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A Markov Chain-Based Probability Vector Approach for
Modeling Spatial Uncertainties of Soil Classes

Weidong Li,* Chuanrong Zhang, James E. Burt, and A-Xing Zhu

ABSTRACT possibility or good guess of soil occurrence in the survey
area. An interpolated map using standard interpolationDue to our imperfect knowledge of soil distributions acquired from
techniques may represent an optimal guess based onfield surveys, spatial uncertainties inevitably arise in mapping soils at

unobserved locations. Providing spatial uncertainty information along the dataset and the interpolation method used, but does
with survey maps is crucial for risk assessment and decision-making. not reflect the real spatial variation characteristics be-
This paper introduces a novel probability vector approach for spatial cause of uneven smoothing effects (Goovaerts, 1997,
uncertainty modeling of soil classes based on an existing two-dimen- p. 369–370). As Journel (1997, p. viii) pointed out: “The
sional Markov chain model for conditional simulation. The objective very reason for geostatistics and the future of the dis-
is to find an accurate and efficient way to represent spatial uncertaint- cipline lie in the modeling of uncertainty, at each node
ies that arise in mapping soil classes. Joint conditional probability

through conditional distribution and globally throughdistribution (JCPD) represented by a set of occurrence probability
stochastic images (conditional simulations).” Therefore,vectors (PVs) of soil classes is directly calculated from conditional
soil survey maps should be accompanied by related spa-Markov transition probabilities, rather than the conventional approxi-
tial uncertainty information. Data reflecting spatial un-mate estimation from a limited number of simulated realizations. By

visualizing the calculated PVs, information reflecting spatial uncer- certainty usually include occurrence probability maps
tainty of soil distribution can be quickly assessed. We hypothesize and realizations provided by random field models (Zhang
that these directly calculated PVs are equivalent to the PVs estimated and Goodchild, 2002; Zhang and Li, 2005). This is partic-
from an infinite number of realizations and thus realizations visualized ularly useful for risk assessment and decision-making.
from the calculated PVs represent the spatial variation of soil distribu- In addition to informing users about the existence and
tion. This hypothesis is supported by simulation results showing that: degree of the spatial uncertainty in delineated maps, a
(i) with increasing the number of realizations generated by the Markov

significant utility of conditionally simulated data usingchain model from 10 to 100 and to 1000, PVs estimated from these
random field models is that they can be introduced intorealizations gradually approach the calculated PVs; (ii) similar to
application models (e.g., process-based ecological mod-simulated realizations, realizations visualized from calculated PVs
els or hydrological models) to further infer response dis-also can reflect the spatial patterns of soil classes and approximately

reproduce the complex indicator variograms of soil classes of the tributions of variables of interest (e.g., water budgets)
original soil map. (Goovaerts, 1996; Kyriakidis and Dungan, 2001; Li et

al., 2001).
There are several problems hindering spatial uncer-

tainty modeling: (1) It is difficult to mathematically cal-Soil mapping is crucial for natural resource evalua-
culate the JCPD of a random variable at all unknowntion and environmental protection. However, the
locations in a study area of even moderate size. So farknowledge of soil distribution acquired through field
we have not yet found any existing geostatistical methodsurvey (and other ways) is always imperfect. Thus spatial
that realizes this goal. The normal way for spatial uncer-uncertainties inevitably arise in soil mapping; for exam-
tainty modeling is through generating a set of alternativeple, a prominent problem is the difficulty in accurately
realizations and then approximately estimating thedetermining the boundaries of multinomial soil classes
JCPD (represented as a series of probability maps) fromin making choropleth maps on unsurveyed locations.
a number of realizations (Zhang and Goodchild, 2002;Given the same observed dataset for a survey area,
Zhang and Li, 2005). Thus, the accuracy of probabilitydifferent persons normally delineate similar but differ-
maps is largely dependent on the number of realizationsent area-class maps of soil distribution because of their
used. (2) Many random field models have difficultiesdifferent interpretations over the unobserved portion
generating a sufficiently large number of realizationsof the landscape. A human-delineated soil map based
within acceptable computation time and computer stor-on a set of observed sparse data only represents one
age (Dubrule and Damsleth, 2001), particularly when the
number of classes or thresholds is large. With the ongoing
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spatial uncertainty modeling of land-cover classes with scanning the real image for simultaneous local parame-
ter estimation, the model can well capture the spatiala small number of classes (Kyriakidis and Dungan, 2001;

Zhang and Goodchild, 2002). But for some heavily itera- patterns and reproduce the variogram. The Markov
mesh models (Abend et al., 1965; Qian and Titterington,tive methods that may need a long computation time (days

or even months) to generate a realization, such as the 1991; Gray et al., 1994) represent a special subclass
of Markov random fields (Besag, 1986), also outsiderecently emerged Bayesian-Markov random field method

(using simulated annealing) for sparse data modeling conventional geostatistics. The Markov mesh models
are cliqued-based and have been widely used for image(Norberg et al., 2002), computation load is still a big

concern. (3) How to effectively incorporate the complex processing. Differing from conventional Markov random
field methods that use iterative updating approaches,spatial variation of random variables into a simulation

method is still a difficult issue. Given the same condi- Markov mesh models can be used to conduct efficient
simulation by a one-pass way and are particularly usedtioning dataset, a simulation method that can incorpo-

rate more information of spatial heterogeneity of the for image structure analysis (mainly for binary images)
through unconditional simulation. Directly using Mar-targeted random variable will generate more realistic

realizations of the unknown ‘truth’, and thus more effec- kov mesh models for conditional simulation on sampled
data seems infeasible. Norberg et al. (2002) recentlytively reflect the spatial pattern of the targeted random

variable and decrease the spatial uncertainty. Vario- used Markov random fields for the geostatistical model-
ing purpose by using simulated annealing for iterativegrams provide widely accepted measures of spatial con-

