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Abstract

Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of

hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the

same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil

property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to

their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information

and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the

conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil

spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive

mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to

simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the

conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect

of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling

approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two

small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or

coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with

both the lumped parameter approach and the distributed parameter approach.
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1. Introduction

Increasingly geographic information systems (GIS)

are used to parameterize the landscape for hydro-

ecological models operating at the mesoscale level (10–

100 km2). One of the emergent stumbling blocks in the

integration of GIS and watershed models is the problem

of combining data sets of varying levels of spatial

details (Ehleringer and Field, 1993; Blöschl, 1998;
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Thieken et al., 1999; Western and Blöschl, 1999; Zhu,

2005). In other words, spatial data needed for hydro-

ecological models at the mesoscale level are not always

available at that level of spatial detail. For example,

information on the spatial variation of soils are often

derived from the conventional 1:24,000 scale soil maps

(which often have a minimum mapping unit between

2.5 and 5 ha), while information on the spatial variation

of vegetation are often derived from remotely sensed

imagery at 30 m resolution (or finer). Consequently, the

level of spatial detail in conventional soil maps are often

much coarser than the level of spatial detail in the

corresponding vegetation map. Thus the levels of spatial

details between the two maps are incompatible. This

incompatibility is referred to as scale incompatibility

because it is a result of the difference in map scale and/

or spatial resolution among the data layers.

When using data sets of varying scales, researchers

are often faced with the question of ‘. . . what is the

appropriate scale at which to simulate hydro-ecological

processes over mesoscale watersheds?’ (Band, 1993;

Wolock and Price, 1994; Zhang and Montgomery, 1994;

Van Gardingen et al., 1997; Koren et al., 1999; Georges

and Chen, 2002; Haddeland et al., 2002; Ranjan and

Wurbs, 2002). Since GIS allows rapid processing and

parameterization of spatial data, it is tempting to operate

the model at the scale of the most detailed data layers

involved in the modeling effort, even if other data layers

do not match that scale.

It is important to note that this scale incompatibility

can cause the spatial co-variation of model parameters

to be characterized incorrectly (Zhu, 2000), and thus

lead to incorrect model output and result interpretation.

One common example of scale incompatibility results

from the use of soil data in hydro-ecological models,

which require variables about local soil water storage

capacity and transmissivity. Soil information are

typically derived from conventional polygon-based soil

maps, with a scale likely to be substantially lower than

that of other data used by the model, such as terrain

data derived from standard digital elevation models

(DEMs). Modelers often overlay (spatially combine)

high resolution (10–30 m) topographic and vegetation

data with generalized soil information derived from the

conventional soil survey (1:24,000) to estimate the co-

variation of terrain, vegetation, and soil conditions over

space. This overlay can result in poor local correspon-

dence between key soil variables such as available

moisture and other model parameters such as leaf area

index or solar insolation. In such cases, the scale of the

original soil survey prevents the parameterization of

small areas where soil properties deviate from those of
the larger, surrounding soil body. Band and Moore

(1995) identified scale incompatibility as a potential

problem in extending hillslope hydrologic models to

regional scales.

Some of the effect of scale incompatibility among

data layers may be dependent on the scale at which the

model is run. In this paper, we refer to this as the

simulation scale. Data sets are not often available at a

resolution that will permit realistic process simulations

at very fine simulation scales (meters or less). As a

result, watershed models that simulate these processes

over large spatial extents must find a way to describe

environmental conditions using effective parameters

rather than directly observed values. For some models,

these parameters are produced by partitioning the

landscape into hillslope units and aggregating the

spatial data within each hillslope unit. The degree

to which landscape heterogeneity is generalized and

aggregated by the model can be thought of as the size of

these hillslope units which in turn can be thought of as

the model simulation scale.

Hillslope partitioning is one of the more flexible

methods of varying simulation scale. Hillslopes – the

areas in a watershed that drain to each stream link on

either bank side – capture much of the spatial variation

of incident short-wave radiation and seem particularly

suitable for landscape parameterization in mountainous

terrain (Band et al., 1991; Moore et al., 1991) (Fig. 1).

Varying the extent of the stream network can change

the number and size of the hillslopes in any given

watershed.

This research examines how watershed modeling

responds to the scale incompatibility between the

generalized soil property information and the other but

more detailed environmental information at different

model simulation scales as approximated by different

levels of hillslope partitioning. The Regional Hydro-

Ecological Simulation System (RHESSys) (Running

et al., 1989; Band et al., 1991, 1993) is used in this

research for the simulation of two watershed processes:

net photosynthesis and stream flow. Two commonly

used general modeling frameworks (the lumped

parameter approach and the distributed approach

(Maidment, 1993)) are used to simulate these processes

and to examine the effect of scale incompatibility.

