Furthermore, although previous studies have

used decision tree induction to model soils, the underlying soil-landscape model was

not explicitly extracted and represented. We argue that the soil-landscape model is

the key concept in soil survey practices. Once explicitly represented and docu-

mented, knowledge about the local soil-landscape model can be used by both

inexperienced soil experts and automated soil inference systems for soil survey

updates. In our study, the decision-tree learning algorithm See5 is found to be

suitable for extracting descriptive knowledge of soil-landscape relationships from a

soil map and the associated environmental database. The results are both com-

prehensible and accurate when compared to those obtained using other learning

algorithms. The discovered soil-landscape model can be represented in three

different ways: decision tree or production rules, soil descriptions, and catenary

sequences.

In the knowledge discovery process, the data-preprocessing step, like the

Figure 11. Catenary Sequence on Oneota.
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learning algorithm itself, is found to play a very important role. Since the decision-

tree learning algorithm is a general algorithm that is suitable for processing data

from various domains, it is important that data selection and data preprocessing are

done with the aid of prior understanding of the application domain, so that data

can be properly prepared to exclude noise and to make the samples more

representative. The preprocessing method of sampling only modal pixels according

to environmental histograms is found to be effective since it allows the selection of

typical samples that represent the central concepts of soil types. It helps to reduce

generalization bias of the algorithm and to avoid overfitting toward noisy data,

thus significantly improving the knowledge discovery performance. When pooling

samples from different environmental modes, the union operation proves to be

more effective than intersection, since it maintains an even distribution of samples

over different soil types to the greatest degree. This helps avoid training bias in the

decision tree learning process.

We also showed that spatial relationships and other spatial variables can be

incorporated into the proposed knowledge discovery procedure, and demonstrated

that the incorporation of such spatial information further improves the accuracy of

the extracted knowledge. Use of spatial neighborhood information also results in a

more comprehensible knowledge representation in the form of catenary sequences.

In geographical data mining, it is generally recommended to explicitly involve

spatial dependency and heterogeneity (Miller and Han 2001). However, some

spatial variables are not directly interpretable to soil experts. Therefore, our current

study considers only the spatial information that can be used to represent the soil-

landscape model in a way with which soil experts are most familiar. Yet we expect

that the inclusion of other spatial variables may lead to the discovery of new

insights into the soil-landscape relationships rather than strictly being limited to

those with which soil experts are familiar.

Our case study shows that the proposed knowledge discovery procedure applies

successfully in the ‘driftless area’ of Wisconsin, where the soil map was created

based on the knowledge of a local soil-landscape model. Although the concept of

the soil-landscape model is widely adopted in soil survey practices, particularly in

the USA, it should also be noted that there are soil maps that were not produced

using soil-landscape models. The knowledge discovery procedure reported in this

paper may not work for these maps.

In this paper we have discussed the applicability of using a knowledge discovery

procedure to extract expert knowledge from soil maps. Our aim is to approximate

the knowledge that soil experts used to create the map. However, soil mapping is an

inherently subjective process. Soil experts build the local soil-landscape model based

purely on their own experience and understanding. It is thus not guaranteed that

the soil-landscape model developed by individual soil experts represents accurately

the real soil-landscape relationships of the local area. In other words, two experts

may come up with different soil maps for the same area. Therefore, there are indeed

two levels of approximation: how well the extracted model approximates the soil

expert’s knowledge, and how well the expert’s knowledge represents the actual soil-

landscape relationships. Our goal in the current study is to recover the subjective

expert knowledge from the error-prone soil maps, and so the study concerns only

the first level of approximation.

Although the knowledge discovery procedure described in this paper was
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developed in the context of soil mapping, it has broad relevance to knowledge

discovery from other natural resource maps, particularly maps of those natural

resources which cannot be directly observed using remote sensing techniques, such

as wildlife habitats and potential natural hazards. The distribution of these natural

resources cannot be directly observed due to obscuring overstories and the high cost

of collecting information on these resources at many locations across the landscape.

Therefore, their distributions are usually inferred (or indirectly mapped) from other

easily observable environmental conditions (Mulder and Corns 1996, Zhu 1999).

The procedure presented in this paper can thus be applied to extract the relation-

ships between the mapped natural resource and its environment.

Our future plan includes exploring more realistic knowledge representations,

incorporating the extracted knowledge into an automated inference system,

modeling spatial autocorrelation, and developing an interactive knowledge dis-

covery tool to allow synchronous integration of human expert knowledge with map

information. Specifically, soil properties vary continuously over space. Soil-

landscape relationships are more appropriately modelled when the natural fuzziness

or uncertainties are considered. We are investigating the derivation of fuzzy

membership values during the construction of decision trees under the See5

framework based on information theory. Furthermore, boosting can be used to

capture the uncertainties that are ignored by constructing only one decision tree

from the training data. Another potential knowledge representation of the soil-

landscape model is the Bayesian network, which naturally models uncertainties

through probability.

The extracted knowledge eventually can be used to infer soils for soil survey

update. In automated soil inference, information on spatial autocorrelation of soil-

formative factors can be incorporated. Soil maps and fuzzy representations of the

soil distribution can be created by automated soil inference. The product can be

validated using field data to measure the second level of approximation (See

section 7). Since soil inference is virtually a knowledge based process, it is desirable

to involve human experts in the knowledge discovery and soil inference process. An

interactive data mining tool is under development to allow the expert to visualize

the terrain in a 3-D view, direct the data preprocessing, choose knowledge

representation, and control the use of different variables.
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