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When two spatial point processes are overlaid, the one with the higher rate is

shown as clustered points, and the other one with the lower rate is often perceived

to be background. Usually, we consider the clustered points as feature and the

background as noise. Revealing these point clusters allows us to further examine

and understand the spatial point process. Two important aspects in discerning

spatial cluster features from a set of points are the removal of noise and the

determination of the number of spatial clusters. Until now, few methods were

able to deal with these two aspects at the same time in an automated way. In this

study, we combine the nearest-neighbour (NN) method and the concept of

density-connected to address these two aspects. First, the removal of noise can be

achieved using the NN method; then, the number of clusters can be determined

by finding the density-connected clusters. The complexity for finding density-

connected clusters is reduced in our algorithm. Since the number of clusters

depends on the value of k (the kth nearest neighbour), we introduce the concept

of lifetime for the number of clusters in order to measure how stable the

segmentation results (or number of clusters) are. The number of clusters with the

longest lifetime is considered to be the final number of clusters. Finally, a seismic

example of the west part of China is used as a case study to examine the validity

of our method. In this seismic case study, we discovered three seismic clusters:

one as the foreshocks of the Songpan quake (M57.2), and the other two as

aftershocks related to the Kangding-Jiulong (M56.2) quake and Daguan quake

(M57.1), respectively. Through this case study, we conclude that the approach

we proposed is effective in removing noise and determining the number of feature

clusters.

Keywords: Nearest-neighbour; Feature; Noise; Cluster; Spatial point process;

Poisson process; Spatial data mining

1. Introduction

When two processes with different rates are overlaid by occupying different areas

(support domain), the one with the higher rate is usually displayed as clustering of

points, while the other with a lower rate is often considered as background (Byers
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and Raftery 1998). In general terms, background can be considered as noise, and

clustering of points can be viewed as a feature. Noise can be defined as a

homogeneous Poisson point process over the entire area while the feature is treated

as a Poisson process but restricted to a certain area and overlaid on the noise.

Revealing these point clusters allows us to further examine and understand the

spatial point process in question, which may be referred to as a ‘hotspot’ in some

studies (Brimicombe 2003). For example, revealing patterns of spatial distribution

of prostate cancer mortality helps in understanding the potential causes of cancer

(Jemal et al. 2002), and detecting the clustering of traffic accidents could shed

light on problems associated with traffic planning (Steenberghen et al. 2004).

Furthermore, this understanding of the spatial point process facilitates the

prediction of future events. For example, the clustering of earthquake events may

imply the outbreak of a strong earthquake or the existence of aftershocks of a strong

earthquake (Reasenberg 1999, Umino et al. 2002).

Two important aspects in discerning spatial cluster features from a set of points

are the removal of noise and the determination of the number of spatial clusters. The

second aspect is the same as determining the subjection of each point and the size of

each cluster. The presence of noise often obscures the patterns of clusters by

changing the size, shape, and concentration of clusters produced from spatial point

processes, and makes the detection of clusters difficult. In addition, distinct clusters

usually represent different independent instances of a homogeneous spatial process,

and each has approximately the same rate and is within a specific area. So,

determination of the number of clusters and size of each cluster will be very helpful

in understanding the spatial process in the research area.

To date, several methods have been established to detect clustered features

from spatial point processes in the presence of noise. Banfield and Raftery (1993)

initially put forward a statistical framework for non-Gaussian clustering and a

means of incorporating noise in the form of Poisson process. But their model can

only be applied for the special case where points are distributed uniformly along and

tightly about a line segment in linear space. In order to apply the Expectation-

Maximization (EM) algorithm to the cluster method, Fraley and Raftery (1998)

built a mixture model in which each statistical component corresponds to a different

cluster. Although their model can deal with spatial noise and clusters in varied

geometry, it cannot yet accommodate clusters in arbitrary shape especially for the

nonlinear distribution. Dasgupta and Raftery (1998) utilized a statistical model-