Two versions of spatial soil information each at

different level of spatial details are used for comparison

in examining the effects of scale incompatibility on the

simulated processes. The first version is a conventional

soil map and the second is soil information derived from

a soil-land inference approach (Soil Land Inference

Model, SoLIM) (Zhu, 1997, 1999; Zhu et al., 2001).
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Fig. 1. Hillslope partitions. Hillslopes A and B drain to stream link 1. Hillslopes C and D drain to stream link 2. Hillslopes E and F drain to stream

link 3.
Zhu (2000) established that the co-variation of soil

properties and other landscape parameters is better

represented through the SoLIM approach than with

conventional soil maps. This allows us to assume that the

model runs – based on the detailed soil spatial

information from SoLIM – provide the most realistic

output available at each particular model simulation

scale, given that the scale of the other environmental

parameters permits. Under this assumption the difference

in a modeled process between the simulation based on

the conventional soil map and that based on the soil

information from SoLIM at a given scale can be

perceived as a measure reflecting the effect due to the

scale incompatibility between the conventional soil map

and other detailed environmental parameters at that scale.

Thus, in this study the examination of how this effect

changes across scale becomes the examination of the

difference in model results between the two simulations

over different levels of hillslope partitioning.

In the next section we briefly describe the RHESSys

model, which is used for the simulation of the hydro-

ecological processes. In Section 3, this is followed by a

discussion of the two ways (conventional soil survey

and the SoLIM approach) for characterizing the soil

spatial variation. Section 4 describes the research design

and study area. Section 5 presents the results from the

two watersheds which are discussed in Section 6.
Conclusion and future efforts are then presented in

Section 7.

2. RHESSys

RHESSys is described in a series of journal articles

in the late 1980s and 1990s (Running et al., 1987, 1989;

Band et al., 1991, 1993; Nemani et al., 1993; Mackay

and Band, 1997). Band et al. (1991, 1993) developed

RHESSys by integrating TOPMODEL, a hillslope

hydrology model (Beven and Kirkby, 1979), with

FOREST-BGC, an ecosystem simulation that models

water, nitrogen, and carbon cycles in forests (Running

and Coughlan, 1988; Running and Gower, 1991). A

geographic data processing component (a set of GIS and

remote sensing techniques) organizes vegetation,

topographic, and soil variables into a multi-tiered

hierarchy of processing units that capture major spatial

variation in model parameters.

2.1. Landscape partitioning in RHESSys

RHESSys organizes landscape parameters derived

from GIS or remote sensing techniques based on

hillslopes. Hillslopes are defined using an automated

hillslope partitioning method described by Band (1989).

The method first calculates upslope drainage area
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Fig. 2. Hillslope partitioning: (a) at a 100-pixel minimum UDA threshold; (b) at a 1200-pixel minimum UDA threshold.
(UDA) from a DEM for each pixel in the watershed. The

UDA is the total land surface area that drains to the pixel

and it increases geometrically down slope from ridge

tops at the periphery of the watershed to the basin outlet.

A minimum UDA threshold is defined for pixels to be

classified as streams. Once defined, streams are then

divided into links (unbranched segments of stream),

each of which contains exactly two hillslopes, one on

either bank, which contribute water to that stream link

and no other. These hillslopes become a basic unit of

landscape parameterization in RHESSys. The UDA

threshold controls the level of landscape generalization:

lower UDA thresholds generate more extensive stream

networks, which in turn generate smaller and more

numerous hillslopes (i.e., more detailed model simula-

tion scale) (Fig. 2).

There are two approaches to representing RHESSys

model parameters (e.g., leaf area index, saturated

hydraulic conductivity, solum depth) within the

hillslope units: the lumped parameter and distributed
Fig. 3. Elevation and wetness intervals. These hillslope subdivisions allo
parameter approach, as defined in Maidment (1993).

In the lumped parameter approach, mean values for

model parameters are estimated and used to represent

the entire hillslope unit. The distributed parameter

approach allows model parameters to co-vary within the

hillslope unit. Hillslopes are divided into multiple

elevation bands, which are in turn divided into multiple

wetness intervals, as defined by Beven and Kirkby’s

(1979) hydrologic similarity index (Fig. 3). Each

wetness interval contains its own set of model

parameters.