tinuity, but conventional variogram-based methods are updating.
One typical feature of multinomial categorical vari-not capable of reflecting the complex interdependence

of multiple classes and reproduce complex large-scale ables in soil science such as soil layers and soil types
is that they normally exhibit strong interdependenceand long-range features (Ortiz and Deutsch, 2004; Liu

and Journel, 2004). The major reasons may be that class between multinomial classes. This interdependence in-
cludes strong cross correlations, juxtaposition relation-interdependences (including cross correlations) are nor-

mally ignored in variogram-based simulation algorithms ships, and directional asymmetry in spatial occurrence
of multinomial classes (Li et al., 1997; Li et al., 2004).because of the awkwardness in cokriging a number of

classes (Goovaerts, 1996, p. 911–912) and auto-variograms Although many random field models can be used to
simulate categorical variables (Chiles and Delfiner, 1999),are too limiting in capturing complex heterogeneity of real

patterns of categorical geographical variables (Caers and Markov chain-based conditional simulation methods
can better incorporate these special features because ofZhang, 2004). In the 1990s and thereafter, large effort has

been devoted to this issue in geostatistics, and significant the special characteristics of transition probabilities. For
example, if Class A frequently occurs as a neighbor ofprogress has been made in recent several years. Major

work has mainly focused on two general approaches: (i) Class B and seldom occurs as a neighbor of Class C, this
juxtaposition relationship can be reflected in Markovincorporating multiple-point statistics into indicator sim-

ulation from various data sources, such as training im- transition probabilities and therefore respected in real-
izations. Similarly, if Classes A, B, C often occur as aages (Guardiano and Srivastava, 1993; Caers and Zhang,

2004), blasthole data (Ortiz and Deutsch, 2004), and sequence of ABC along a direction (e.g., west-to-east),
this asymmetry also can be reflected in Markov transi-structured paths (Liu and Journel, 2004); and (ii) using

Markov chains in multi-dimensions to generate condi- tion probabilities along that direction and thus also re-
spected in realizations. But such behaviors may be diffi-tional realizations (Luo, 1996; Elfeki and Dekking, 2001;

Li et al., 2004; Zhang and Li, 2005) or using transition cult to be captured with other spatial measures (Zhang
and Li, 2005). The second typical feature of categoricalprobabilities to replace variograms in indicator simula-

tion (Carle and Fogg, 1996). soil variables is that the number of classes may be very
large. For example, there may be dozens of soil seriesMarkov chain models have been used in soil science

for characterizing spatial distribution of soil classes and occurring in a watershed stretching over dozens of square
kilometers (USDA, 1962). To deal with a large numbersoil layers. For one-dimensional applications, see Li et

al. (1997, 1999). For two-dimensional applications, see of soil classes with due consideration of cross correla-
tions, approaches based on iterative simulation methodsLi et al. (2004) and Wu et al. (2004). The triplex Markov

chain (TMC) model proposed by Li et al. (2004) for (e.g., simulated annealing) or solving large cokriging equa-
tion systems may be unpractical in both computation timeconditional simulation of soil classes in two-dimensions

uses the method of coupled Markov chains (CMC) (El- and numerical stability (Goovaerts, 1996). Unlike many
conventional geostatistical methods that describe spatialfeki and Dekking, 2001) in its calculation of conditional

transition probabilities. Only four nearest known neigh- correlations of classes by indicator covariance, Markov
chain methods use transition probabilities of classes forbors along the orthogonal directions (i.e., x and y axes)

are considered in determining the conditional transition the same purpose. In a Markov transition probability
matrix (TPM), the diagonal elements (auto-transitions)probability at each point to be estimated and the condi-

tional transition probability is explicitly calculated by di- represent autocorrelations of individual classes and the
off-diagonal elements (cross-transitions) represent crossrectly conditioning to known data. Therefore the method

is highly efficient. Recently, Wu et al. (2004) proposed correlations between different classes. Because TPMs
are normally estimated unidirectionally (e.g., from northan efficient Markov mesh model for reconstruction of

binary images of heterogeneous soil structures. Through to south), directional asymmetries can be included natu-



R
ep

ro
du

ce
d 

fr
om

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a 

Jo
ur

na
l. 

P
ub

lis
he

d 
by

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

LI ET AL.: A MARKOV CHAIN-BASED PROBABILITY VECTOR APPROACH 1933

tions, suggests another way. In particular, it may be possiblerally. Thus, class interdependence is implicitly incorpo-
to calculate the JCPD (i.e., PVs) from the Markov transitionrated in Markov chain models by cross-transition proba-
probabilities by conditioning to both observed data and pre-bilities. Since simulation by Markov chain models does
viously estimated locations, rather than approximately esti-not involve complex computation, they have the advan-
mate them from a large number of simulated realizations.tage in dealing with a large number of classes for higher Thus, single realizations may be directly obtained from the

resolution simulation. This capability is especially im- calculated PVs by Monte Carlo sampling. Below we explain
portant for simulation of soil classes, where normally how to make this calculation.
many classes (or types) may be involved (Li et al., 2004). For a categorical variable, a JCPD of all unknown points