based clustering method to detect minefields in linear or piecewise linear form in the

presence of noise. With their method, the shape of the spatial point feature has to be

presumed prior to detection. Allard and Fraley (1997) derived a maximum-

likelihood estimator for a mixture of uniform point processes using the Voronoı̈

Polygons method. He assumed that the feature in the point set is a single connected

component, and estimated the boundary of feature using the maximum-likelihood

estimator. Although this algorithm can remove the noise effectively, its precondition

requires that the feature must be restricted to a single connected component without

holes, and the boundary of features is of a specific geometry. Byers and Raftery

(1998) developed the Nearest-Neighbour (NN) method for estimating features in

spatial point process by removing the clutter (noise). The NN method is

implemented by decomposing the distribution of kth nearest neighbours of each

point and cannot yet be employed to determine the exact number of the features

(clusters). Ester et al. (1996) and Sander et al. (1998) put forward the method of
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Density-Based Spatial Clustering of Application with Noise (DBSCAN) to discover

clusters from spatial database with noise. DBSCAN can address the number of

cluster features in a spatial data set, but the Eps (Epsilon, the parameter of

DBSACN to define the neighbourhood points of a given point) can only be

determined through an interactive process by examining its N-dist graph. It is quite

difficult and subjective for users to find the valley point of N-dist graph in order to

determine the value of Eps. It is a particularly difficult task when the curve appears

smooth. In order to discover clusters that are deemed acceptable to the user, they

may need to run the algorithm many times while setting different parameter values

for each run. Without any guidance in setting these parameters, a great deal of

effort and time are needed in such a trail-and-error approach (Han et al. 2001). To

improve the efficiency of density-based clustering, Ankerst et al. (1999) put for-

ward an algorithm, referred to as Ordering Points To Identify the Clustering

Structure (OPTICS). OPTICS provides a graphical and interactive method to help

find the cluster structure by constructing an augmented cluster-ordering of the

database objects and its reachability plot with respect to Eps (generating distance

which is used to generate the reachability plot) and MinPts. The reachability plot

is a one-dimensional plot which can display the structure of the clusters. Although

the reachability plot is less sensitive to the input parameters Eps and MinPts, the

clustering result is still dependent on manual determination of Eps9 (clustering

distance which is used to separate the feature from noise) and MinPts. Later

on, Daszykowski et al. (2001) proposed a DBSCAN-based modification to look

for natural patterns (NP) of arbitrary shape. They removed noise by separating

a prescribed percentage of data points, distributed at the tail of the frequency

curve. However, their method cannot provide an effective way to determine the

Eps.

In this paper, we present an approach to spatial data mining for finding clus-

tering features by removing noise and detecting the number of features (clusters)

from a spatial point data set in the presence of noise. We assumed that only two

point processes, i.e. the clustered points and the noise points, are dominant in the

point set. The NN method is employed to detect the Eps and features. With this

method, we can deal with the clusters with arbitrary shape. In order to determine

the number of spatial clusters under each k (the kth nearest neighbour), a recursive

connection method is developed based on the concept of density-connected,

employed in the DBSCAN. Then, the concept of lifetime is introduced to measure

the stability of number of clusters, with the final number of clusters taken as the

number of clusters with the longest lifetime.

This paper is organized in five sections. Section 2 reviews the theory of nearest-

neighbour method for noise removal. The recursive method based on the concept of

density-connected and the concept of lifetime used for determining the proper

number of clusters are described in section 3. The approach is evaluated in section 4

through a case study using seismic data to find foreshocks and aftershocks.

Conclusions and future work are given in section 5.

2. Theory of nearest-neighbour

2.1. Basic theory of the distribution of the kth nearest neighbours

Given a point pi in the 2D Poisson point set Y, its spatial probability distribution of

kth nearest distance Dk (the distance between pi and its kth nearest neighbour) can
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be acquired through seeking the probability density function (pdf) of including 0, 1,

2,…, k – 1 points within the circle of A(pi,x), in which pi is the centre, and x is the
radius.