2.2. Main hydro-ecological processes and soil

variables in RHESSys

Band et al. (1993) integrated TOPMODEL (Beven

and Kirkby, 1979), a hillslope hydrology model, into

RHESSys, providing automated parameterization and

simulation of hydro-ecological fluxes and storage.

Among the many processes and fluxes simulated by
w representation of within hillslope variation of model parameters.
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RHESSys, two main hydro-ecological fluxes (stream

flow and net photosynthesis (PSN)) are used in this study

to examine the effect of scale incompatibility. Stream

flow consists of return flow, runoff from saturated

portions of the hillslope, and base flow (see Sivapalan

et al. (1987), Famiglietti and Wood (1990) and Band et al.

(1993) for details). PSN is calculated using gross canopy

photosynthesis and total canopy maintenance respiration.

Gross canopy photosynthesis (kg C m�2 day�1) is

calculated using a CO2 diffusion gradient, radiation

and temperature-controlled mesophyll CO2 conduc-

tance, canopy water vapor conductance, leaf area index,

and day length (Lohammar et al., 1980). Night canopy

respiration is computed from night average temperature

and foliar biomass. Maintenance respiration for stems

and roots is calculated using biomass and daily average

air and soil temperature. Total maintenance respiration,

subtracted from gross canopy photosynthesis, provides

net canopy photosynthesis.

Two key soil variables, rooting zone depth and soil

saturated hydraulic conductivity, are required for

running RHESSys. Rooting zone depth affects the

local soil profile saturation deficit. Hydraulic conduc-

tivity is used to calculate soil transmissivity, which is a

component of the wetness index calculation. Data on the

spatial variation of these two variables are derived in

two different ways with each corresponding to one of

the two ways in characterizing soil spatial variation. The

methods used in this paper for deriving spatial data on

these two variables are exactly the same as these

described in Zhu and Mackay (2001) and are briefly

described in Section 4.2.

3. Soil spatial models

3.1. Conventional soil mapping

Soil mapping involves two major processes: (1)

conceptually organizing soil properties or parameters

into taxonomic classes and (2) representing the

variation of these taxonomic classes over space (Zhu,

1997). The soil series, a level of U.S. soil taxonomy, is

the most basic description of soil variation in the

parameter domain (USDA Soil Survey Division, 1993).

It is designed to describe groups of soils that share

similar horizon arrangements and properties (such as

thickness, color, texture, organic content, rock fragment

content, and mineral composition). The soil series is

defined to provide relatively narrow ranges of values for

each property.

Polygon delineations represent the variation of soil

in the spatial domain. At the 1:24,000 scale, they
typically describe a dominant soil series or a group of

series that cannot be mapped separately at that scale

(USDA Soil Survey Division, 1993). The groupings of

taxonomic classes that are mapped separately are called

‘‘soil map units’’, which are defined to be mutually

exclusive across the survey area.

The polygons and their map unit labels in the

conventional soil survey are not designed to provide a

level of spatial detail that approaches the scale of

watershed hydro-ecological processes simulated at the

mesoscale level, although such surveys are frequently

used in modeling such processes (Band and Moore,

1995). One of the most widely available soil datasets for

watershed modeling is the 2nd order soil survey of the

U.S. Natural Resource Conservation Service at the

1:24,000 scale. This type of survey is designed for

general agricultural and urban planning purposes: the

assessment of soil suitability for farming, urban

development, timber harvesting, or some other land use.

For modeling purposes, soil properties are assumed

to be homogenous throughout the soil survey polygon,

and the typical soil property value of the dominant soil

class in the mapping unit is assigned to the polygon.

Although there is normally some information in the

survey legend about the degree of class ‘‘mixing’’

within each map unit and information about the range of

property values within each class, this information is

rarely used in models (Band and Moore, 1995). This is

because the distribution of multiple minor soil classes

and deviations away from typical property values within

each class are not recorded in the conventional soil

survey in a spatially explicit manner. Although it may

be known that a particular map unit contains two to

three secondary soil classes, the modeler does not know

where these soil classes occur within the polygon.

Likewise it may be known that the depth of the primary

soil class ranges from 80 to 120 cm, but the modeler

does not know the spatial distribution of this property,

and thus is forced to assign a ‘‘typical’’ value of 100 cm

to the entire polygon. In this way, the unrealistic

representation of soil properties inherent in the con-

ventional soil mapping is transferred to the environ-

mental model that uses the information.