In this paper, we proposed an innovative probability in a study area can be expressed as
vector approach to directly calculating the JCPD of

p[z1(u1),...,zN(uN)|(n)] [1]multinomial classes through the TMC model as an alter-
where z1(u1),...,zN(uN) represent all of the N unknown pointsnative to the conventional “brute force” method that
(i.e., grid cells or pixels) in a study area with z standing forestimates the same from a number of realizations. We
state and u for location, and n represents all of the observedrepresent the JCPD of multinomial classes as a set of
data points. Here n � N is equal to the total number of pixels,PVs. The objective is to find a more accurate and effi-
known plus unknown, of the study area.cient way to represent the spatial uncertainties that arise By using the Bayes’ Theorem (i.e., the definition of condi-

in mapping soil classes. We hypothesize that calculated tional probability), Expression [1] can be factored as
PVs represent the PVs estimated from an infinite num-

p[z1(u1),...,zN(uN)|(n)] � p[zN(uN)|(n � N �1)]�...�ber of realizations and thus the visualized realizations
from calculated PVs represent the spatial variation of p[zi(ui)|(n � i � 1)]�...�p[z2(u2)|(n � 1)] �
multinomial classes. A simplified soil map is used as a p[z1(u1)|(n)] [2]
case study for providing conditioning data and for evaluat-

where z1(u1),...,zN(uN) follow the visiting sequence of a simula-ing this hypothesis. The probability vector approach
tion, that is, z1(u1) is the first unknown point visited, and zN(uN)proposed here is also applicable to conditional simula-
is the last unknown point visited in a single-pass simulationtion with other existing Markov chain models based on process. The later-visited point is conditioned to both observed

single pass algorithms and explicit conditional transition data and previously visited locations so that all the estimates
probability expressions. of unknown points are spatially related. Equation [2] is the

JCPD function for categorical variables. See Goovaerts (1997,
p. 377, Eq. [8.6]) for the similar expression for thresholds of

MATERIALS AND METHODS continuous variables.
To solve Eq. [2], our task is to solve every one-point condi-On Modeling Spatial Uncertainty

tional probability distribution on the right-hand side, for exam-
It is difficult to calculate the JCPD function of all unknown ple, the conditional probability distribution of the ith visited

points in a study area of any significant size. Single-point point
conditional probabilities based on only observed data merely

p[zi(ui)|(n � i � 1)] [3]provide a measure of local uncertainty (Goovaerts, 1997, p.
259–367). To represent spatial (or joint) uncertainty, the JCPD It is clear that the conditional probability distribution of a
of all unknown points in the study area is required. The se- later-visited point is dependent on the solutions of conditional
quential simulation algorithms for spatial uncertainty assess- probability distributions of all previously visited points, that
ment (Goovaerts, 1997, p. 369–436) rely on a set of realiza- is, solving Eq. [3] needs first solving the conditional probability
tions. First, a one-point conditional cumulative distribution distributions of the first i � 1 unknown points in the visiting
function (CCDF) is modeled and sampled at each of the un- sequence.
known locations visited along a random sequence, and each It is difficult to directly solve Eq. [3] in sequential simulation
one-point CCDF is made conditional not only to the original algorithms without all of the (n � i � 1) points being known.
observed data but also to all values simulated at previously For example, kriging in sequential simulation algorithms deals
visited locations. Occurrence probability maps (or PVs) repre- only with single indicator values of all of the (n � i � 1) points,
senting the JCPD may be approximately estimated from a not their conditional probability distributions (i.e., vectors of
large number of realizations, and used to model the joint conditional probability values). That means we have to esti-
uncertainty of the random variable in a study area. mate the CCDF of one unknown point first, allocate a value

The Markov chain conditional simulation methods such as to the point by Monte Carlo sampling, then estimate the next
the TMC model (Li et al., 2004) follow the same simulation unknown point. Thus, by following a (random or fixed) visiting
technique as sequential simulation algorithms except for using sequence, sequential simulation algorithms can generate a set
smaller (and changeable) neighborhoods of conditioning data of alternative realizations to represent the JCPD (i.e., spatial
and a fixed sequence (path). Although probability maps can be uncertainty). However, with the simple neighborhood struc-
estimated from multiple realizations in the TMC model (Zhang ture and the simple explicit solution of conditional transition
and Li, 2004; Zhang and Li, 2005), the accuracy of estimated probability in the TMC model, Eq. [3] can be directly solved
occurrence probabilities depends on the number of realizations. as long as the one-point conditional probability distributions
When the simulation area is large and the number of involving of the (n � i � 1) points are known.
classes is large, estimating accurate PVs by generating a large Note that in practical use, the n in Eq. [3] need not be all
number of realizations is computationally burdensome. The the observed data and also i need not be all previously simu-
facts that the TMC model (a) is a single-pass simulation lated values in the whole study area, because the data closest
method, (b) has an explicit conditional transition probability to the location being estimated tend to screen the influence
expression, and (c) conditions the estimate of each unknown of distant data. In the practice of sequential simulation algo-

rithms, only the original data and those previously simulatedpoint to a few (four) nearest known points on fixed axis direc-
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after the development of a parameter estimation strategy from
point data, survey line data are preferred for observable cate-
gorical variables because of their advantage in representing
spatial continuity of class parcels (polygons). Survey line data
may be acquired by observing class boundary changes along
a line (see Zhang and Li, 2005). The TMC model conducts
simulation by following a fixed path row by row from top to
bottom (Fig. 1). Therefore, among the four nearest known
neighbors two are adjacent predecessors (one side pixel zwest

or zeast and one upper pixel znorth) and two are ‘future’ known
states (observed data) located on survey lines (one pixel may
be zwest or zeast and one is zsouth). Here ‘future’ means that the
Markov chain has not proceeded to these locations.

A TMC can be explained as two extended CMCs in the
opposite directions—the CMC ZL and the CMC ZR. The two
CMCs proceed alternately in opposite directions. The alter-
nate paths in the TMC model are a necessity, not only for
avoiding directional artifacts (i.e., the directional trend effect
along the simulation direction; see demonstrations in Gray et
al. (1994)), but also for effectively imposing influences of
known data (simulated or observed) at both (left and right)
sides on the estimate of the current unknown location. There-Fig. 1. Illustration of the simulation algorithm of the TMC model.