P Dkoxð Þ~
Xk{1

m~0

e{lpx2

lpx2
� �m

m!
~1{FDk

xð Þ ð1Þ

where k is the parameter referring to the ordinal number of nearest neighbour,

FDk
xð Þ is the cumulative distribution function of Dk, l is the rate of the Poisson

point set. If Dk is larger than x, there must be 0 or 1 or 2…k – 1 points within the

circle A(pi,x), and their pdf fDk
xð Þ is the derivative of FDk

xð Þ:

fDk
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were l and k are the same as those in the equation (1). This pdf can be treated as a

mixture pdf of Gamma according to the definition of the pdf of Gamma, that is,
Y,C(k,lp), where Y5(Dk)2.

In our research, the noise and the feature can be represented as two superimposed
Poisson processes with different rates, for example, l1 and l2. In this way, the

bimodal pdf of Dk can be expressed as:

Dk*pC
1
2ð Þ

k,l1pð Þz 1{pð ÞC
1
2ð Þ

k,l2pð Þ ð3Þ

where p is the proportion coefficient, and l1 and l2 are the rates for the two

processes, respectively (Byers and Raftery 1998).

2.2. EM algorithm to evaluate the parameters

The EM algorithm can be employed to evaluate the parameters of l1, l2, and

p. A detailed discussion of the EM algorithm is beyond the scope of this paper;

interested readers are referred to Celeux and Govaert (1992), Moon (1996) and
Byers and Raftery (1998) for more details. A summary of the algorithm is given

below.

The E-step (the Expectation step) in this context is:
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while the M-step (the Maximization step) is:
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where n is the number of points, and t is the time of iteration. If we define the

component with l1 representing the feature, then points with d̂
tz1ð Þ

i o0:5 belong to

features, and points with d̂
tz1ð Þ

i v0:5 can be viewed as noise.
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3. Determining the proper number of clusters

3.1. Concept of density-connected

Although we can apply the NN method to clean the data sets that may contain

a large amount of noise, the number of clusters is still unknown. This problem can

be solved by employing the concept of density-connected, the core concept of

DBSCAN (Ester et al. 1996). There are two terms in respect of density-connected,

i.e. the NEps(pi) and MinPts, which should be defined first.

Of a point set D, the NEps(p) p[Dð Þ represents the Eps-neighbourhood of a point

p and is defined by NEps pð Þ~ q[Djdist p,qð ÞfEpsf g. The MinPts refers to the

minimum number of points in the Eps-neighbourhood.

So, a point p is density-connected to a point q with respect to (wrt) Eps and

MinPts if there is a chain of point p1, p2,…, pn, p15q, pn5p such that

pi{1[NEps pið Þ i~2,3,:::,nð Þ and NEps(pi) (i52, 3,…, n – 1) must contain at least

MinPts points. In fact, NEps(p1) and NEps(pn) can also contain points amounting to

or more than MinPts. A cluster is defined to be a point set M that any point pi[M is

density-connected to point pj[M pi=pj

� �
. A point pi[M is called a core point

if NEps(pi)>Minpts, otherwise, it is called a border point. Thus, noise is the set of

points not belonging to any given clusters. We must note that a cluster M wrt Eps

and MinPts contains at least MinPts points including core points and border points.

For more details, please see Ester et al. (1996) and Sander et al. (1998).

3.2. Determination of Eps

In the algorithm of DBSCAN, the Eps is the key parameter to detect the number of

clusters and can only be determined through a graphical-interactive way. That is, for

a given k, each point in the point set is mapping to the distance from the point itself

to its kth nearest neighbour (Dk). The sorted k-dist graph is constructed by sorting

the points in the point set in descending order based on their Dks. The threshold

point is the first point in the first valley of the sorted k-dist graph, and the Eps is the

distance between the threshold point to its kth nearest neighbour.