3.2. Detailed soil spatial model

Zhu and Band (1994), Zhu et al. (1996) and Zhu

(1997, 1999, 2000) developed SoLIM to address the

limitations of the conventional soil survey. While a full

discussion of the SoLIM model is outside the scope of

this article, in general terms, SoLIM consists of three

components: a similarity model that portrays soil as a
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Fig. 4. Solum depth map generated from a conventional soil survey

(top) and from the SoLIM model for the North Fork Elk Creek

watershed (bottom).
continuum in both the spatial and attribute domains, an

inference procedure for deriving soil similarity infor-

mation, and soil information products such as soil series

maps and spatially continuous soil property maps. The

similarity model recognizes that soil types are

continuous spatial features. At the boundaries of soil

polygons there is considerable uncertainty about which

category the soil falls into, and in fact such locations

may display characteristics of two or more soil types in

varying degrees. The inference procedure provides a

method for generating these similarity vectors based on

expert knowledge, GIS-derived data, and fuzzy logic.

The output from the inference procedure – a similarity

vector for each pixel in the study area – can be used to

produce spatially continuous soil property data (Zhu

et al., 1997; Zhu, 1997). The property values that result

from a fuzzy system of representation are more detailed

and more accurate than those resulting from a Boolean

system of representation, as in conventional soil maps

(Fig. 4) (Zhu et al., 1997).

4. Study areas and research design

The effect on model output due to scale incompat-

ibility may be compared across several model simula-

tion scales. The examination of this effect across a range

of model simulation scales is conducted over two

watersheds in western Montana. First, two versions of

soil property maps are derived: one from the conven-

tional soil survey and the other from the output of the

SoLIM model (Zhu and Mackay, 2001). A series of

hillslope partitioning schemes are then generated for

each of the watersheds, ranging from ‘‘coarse’’ hillslope

schemes with fewer, larger hillslopes to ‘‘fine’’

hillslopes schemes with more, smaller hillslopes
(Fig. 2). Terrain, leaf area index, and soil property

data are organized for each of these hillslope schemes.

The model is then run for both the conventional and

detailed soil data for each partitioning scheme and the

output from the model based on the conventional soil

map is then compared to that from the model based on

the detailed soil information.

4.1. Study area

The study area is a portion of the University of

Montana’s Experimental Forest in western Montana,

the Lubrecht watershed that is characterized by

moderate to strong relief (Fig. 5). The climate is

semi-arid to semi-humid, with mean annual precipita-

tion between 50 and 76 cm (Ross and Hunter, 1976).

Moisture conditions vary by slope aspect and elevation

with low-elevation, south-facing slopes generally drier

than higher-elevation, north-facing slopes (Zhu and

Mackay, 2001).

Mountain slopes in the study area are covered

primarily with second growth Douglas-fir forests along

with smaller amounts of western larch and ponderosa

pine. Ponderosa pine forest dominates at lower

elevations, while Douglas-fir continue to elevations

of roughly 1650 m, beyond which subalpine fir and

Engelmann-spruce are predominant (Zhu and Mackay,

2001).

There are three major geology types in the study

area: belt rocks, granite, and limestone, which have

weathered to form twelve soil series (Table 1) (Zhu and

Mackay, 2001). Approximately 90% of the soils in the

study area are Inceptisols—poorly developed soils with

minimal organic content.

The two watersheds under study (Fig. 5b), Cap

Wallace Gulch and North Fork Elk Creek, are adjacent

tributaries to Elk Creek, which is a tributary to the

Blackfoot River. The Cap Wallace Gulch watershed is

6.2 km2 and lies just to north of North Fork. North Fork

is 18.6 km2. The DEM and remotely sensed data are

both at 30 m pixel resolution.

4.2. Data preparation

Two sets of environmental parameters were

assembled for the model, one for each method of soil

parameterization. RHESSys requires elevation, gradi-

ent, aspect, UDA, leaf area index, and station climate

data, along with soils information. The only difference

in the two sets was the representation of soil properties

(conventional or detailed). All other data layers

remained the same and the pixel size is 30 m by 30 m.
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Fig. 5. Location of study area: (a) general location; (b) the two study watersheds and surrounding elevations.
RHESSys requires two soil properties: saturated

hydraulic conductivity and rooting zone depth. Satu-

rated hydraulic conductivity for each of the soil series in

the study area was approximated by soil texture using

Clapp and Hornberger (1978). The spatial variation of
rooting zone depth is very difficult to characterize

across a landscape, so solum depth (depth to the bottom

on the B-horizon) was used as a surrogate.