The state of the current cell (i,j ) depends on its four nearest known fore, the TMC model is composed of a conditional transition
neighbors in four axis directions (west, east, south, and north), that probability pairs (pL

lm,k|qo, PR
lm,k|qo), which represent the left-

is, grid cells (i,j � 1), (i � 1,j ), (Nx,j ), and (i,Ny), their states being to-right and right-to-left CMCs, respectively. Here, l and m
denoted as m, l, p, and o, respectively. The dark gray cells stand represent the specific states of the two adjacent predecessors,
for observed data (i.e., parts of survey lines, survey lines may be k represents the state of the current pixel, q and o representregular or irregular). The light gray cells stand for cells already

the specific states of the two future known pixels. For morevisited. The thick arrows illustrate the alternate proceeding direc-
detailed explanation of the expressions of the conditional tran-tions of the TMC model. The dashed arrows illustrate the interac-
sition probability pairs, see Li et al. (2004).tions between the current unknown cell and its four nearest known

neighbors in axis directions.

Occurrence Probability Vectorsvalues closest to the location ui are retained. Including all
observed data and previously simulated data is not only unnec- The probability vector approach calculates the JCPD by
essary but also impossible from a practical standpoint. following the visiting sequence (simulation path) and using

the conditional transition probability expressions in the TMC
The TMC Model model. The JCPD is represented as a set of PVs, and each

PV actually represents a one-point conditional probabilityThe TMC model uses a simulation algorithm similar to
distribution in Eq. [3]. The calculation of the PV of eachsequential simulation algorithms in kriging geostatistics, but
unknown point is conditioned to the observed data and pre-rather than estimating CCDFs, it estimates the conditional
viously estimated values—not values of classes, but the calcu-transition probabilities. Unlike the sequential simulation algo-
lated PVs of classes at those locations.rithms, which need to define a search neighborhood to limit

A PV consists of a set of probability values representingthe number of conditioning data, the TMC model only condi-
the likelihood that each class occurs at a particular point (i.e.,tions on four nearest known locations along the axes (Li et
grid cell or pixel). Mark and Csillag (1989) and Goodchild etal., 2004). The conditional probability distribution of the ith
al. (1992) discussed the feasibility of using probability vectorsunknown point can be simplified as
to represent the transition between two classes if there were

p[zi(ui)|(n � i �1)] � p[zi(ui)|zwest,znorth,zeast,zsouth] [4] cartographic (or locational) errors. If each class is represented
as a probability distribution, categories (or classes) have transi-

under the neighborhood structure of the TMC model (Fig. 1), tion zones varying gradually between the maximum and mini-
where zwest, znorth, zeast, and zsouth represent the four nearest mum class likelihood with 0.5 at the location of class ‘bound-
known neighbors along the axes. These four nearest known ary’. Zhang and Li (2005) estimated PVs from a large number
neighbors, each in one axis direction, include previously simu- of realizations to represent the spatial uncertainty of multi-
lated points. Therefore, in the TMC model, all observed data nomial land-cover classes and demonstrated the transition
and previously simulated data are used in the simulation pro- zones between classes. The PVs consist of the occurrence
cess and the simulated data are spatially correlated. likelihoods of multiple classes that possibly occur in a study

There are various ways to decompose the right-hand side area. They can be ‘hardened’ into an area class map (i.e., the
of Eq. [4]. Elfeki and Dekking (2001) provide a simple solution prediction map) by choosing a standard such as the maximum
with a full independent assumption of two single Markov occurrence probabilities and assigning corresponding class val-
chains, each in one direction. Such a simple solution permits ues (or labels). Such PVs may be used to describe the loca-
efficient conditional simulation of subsurface vertical sections tional uncertainty of multiple classes arising in the mapping
with borehole data (through conditioning to a future state process of hand-delineated area class maps. The PV approach
in a one-dimensional Markov chain). The TMC algorithm developed here provides more accurate PVs in a more effi-
introduced in Li et al. (2004) is based on an extension of the cient way.
solution and therefore has an explicit solution of the right- The PV for a pixel or grid cell (i, j) can be expressed as
hand side of Eq. [4]. It conducts simulations by conditioning
on survey line data. Although other kinds of data may be used PV(i,j) � [p1(i,j),..., pk(i,j),..., pn(i,j)] [5]
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Table 1. Input parameters (one-step transition probability matri-where n represents the number of classes, the i and j are used
ces [TPMs] and grid information) estimated from survey linesto represent the cell location on a grid, and pk(i,j) is an element
with an interval of about 500 m (corresponds to Fig. 5a)†.of a PV, representing the conditional occurrence probability

of class k in the cell (i, j). Here pl(i, j), …, pn(i, j) are actually Soil class 1 2 3 4 5 6 7
the n specific values of the right-hand side of Eq. [4] for the

TPM in the x-directionn classes of a categorical variable.
1 .835 .073 .055 .000 .009 .018 .009Using the TMC model, PVs for every grid cell can be esti- 2 .167 .750 .000 .000 .056 .000 .028

mated. If a cell is located on the survey lines (i.e., an observed 3 .075 .015 .791 .015 .015 .075 .015
4 .043 .000 .000 .696 .130 .087 .043point), its PV is already known with its certain element pk(i,j)
5 .044 .000 .000 .074 .794 .059 .029being 1 if class k occurs in the cell and other elements being
6 .069 .000 .085 .000 .085 .660 .1060, that is, 7 .044 .000 .000 .044 .111 .067 .733

TPM in the x�-directionPV(i,j) � (0, …, 0, 1, 0, …, 0) [6]
1 .820 .054 .045 .009 .027 .027 .018

For an unobserved cell, we calculate any element pk(i,j) of its 2 .222 .750 .028 .000 .000 .000 .000
3 .095 .000 .841 .000 .000 .063 .000PV as
4 .000 .000 .042 .667 .208 .000 .083
5 .014 .029 .014 .043 .771 .057 .071pk(i,j) � �

n

q�1
�
n

o�1
�
n

l�1
�
n

m�1

(plm,k|qo � pl � pm � pq � po) [7] 6 .043 .000 .106 .042 .085 .660 .064
7 .023 .023 .023 .023 .045 .114 .750

TPM in the y-directionwhere pl and pm represent elements of PVs of the two adjacent
1 .833 .037 .093 .000 .000 .019 .018predecessors—one side cell and the upper cell, respectively,
2 .083 .833 .000 .000 .083 .000 .000of which PVs are already known (they are visited points or
3 .078 .016 .797 .000 .000 .109 .000survey data), but of which states (l and m) are not decided if 4 .040 .000 .000 .600 .120 .120 .120

they are not on survey lines. Because the two future states q 5 .058 .038 .000 .019 .712 .077 .096
6 .020 .000 .102 .082 .102 .633 .061and o are known states as survey data (see Fig. 1), their PVs
7 .000 .000 .049 .098 .097 .049 .707can be cancelled in Eq. [7]. So we have
† States: 7; grid columns: 80; grid rows: 34.

pk(i,j) � �
n

l�1
�
n

m�1

(plm,k|qo � pl � pm) [8]
because it does not involve calculation of conditional transi-
tion probabilities that depend on predecessor cells. Therefore,Considering that the TMC model is composed of a condi-
the predictive mapping process using this probability vectortional probability pair and the two CMCs proceed in opposite
approach actually consists of the calculation of PVs and thedirections, we have
visualization of the PVs. The visualization of PVs is very quick
(normally within seconds) because no complex computationpk(i,j) � �

n

l�1
�
n

m�1

[pL
lm,k|qo � pl(i � 1,j) � pm(i,j � 1)] [9]

is needed.
In the following sections, for clarity we will refer the realiza-

for the left-to-right CMC ZL, and tions visualized from calculated PVs as PV-realizations, and
the realizations generated by the simulation approach of the

pk(i,j) � �
n

l�1
�
n

m�1

[pR
lm,k|qo � pl(i � 1,j) � pm(i,j � 1)] [10] TMC model through conditional transition probabilities as

TP-realizations.
for the right-to-left CMC ZR.

The PVs for the study area hold all information about the Case Study
JCPD of all classes in the area. Corresponding to this probability

A simple case study is used to verify the probability vectorvector approach, we refer to the realization generation algo-
approach. We calculated the PVs of soil classes on a smallrithm through conditional transition probabilities of the TMC
area of 4 � 1.7 km2. The soils in the area were classified intomodel (Li et al., 2004) as the simulation approach. The calcula-
7 soil classes (or types). The specific soil types are themselvestion of PVs is once for all for a dataset, and the time needed
of no particular interests in this study because our methodfor this calculation is equivalent to that used for generating
does not involve any physical processes. They are just usedone realization using the simulation approach.
here to show that spatial heterogeneity of soil types or classes
can be characterized (Li et al., 2004). The study area is discret-Visualizing the Probability Vectors ized into an 80 � 34 grid with a cell size of 50 � 50 m. Survey
lines are distributed in the study area (i.e., the map) with anFrom the calculated PVs of all cells in a study area, we

can get the following information: (1) a series of occurrence interval of about 500 m. Survey line data may be acquired by
observing soil class boundary changes along a line. It is notprobability maps of individual classes, which represent where

and with how much certainty (or uncertainty) a class will occur necessary to observe every point along a line within class
parcels (polygons) since their labels are the same within ain the study area; (2) the maximum occurrence probability

map, that is, the map of greatest occurrence probabilities parcel. Although the model itself does not limit the shape of
survey lines, here we mainly use regular survey lines for theamong occurrence probabilities of all classes at every location,

which represents how much certainty (or uncertainty) exists convenience of parameter estimation in the demonstration of
the probability vector approach. One single-step TPM wouldwith each point in the prediction map; (3) the prediction map

based on the maximum occurrence probabilities, which repre- be enough for a simulation without considering anisotropies
and asymmetry. Here in our case study we used three one-sents the optimal prediction; and (4) single realizations, each

of which represents one possible configuration of soil classes step TPMs, all of which were estimated from these regular
survey lines (Table 1). We first used the probability vectorin the study area based on the survey data. The generation of

such realizations is accomplished by Monte Carlo simulation approach to calculate the PVs of all grid cells and visualized
them. For the purpose of a comparison, we then used thebased on the PVs. We refer to this as a “visualization” process.

This visualization process can use any path, fixed or random, simulation approach to generate some realizations and esti-
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Fig. 2. The maximum occurrence probability map of soil classes and the occurrence probability maps of individual soil classes visualized from
the calculated PVs using the probability vector approach.

mated probability maps from these simulated TP-realizations. from 1000 TP-realizations. However, the probability maps
The original soil map is used to represent the ‘truth’ (unknown estimated from 10 TP-realizations (Fig. 4) showed obvious
in a real world application) against which we can evaluate deviations from those based on the calculated PVs (see
our results. the scattered gray patches in Fig. 4). This shows that the

Indicator variograms are widely accepted spatial continuity PVs estimated from TP-realizations would approach themeasures for categorical variables. To evaluate whether or
calculated PVs (i.e., the JCPD) with increasing the num-not the PV-realizations reproduced this spatial statistical prop-
ber of realizations. In other words, the calculated PVserty as the TP-realizations did (Li et al., 2004), we calculated
represented the PVs estimated from the ensembles ofrelated indicator (cross) variograms.
TP-realizations that the TMC model could generate.
This also verifies that the calculated PVs do capture the