Hydraulic conductivity and solum depth values were

assigned to conventional survey polygons using the
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Table 1

Soil series in the Lubrecht study area

Parent materials Soil series Soil subgroup Soil order

Granite Ambrant Udic Ustochrepts Inceptisol

Elkner Typic Cryochrepts Inceptisol

Ovando Typic Cryorthents Entisol

Rochester Typic Ustorthents Entisol

Belt (shale) Evaro Typic Cryochrepts Inceptisol

Sharrott Lithic Ustochrepts Inceptisol

Tevis Dystric Eutrochrepts Inceptisol

Winkler Udic Ustochrepts Inceptisol

Winkler (Cool) Udic Ustochrepts Inceptisol

Limestone Repp Typic Ustochrepts Inceptisol

Trapps Typic Eutroboralfs Alfisol

Whitore Typic Cryochrepts Inceptisol

Table 3

Hillslope partitioning schemes for North Fork

Threshold

(pixels)

Number of

partitions

Mean partition

size (pixels)

100 198 104

200 118 175

300 78 264

400 54 382

500 38 542

600 26 793

700 22 938

800 18 1145

900 18 1145

1000 18 1145

Table 2

Hillslope partitioning schemes for Cap Wallace Gulch

Threshold

(pixels)

Number of

partitions

Mean partition

size (pixels)

50 77 59

100 56 113

200 26 251

300 18 365

400 14 471

500 10 663

600 6 1111

700 6 1111

800 6 1111
dominant soil series of each map unit. A conventional

survey was acquired for the study area in the form of

SSURGO (Soil Survey Geographic Database) from the

U.S. Natural Resource Conservation Service. Each soil

polygon was related to a map unit in the SSURGO

database, which consisted of one or more components

(soil series). The soil series with the highest repre-

sentative fraction in the map unit was used. Soil textures

(used to approximate hydraulic conductivity) and solum

depth for each of the soil series in the area were

determined through field research. These field values

were applied to all the polygons in the study area. The

resulting vector maps of soil property polygons were

then converted into raster format, using grid cell size

(30 m by 30 m) that matched that of the terrain and leaf

area index data layers.

Detailed hydraulic conductivity and solum depth

maps were generated using the SoLIM-derived

similarity vector and a linear additive weighting

calculation as described in Zhu and Mackay (2001).

Fuzzy membership maps were generated for each of

the soil series in the study area using the knowledge

acquisition and inference techniques described in Zhu

and Band (1994), Zhu et al. (1996, 1997) and Zhu

(1999, 2000). Six major environmental conditions

were used to drive the inference: elevation, aspect,

profile curvature, gradient, canopy coverage, and

parent material. The same typical property values

that were applied to the dominant soil series in the

SSURGO polygons were used in the linear additive

weighting equation. The resulting detailed soil

property maps matched the spatial extent and resolu-

tion of the terrain data and leaf area index, which was a

requirement for processing the data layers into

RHESSys input files.
4.3. Parameterization and data organization

RHESSys receives environmental data in the form of

aggregate values for each hillslope in a particular

partitioning scheme. This research aimed to vary the

partitioning schemes to produce a wide range of model

simulation scales. Model simulation scale was assessed

by calculating the mean size of the hillslope partitions

(Tables 2 and 3), which were created by stream

networks defined by progressively increasing UDA

thresholds. Stream networks defined by large UDA

thresholds are highly simplified (un-branched), and

require large increases in the threshold to generate ever

more simplified stream networks. This explains why

multiple threshold settings at the high end of the

threshold size range produce the same number of

hillslope partitions (Tables 2 and 3).

Once hillslope partitions were developed, the terrain,

leaf area index, and soils data layers were processed into

‘‘cartridge files’’, which stores environmental para-

meters for each hillslope in the partitioning scheme.

Two cartridge files were assembled for each partitioning

scheme in each of the two study watersheds: one

cartridge file for the environmental dataset that included
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conventional soil data and the other for the dataset that

included detailed soil spatial information. For simula-

tions using the lumped parameter approach, the

cartridge file is the only input file needed because the

model calculates a hillslope mean value for each of the

environmental variables, which is used to determine the

daily response of that hillslope to the precipitation and

temperature conditions specified in the climate file.

For the distributed parameter approach, a distributed

parameterization scheme is used which allows environ-

mental variables to co-vary at a more detailed level than

that provided by the hillslopes. In addition to the

cartridge file described above, a frequency file is used to

capture the co-variation of parameters within each

slope. The co-variation is captured by dividing each

hillslope into regular elevation intervals, then within

each elevation interval, assembling pixels into groups

based on the hydrologic similarity index (the topo-

graphic wetness intervals) (Mackay and Band, 1997).