RESULTS AND DISCUSSION observed joint uncertainty.
The maximum occurrence probability map is alsoFigure 2 shows the probability maps visualized from

called “purity map” in Bierkens and Burrough (1993a,the PVs directly calculated using the probability vector
1993b), who used simple indicator kriging to estimateapproach. Figure 3 gives the probability maps estimated
the occurrence probabilities of water table classes. Infrom 100 TP-realizations using the simulation approach.
the maximum occurrence probability map, it is clear thatIt can be seen that there were no apparent differences
the smallest probabilities occurred on the boundariesbetween the results from both approaches except for
between more homogeneous areas (i.e., large soil par-minor details. We also estimated the PVs from 1000
cels). The light-gray stripes are so-called transition zones,TP-realizations (not shown) and found that they were
which are appropriate to represent the spatial uncertaintyessentially the same as the calculated PVs. No visual
of class boundaries in multinomial area-class maps (Markdifference could be seen between the probability maps

visualized from the calculated PVs and those estimated and Csillag, 1989; Goodchild et al., 1992; Zhang and Li,
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Fig. 3. The maximum occurrence probability map of soil classes and the occurrence probability maps of individual soil classes visualized from
the PVs estimated from 100 TP-realizations.

2005). They also revealed places where more observations their reference maps—usually hand-delineated maps or
model-interpolated maps (Zhang and Goodchild, 2002).were needed to accurately predict soil class.

For a large area or high-resolution simulation, even A prediction map visualized from PVs based on maxi-
mum occurrence probabilities represents the optimalwhen using efficient random field models, generating a

large number (e.g., 100–1000) of realizations is time- prediction. From Fig. 5, it can be seen that the prediction
maps from the probability vector approach were similarconsuming. But if the number of simulated realizations

is small, the probability maps estimated from a few to those obtained from the TMC simulation approach.
This is not surprising, because both PVs (the calculatedrealizations may be very inaccurate. Figure 4 indicates

that the results estimated from 10 TP-realizations devi- PVs and the PVs estimated from 100 TP-realizations)
had similar values.ated significantly from the results estimated from 100

TP-realizations. Therefore the uncertainty information But looking at the PV-realizations and the TP-reali-
zations (Fig. 5), surprisingly we found differences. Theestimated from a small number of simulated realizations

may not be reliable. TP-realizations had bigger patches and clear bound-
aries, and they closely resembled the prediction map;Such uncertainty information is crucial for users to

understand the possible distribution of soils in their however, the soil class parcels in the PV-realizations were
obviously more fragmentary, particularly at the boundarystudy areas, and the positional uncertainty of soil classes

existing in the predicted soil map. More importantly, zones between classes. The reason for this discrepancy
may be related with probabilities used for determiningthese uncertainty data may serve as direct input data

of risk assessment and decision-making models so that the state of a cell in the realization generation process.
In the simulation approach, the cumulative conditionaldecision makers can make more reasonable decisions

with the awareness of spatial uncertainties existing in transition probability function was used, where the max-
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Fig. 4. The maximum occurrence probability map of soil classes and the occurrence probability maps of individual soil classes visualized from
the PVs estimated from 10 TP-realizations.

imum conditional transition probability to a preferential multiple realizations normally should fluctuate around the
state for the current cell was more prominent and other observed results (Goovaerts, 1997). Of course, if condi-
states had little chance to occur. But in the probability tioning data were more dense, such discrepancies should
vector approach, the CCDF was used, where the maxi- largely decrease. From cross variograms in Fig. 6, it also
mum occurrence probability of the preferential state at can be seen that the spatial cross-correlation between
the current cell might not be so prominent and other soil classes was very complex; this kind of spatial depen-
states also had some chance to be drawn in Monte Carlo dence is difficult to model using conventional cross vari-
sampling. Although the PV-realizations did not have ogram models.
abrupt boundaries, this should not be interpreted as a For the purpose of visual comparison and method
defect. Rather, it might reflect a situation where the verification, we provided the original soil map in Fig. 5.
transition between different soil classes was not so abrupt (Of course in a real world application we would not
in the field, and thus there should be some interlacing of have an “original” soil distribution map; the only dataadjacent classes. For example, in the transition zones

available would be an observed dataset that normallyfrom grassland to forest, the two land cover types may
only accounts for a small portion of the study area.).be interlaced with small patches, and this should also
From Fig. 5 it can be seen that the visualized PV-realiza-be true for the corresponding soil types.
tions, simulated TP-realizations, and the predictionFigure 6 gives only a subset of omnidirectional (cross)
maps all imitated the original soil map to some extentsemivariograms from the original soil map, the first PV-
in spatial patterns of soil classes. The degree of similarityrealization (Fig. 5c) and the first TP-realization (Fig. 5f).
increases with increasing the number of conditioningIt can be seen that both kinds of realizations approxi-
data and vice versa. This means that the calculated PVsmately reproduced the (cross) variograms. The small
and the visualized realizations all effectively captureddeviations between observed and simulated results were

expected for single realizations. That is, variograms from the spatial certainty provided by the observations.
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Fig. 5. Prediction maps and single realizations using the probability vector approach and the simulation approach of the TMC model. (a) The
reference soil map. (b) The prediction map from the probability vector approach. (c) The first PV-realization. (d) The second PV-realization.
(e) The prediction map estimated from 100 TP-realizations. (f) The first TP-realization. (g) The second TP-realization.