These groups are then used as the aggregation units for

the set of environmental variables (including the soil

properties derived from detailed and conventional

maps). This portion of the experiment was designed

to examine whether any relationships between model

simulation scale and soil data scale also occurred in the

distributed scheme.

4.4. Model output and comparison

The model was operated for a 365-day simulation

(after a 1 year initialization run) for the cartridge file

containing the conventional soil information and the

cartridge file containing detailed soil information.

This process was repeated for each model scale within

each watershed. Differences were examined for two
Fig. 6. RHESSys output com
model outputs: stream flow and net photosynthesis

(Fig. 6).

Root mean squared difference (RMSD) in daily

output values and total annual output difference were

used to characterize the performance of conventional

soil data models runs relative to detailed soil data model

runs over the 365-day study period. RMSD values for

stream flow and net photosynthesis were determined by

calculating the squares of the difference between the

two runs for each of 365 daily values, then taking the

square root of the mean of those values. These two root

mean squared difference calculations are expressed as

RMSDstreamflow ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1ðStconv � StdetÞ

2

n

s

RMSDPSN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1ðPSNt

conv � PSNt
detÞ

2

n

s

where Sconv and Sdet are stream flows for the conven-

tional and detailed soil data runs, respectively, PSNconv

and PSNdet are net photosynthesis for the conventional

and detailed soil data runs, t is the day number of the

study period, ranging from 1 to n, the final day of the

study period (in this study, day 365). Because stream

flow and PSN are relatively low for large portions of the

study period, differences were relatively low for large

portions of the study period.

The relative performance of the two methods of soil

parameterization must be judged in terms of the model’s

response to relatively infrequent heavy rainfall events,

as these generate most of the annual stream flow and

constitute a key driver of net photosynthesis. The root

mean squared difference (RMSD) was chosen as a

statistical measure because it captures both positive and
parison at a given scale.
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Fig. 7. Root mean squared difference in stream flow by simulation scale for Cap Wallace Gulch and North Fork Elk Creek (lumped approach).
negative differences and accentuates these relatively

infrequent, large differences between the conventional

and detailed model runs. Assuming that the detailed

parameterization scheme results in the most realistic

model output at a given level of hillslope partitioning, a

small RMSD means that the conventional soil data is

generating relatively realistic output at that scale.

5. Results

5.1. Lumped parameter approach

Figs. 7 and 8 display RMSD results for the lumped

parameter approach for Cap Wallace Gulch and North

Fork. The graphs show trends in the conventional

soil data model run performance relative to detailed

data runs at a range of model simulation scales. The

conventional soil model run output for stream flow

seems to approach the detailed model run benchmark

at two model simulation scales [150 pixels at

30 m � 30 m pixel (13,500 m2) and around 500 pixels
Fig. 8. Root mean squared difference in net photosynthesis by simulatio

approach).
(45,000 m2)] (Fig. 7), with some declines in perfor-

mance at scales intermediate to these two points. In

contrast, net photosynthesis outputs show consistent

improvements in the conventional soil run performance

as hillslope size increases until a point near 500 pixels

(Fig. 8). This is the point of minimum difference

between model outputs of each of the two soil

parameterization techniques. For both stream flow

and net photosynthesis in both watersheds, the differ-

ence between the conventional and detailed soil model

runs increases at model scales beyond a mean hillslope

size of roughly 500 pixels.

5.2. Distributed parameter approach

Results for the distributed parameter approach

(Figs. 9 and 10) show much smaller differences

between the conventional and detailed model runs,

but it may be possible to describe some trends in the

conventional soil data performance across the range of

model simulation scales. Stream flow outputs for Cap
n scale for Cap Wallace Gulch and North Fork Elk Creek (lumped



T. Quinn et al. / International Journal of Applied Earth Observation and Geoinformation 7 (2005) 324–338334

Fig. 9. Root mean squared difference in stream flow by simulation scale for Cap Wallace Gulch and North Fork Elk Creek (distributed approach).

Fig. 10. Root mean squared difference in net photosynthesis by simulation scale for Cap Wallace Gulch and North Fork Elk Creek (distributed

approach).
Wallace Gulch and North Fork show relatively

consistent performance by the conventional soil data

at scales with mean hillslope sizes between 400 and 500

pixels. As with the lumped parameterization scheme,

net photosynthesis output shows improvement in

conventional run performance up to a point of minimal

difference at a model scale near 500 pixel mean
Table 4

Differences in stream flow and net photosynthesis (PSN) for Cap Wallace

Mean

hillslope

size (pixels)

Root mean squared

difference (RMSD)

in stream flow (mm)

RMSD as %

mean daily

stream flow

59 0.19 45

113 0.18 45

251 0.20 49

365 0.21 55

471 0.18 49

663 0.20 55

1111 0.24 65

a From simulation based on information from the conventional soil map.
hillslope size. With the exception of net photosynthesis

for North Fork Elk Creek, the distributed approach

tended to produce relatively degraded performance

(larger differences) by the conventional soil data at

hillslope scales between 400 and 800 pixels.

Tables 4 and 5 show RMSD values as a percentage of

mean daily stream flow and net photosynthesis over the
Gulch (lumped approach)

of

a

Root mean squared

difference (RMSD)

in PSN (mm)

RMSD as % of

mean daily

PSNa

1.36 46

1.29 43

1.32 43

0.98 31

0.95 30

0.96 30

1.01 31
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Fig. 11. Distribution of soil patch sizes for solum depth and hydraulic

conductivity properties (Cap Wallace Gulch).

Table 5

Differences in stream flow and net photosynthesis (PSN) for Cap Wallace Gulch (distributed approach)

Mean

hillslope

size (pixels)

Root mean squared

difference (RMSD) in

stream flow (mm)

RMSD as %

of mean

daily stream flowa

Root mean squared

difference RMSD

in PSN (mm)

RMSD as %

of mean

daily PSNa

59 0.10 19 0.70 29

113 0.11 19 0.66 28

251 0.11 19 0.63 27

365 0.10 18 0.52 23

471 0.10 17 0.51 22

663 0.12 21 0.63 29

1111 0.14 24 0.36 16

a From simulation based on information from the conventional soil map.
Cap Wallace Gulch watershed for the lumped para-

meterization and the distributed parameterization

schemes, respectively. These values indicate that the

influence of model simulation scale on scale incompat-

ibility effects under the distributed approach is some-

what smaller than under the lumped parameterization.

6. Discussion

It seems likely that certain model simulation scales

‘‘reduce’’ the effect that results from overgeneralization

of soil properties. In this experiment, this model

simulation scale effect is demonstrated by the improve-

ment in the conventional model run performance in the

50–500-pixel range. At the low end of this range,

hillslope schemes appear to dissect soil property

patches enough to allow the inclusions represented

by detailed soil data to be parameterized and

incorporated into model output. This exposes the scale

incompatibility of the conventional soil information

relative to the other data layers. Detailed soil data co-

varies with other environmental parameters to produce

noticeably different output from conventional data,

which explains some of the larger RMSD values,

especially for net photosynthesis (Figs. 8 and 10). As

model scale approaches 500 pixels, more generalized

hillslope schemes tend to ‘‘average out’’ the spatial

variation of the detailed soil data such that hillslope-

aggregated soil parameters for conventional and

detailed soil data reach a better level of agreement.

Here the incompatibility effect is minimized because all

environmental data layers are effectively ‘‘re-sampled’’

to a more generalized resolution that matches that of the

conventional soil data.

The appearance of relative agreement in RMSD

values at some model scales (Figs. 7–10) appears to

coincide with modal soil patch sizes. Although the

mode in the frequency distributions of soil patch size
(Figs. 11 and 12) is quite weak, these figures do show a

somewhat higher number of soil patches at or near 500

pixels relative to sizes just above and below for both soil

properties. The explanation for this effect lies in the

‘‘design scale’’ of the conventional soil survey. Soil

survey map units were designed to capture, at a certain

level of generalization, the variation of soil properties,

which are a function of the other environmental

parameters being modeled. Thus the patches and the

other environmental parameters reach optimal co-

variation only at particular scales, beyond which the

co-variance with other environmental variables

increases model sensitivity to soil parameterization

method.

At model scales that roughly match the scale of the

conventional soil data, the generalization in both the

conventional and the detailed soil property maps

approaches the same level. This research assumes that

the detailed soil property maps provide the most

realistic model output at a given scale, which then

implies that the conventional maps produce the most

realistic output at a scale that matches the original scale

of the soil survey. When the model simulation scale is

set at a finer resolution than the modal soil property

patch size, the soil property map produced from the

conventional soil survey is inadequate to provide the
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Fig. 12. Distribution of soil patch sizes for solum depth and hydraulic

conductivity properties (North Fork).
level of spatial detail needed. Conversely, when the

model scale is set at a coarser resolution than the modal

soil property patch size, the conventional soil property

map is generalized to a level that creates another kind of

unrealistic representation of soil property variation, and

model outputs based on the conventional maps again

deviate from these based on the detailed soil informa-

tion.