REMARKS variograms (see Caers and Zhang, 2004). Therefore,
approximately reproducing indicator autovariograms isThe purpose of geostatistical simulation, for our un-
necessary but may not be sufficient for a successfulderstanding, is to predict the unknown from the known
simulation. The efforts in geostatistics in recent years,with as little uncertainty as possible, and at the same
whether incorporating multi-point statistics from train-time to reflect the inevitable spatial uncertainty. A good
ing images (or dense datasets) into indicator simulationsimulation conditioned to an observed dataset should
approaches (e.g., Ortiz and Deutsch, 2004; Caers andreflect the uncertainty contained in the dataset as much
Zhang, 2004; Liu and Journel, 2004), or using Markovas possible. That means that while spatial uncertainty
chains (i.e., auto/cross transition probabilities) to incor-is inevitable because of the limited survey data, it would
porate interclass dependences into simulation (Elfekibe desirable for realizations conditioned on that limited
and Dekking, 2001; Li et al., 2004; Zhang and Li, 2005),data to imitate the “real” map (assuming we had it in
all had the same objective—to incorporate as muchmodel testing) as much as possible, since structure-imitat-
available spatial variation information into a randoming is also one simulation purpose (Koltermann and
field model as possible. Therefore, to rigorously test aGorelick, 1996). Conventional spatial continuity mea-
method (not an application), it may be helpful to com-sure such as indicator autovariograms only measures a
pare simulated realizations with the “real” one so thatpart of spatial variation information (i.e., autocorrela-
it can be visually seen that whether realizations mimictions) contained in sampled data or the target variables
the real spatial patterns. The apparent similarity be-(Goovaerts, 2002). For example, various strongly differ-

ent types of heterogeneities may produce similar auto- tween conditional realizations from Markov chain meth-
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Fig. 6. Indicator (direct and cross) variograms of soil classes in the original soil map and realization maps. The first four are direct variograms.
The last four are cross variograms. Or–The original soil map (corresponds to Fig. 5a). PV1–The first PV-realization (corresponds to Fig. 5c).
TP1–The first TP-realizations (corresponds to Fig. 5f).

ods and the original image should be mainly attributed uncertain; that is, the estimated occurrence probabilities
are identical at all locations. Because the available datato the special characteristics of Markov transition proba-

bilities in accounting for the interdependence of multi- is limited, we obviously can only guess at classes for
unobserved locations. However, the limited observednomial classes.

Spatial uncertainty (also called locational or posi- data can provide us some clue of what they may be
(i.e., their occurrence probabilities) and the most likelytional uncertainty) is a concept relative to spatial cer-

tainty represented by observed (or sampled) data. It values (at least for unobserved locations close enough
to the observed data that spatial correlations contain amay not be feasible to analyze spatial uncertainty using

geostatistical simulation if we have no observed data significant signal). An optimally interpolated map only
tells us which class has the highest likelihood of occurringfor a study area, or if the simulation method cannot

condition on the observed data. Unconditionally simu- at an unobserved location (i.e., the interpolated value).
But it is much more useful to know the probabilities oflated results using global parameters are completely
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all classes at unobserved locations. Unlike unconditional were promising. Such an approach is also applicable to
methods, the conditional Markov chain simulation method other Markov chain conditional simulation methods
provides this critically important extra dimension. that used a one-pass simulation algorithm with explicit

conditional transition probability expressions. This pa-
per focused on demonstrating the estimation of PVs

CONCLUSIONS and their characteristics. Further studies are necessary
to address related issues such as parameter estimationA probability vector approach based on the TMC
from other kinds of data and incorporation of secondarymodel was presented for spatial uncertainty modeling
information, and to further the ability of Markov chainof soil classes. The method performs direct calculation
approaches to effectively modeling multinomial cate-of JCPD represented by a set of PVs from transition

probabilities. Conventionally such PVs were estimated gorical variables.
approximately from a large number of realizations. Con-
sidering that by following the simulation path of the ACKNOWLEDGMENTS
TMC model the calculation process of PVs needs only

We thank Dr. Laosheng Wu, Dr. Kejian Wu, and anony-one pass, and the time needed is similar to that used for
mous reviewers for their insightful comments and suggestions.generating one realization using the simulation approach
The support of the Geography Department at UW-Madisonof the TMC model, the probability vector approach is and that from the “One Hundred Talents Program” of Chinese

highly efficient in computational time for acquirement of Academy of Sciences are greatly appreciated.
uncertainty information. It avoids the inaccuracy of PVs
estimated from a limited number of realizations in spatial

REFERENCESuncertainty modeling of multinomial classes.
Abend, K., T.J. Harley, and L.N. Kanal. 1965. Classification of binaryBy visualizing the PVs, spatial uncertainty maps in-

random patterns. IEEE Trans. Inf. Theory 11:538–544.cluding occurrence probability maps of single classes, sin-
Besag, J. 1986. On the statistical analysis of dirty pictures (with discus-gle realizations, the maximum occurrence probability map, sions). J. Royal Statist. Soc. Ser. B 48:259–302.

and the prediction map based on maximum occurrence Bierkens, M.F.P., and P.A. Burrough. 1993a. The indicator approach
to categorical soil data: I. Theory. J. Soil Sci. 44:361–368.probabilities can all be acquired. These data may pro-

Bierkens, M.F.P., and P.A. Burrough. 1993b. The indicator approachvide important input information for decision-making
to categorical soil data: II. Application to mapping and land useand risk assessment in natural resource evaluation and
suitability analysis. J. Soil Sci. 44:369–381.environmental conservation. A test study showed that Caers, J., and T. Zhang. 2004. Multiple-point geostatistics: A quantita-

the PVs estimated from simulated realizations gradually tive vehicle for integrating geologic analogs into multiple reservoir
models. p. 383–394. In G.M. Grammer et al (ed.) Integration ofapproached the calculated PVs with increasing the num-
outcrop and modern analogs in reservoir modeling. AAPG Mem-ber of simulated realizations. When the number of real-
oirs, AAPG, Tulsa, OK.izations for estimating the PVs was small, the estimated

Carle, S.F., and G.E. Fogg. 1996. Transition probability-based indica-
PVs were not reliable. Individual realizations could be tor geostatistics. Math. Geol. 28:453–477.
visualized from the calculated PVs quickly by Monte Chiles, J.-P., and P. Delfiner. 1999. Geostatistics—Modeling spatial

uncertainty. John Wiley & Sons, New York.Carlo sampling. The visualized PV-realizations showed
Dubrule, O., and E. Damsleth. 2001. Achievements and challengesdifferent characteristics from the simulated ones (i.e.,

in petroleum geostatistics. Petroleum Geosci. 7:S1–S7.TP-realizations). However, indicator (cross) variograms Elfeki, A.M., and F.M. Dekking. 2001. A Markov chain model for
calculated from these two kinds of realizations showed subsurface characterization: Theory and applications. Math. Geol.
that they were similar and both of them could approxi- 33:569–589.

Goodchild, M.F., G. Sun, and S. Yang. 1992. Development and testmately reproduce the complex spatial dependence rela-
of an error model for categorical data. Inter. J. Geog. Inf. Syst.tionships in the reference soil map. The PV-realizations
6:87–104.also mimicked the reference soil map in spatial patterns. Goovaerts, P. 1996. Stochastic simulation of categorical variables using

These mean that the visualized realizations from the a classification algorithm and simulated annealing. Math. Geol.
calculated PVs could effectively reflect the spatial varia- 28:909–921.

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation.tion of soil classes.
Oxford Univ. Press, New York.Although the proposed method uses survey line data,

Goovaerts, P. 2002. Geostatistical modeling of spatial uncertaintyit is possible to apply it to other kinds of data. With a using p-field simulation with conditional probability fields. Int. J.
more intensively developed software tool and a parame- Geog. Inf. Sci. 16:167–178.

Gray, A.J., I.W. Kay, and D.M. Titterington. 1994. An empirical studyter estimation strategy, point data, line data, patch data,
of the simulation of various models used for images. IEEE Trans.or even mixture of them might be used for conditional
Pattern Analysis and Machine Intelligence 16:507–513.simulations. However, for representing the spatial conti-

Guardiano, F., and M. Srivastava. 1993. Multivariate geostatistics:nuity, line data may be more advantageous, and such Beyond bivariate moments. Vol. 1, p. 133–144. In A. Soares (ed.)
data are not difficult to acquire in field survey for area Geostatistics Troia’92. Kluwer, Dordrecht, the Netherlands.

Journel, A. 1997. Foreword. p. vii–viii. In P. Goovaerts Geostatisticsclass soil mapping. (As we had mentioned, survey line
for natural resources evaluation. Oxford Univ. Press, New York.data might be acquired by just recording class boundary

Koltermann, E.C., and S.M. Gorelick. 1996. Heterogeneity in sedi-changes along a line in field survey as a special kind of
mentary deposits: A review of structure-imitating, process-imitat-purposeive sampling). ing, and descriptive approaches. Water Resour. Res. 32:2617–2658.

We had shown that the special features exhibited by Kyriakidis, P.C., and J.L. Dungan. 2001. A geostatistical approach for
mapping thematic classification accuracy and evaluating the impactthe probability vector approach computed from a TMC



R
ep

ro
du

ce
d 

fr
om

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a 

Jo
ur

na
l. 

P
ub

lis
he

d 
by

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

1942 SOIL SCI. SOC. AM. J., VOL. 69, NOVEMBER–DECEMBER 2005

of inaccurate spatial data on ecological model prediction. Environ. Norberg, T., L. Rosen, A. Baran, and S. Baran. 2002. On modeling
discrete geological structure as Markov random fields. Math.Ecol. Stat. 8:311–330.

Li, W., B. Li, Y. Shi, and D. Tang. 1997. Application of the Markov Geol. 34:63–77.
Ortiz, J.M., and C.V. Deutsch. 2004. Indicator simulation accountingchain theory to describe spatial distribution of textural layers. Soil

Sci. 162:672–683. for multiple-point statistics. Math. Geol. 36:545–565.
Qian, W., and D.M. Titterington. 1991. Multidimensional MarkovLi, W., B. Li, and Y. Shi. 1999. Markov-chain simulation of soil textural

profiles. Geoderma 92:37–53. Chain Models for image textures. J. Royal Stat. Soc. Ser. B 53:
661–674.Li, W., B. Li, Y. Shi, D. Jacques, and J. Feyen. 2001. Effect of spatial

variation of textural layers on regional field water balance. Water USDA. 1962. Soil Survey—Iowa County Wisconsin. USDA, SCS.
U.S. Gov. Print. Office, Washington, DC.Resour. Res. 37:1209–1219.

Li, W., C. Zhang, J.E. Burt, A.-X. Zhu, and J. Feyen. 2004. Two- Wu, K., N. Nunan, J.W. Crawford, I.M. Young, and K. Ritz. 2004.
An efficient Markov chain model for the simulation of hetero-dimensional Markov chain simulation of soil type spatial distribu-

tion. Soil Sci. Soc. Am. J. 68:1479–1490. geneous soil structure. Soil Sci. Soc. Am. J. 68:346–351.
Zhang, J., and M. Goodchild. 2002. Uncertainty in geographic infor-Liu, Y., and A. Journel. 2004. Improving sequential simulation with

a structured path guided by information content. Math. Geol. mation. Taylor & Francis, New York.
Zhang, C., and W. Li. 2004. Predictive area class mapping of multinom-36:945–964.

Luo, J. 1996. Transition probability approach to statistical analysis of ial land-cover categories using Markov chains. p. 239–242. In Pro-
ceedings of the Third International Conference on Geographicspatial qualitative variables in geology. p. 281–299. In A. Foster

and D.F. Marriam (ed.) Geologic modeling and mapping. Plenum Information Science. University of Maryland University College,
Adelphi, MD.Press, New York.

Mark, D.M., and F. Csillag. 1989. The nature of boundaries on the Zhang, C., and W. Li. 2005. Markov chain modeling of multinomial
land-cover classes. GIScience Remote Sens. 42:1–18.‘area-class’ maps. Cartographica 26:65–78.