The sensitivity to soil representation method are

obviously reduced by parameterization schemes that

allow within-hillslope co-variation of environmental

variables (as in the distributed approach) (Figs. 9 and

10), but not so much that they eliminate the impact of

model simulation scale. Reduced effect is again found

at model simulation scales that approximate the scale of

the conventional soil data. The effect due to soil data

scale incompatibility in the distributed scheme, how-

ever, may not be large enough to justify tuning model

simulation scale to meet the scale of the original soil

representation scheme.

The preceding discussion implies that there is an

‘‘optimal’’ model scale that minimizes the effect on

model outputs due to scale incompatibility. Two

problems arise in the pursuit of an optimal model

simulation scale. The first is the result of the hillslope

partitioning scheme, which is most relevant to the

lumped approach and the second is the errors in

assigning typical property values to soil polygons.

It is highly unlikely that hillslope partitioning at any

scale will exactly match the configuration of soil

property variation defined by the conventional map-

derived soil patches. Certain spatial soil patterns,

especially those involving changes in bedrock geology,

will not follow hillslope patterns. Although soil patches

might express the mean value of the detailed soil

variation within the patch area, the partition might split

or merge soils patches. This could generate mean values

for conventional soil information that deviate from the

mean values of the same partition in the detailed soil

layer.
Assigning typical property values to soil polygons

involves errors. Even it were possible to get the hillslope

partitioning scheme to match the soil patch configura-

tion, the property values of the soil patches would not

always match mean soil property values derived from

detailed soil data. There is significant uncertainty in the

assignment of a typical soil property value to a given

map unit, since there is no information about the spatial

distribution of soil class and property deviations within

the polygons belonging to the map unit. Model runs

could only completely eliminate scale incompatibility

effects when hillslope configuration exactly matched

patch configuration, and the mean property value of

patches accurately described the real spatial variation of

that property within the patch area. These limitations

make a certain amount of difference between the

conventional and detailed soil parameterization tech-

niques presented here unavoidable.

7. Conclusions and future research

The difference in model output due to scale

incompatibility between soil information from conven-

tional soil maps and detail information about other

environmental variables does change with change of

model simulation scale. The results of this research

suggest that, when using conventional soil data,

operating the watershed models at scales approaching

those of the soil data layers reduces bias in model

predictions. The scale of the soil property data, which is

often converted from polygon-model soil surveys, can

be assessed using a frequency distribution of soil

patches—contiguous areas of pixels sharing the same

property value. Modeling at scales that are much

smaller or much larger than modal soil patch sizes could

introduce errors due to the scale incompatibility

between soil data and other detailed environmental

data (such as digital terrain data and remotely sensed

data).

This study also shows that the distributed para-

meterization scheme may reduce the degree of effect on

model results due to scale incompatibility between

conventional soil map and other detailed environmental

data layers. However, the change in pattern of the effect

across model simulation scale is very similar to that

under the lumped parameterization scheme.

This research has examined patterns of mean daily

difference between conventional and detailed soil data

model runs using a 365-day data set. It is important to

note, however, that the most significant gaps between

model runs using the two soil parameterization schemes

emerge during the period of moisture stress in the late
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summer as reported by Zhu and MacKay (2001). During

this period, available moisture becomes a crucial

limiting factor in net photosynthesis and other

ecological indicators, making the model especially

sensitive to soil transmissivity and solum depth values.

It may be more appropriate to divide the study year into

three periods, and focus analysis on the hot and dry

portion of the year. This may reveal clearer patterns

of difference between model runs over a range of

scales.

Due to the limitation on the availability of detailed

soil information the current study was conducted over

two small watersheds over which the numbers of soil

polygons are rather small. As a result the modal size of

soil patches in the conventional soil map over each

watershed is not clearly shown. A more extensive study

area is currently under development and a repeat of this

exercise is underway to confirm the results found in this

paper. Future research efforts should include more

watersheds in different environmental settings to further

test and confirm the hypothesis.
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Thieken, A.H., Lücke, A., Diekkrüger, B., Richter, O., 1999. Scaling

input data by GIS for hydrological modeling. Hydrol. Process. 13,

611–630.

USDA (United States Department of Agriculture) Soil Survey Divi-

sion, 1993. Soil Survey Manual. Washington DC: United States

Department of Agriculture, p. 238.



T. Quinn et al. / International Journal of Applied Earth Observation and Geoinformation 7 (2005) 324–338338
Van Gardingen, P.R., Foody, G.M., Curran, P.J. (Eds.), 1997. Scal-

ing-up: From Cell to Landscape. Cambridge University Press,

New York, pp. 113–136.
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