The simulated points are displayed in figure 1(a), in which the point set is made up

of noise and five clusters with an arbitrary shape. The Eps determined using this

visual method may be quite subjective due to the different criteria used by different

users. This will significantly influence the determination of the number of clusters.

Figure 1(b) shows the N-dist graphs of simulated data at k52 to 8. From figure 1(b),

it is difficult to locate the valley and determine the value of Eps. Therefore, the

number of clusters is difficult to determine. In fact, this method of determining

the number of clusters might be viable only when the density difference between

noise and cluster is dramatically large.

The subjectiveness and the impreciseness of the interactive method call for an

automated method in determining the proper number of clusters. If the kth nearest

neighbour of feature and noise can be transformed into the mixture distribution

function, then the NN method, which is viewed as non-parameter method, can be

used to define the Eps. The Eps can be calculated by applying the EM algorithm.

The formula is:

Eps~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1{r
r zk ln

l2

l1

p l2{l1ð Þ

vuuut
r~ 1{pð Þ=p ð6Þ
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where l1 and l2 are the rate of each component (feature and noise), respectively, p

is the proportion of the first component (these parameters can be acquired from

equations (4) and (5)), and k equals the value of MinPts.
From equation (6), we can deduce that the Eps depends on the choice of k and the

proportion of noise and feature points. The histogram of the fifth nearest neighbour

Figure 1. Simulated data and their N-dist graph. (a) Spatial distribution of simulated data;
(b) N-dist graph for k52 to 8. The valley which indicates the location of Eps cannot be easily
determined from the N-dist graph.
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of the simulated data (figure 1(a)) is displayed in figure 2. The reason we choose the

fifth nearest neighbour is that the histogram from the smaller nearest neighbour

cannot clearly display the bimodal characteristic. From this histogram, we clearly

found a mixture histogram including two components which represent feature

and noise, respectively. The EM algorithm can be applied to compute the Eps. The

result is 0.046.

After obtaining the value of Eps at a given k, we can find the distinct clusters and

thus the number of clusters at that k by running the following algorithm:

FeatureDetect(SpatialPoints, k): Boolean

[FeatureSet, NoiseSet, Eps] :5FindingFeatureByNN(SpatialPoints, k);

Id :51;

FOR i51 To FeatureSet.size(i) Do

Point :5FeatureSet.get(i);//get each point from FeatureSet

IF Point.Id55UNCLASSIFIED THEN

IF ExpandCluster(FeatureSet,Point,Id,Eps) THEN

Id :5Id + 1;

END IF

END IF

END FOR

FindingBorderPoints(NoiseSet, FeatureSet, Eps);

Return true;

END;//FeatureDetect

Function FeatureSet.get(i) returns the ith element in the feature points. The function

of FindingFeatureByNN separates noise points from feature points using the NN

method and returns the Eps, noise points (NoiseSet) and the feature points

(FeatureSet). The returned feature points are not yet decomposed into distinct

clusters. In order to decompose the feature points into distinct clusters, the function

of ExpandCluster is applied, as described below.

ExpandCluster(FeatureSet, Point, Id, Eps, k) : Boolean;

Seeds:5FeatureSet.regionQuery(Point,Eps);

Figure 2. Histogram of the simulated data with its fifth nearest neighbour.
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FeatureSet.changeIds(Seeds,Id);

Seeds.delete(Point);//delete current point of Seeds

WHILE Seeds ,. Empty DO

CurrentP :5Seeds.first();//get the first point of Seeds

Result :5FeatureSet.regionQuery(CurrentP,Eps);

FOR i FROM 1 TO Result.size DO

ResultP :5Result.get(i);//get ith point of Result

ChangeId(ResultP,Id);//change ID of ResultP to Id

Seeds.append(ResultP);//append ResultP to Seeds

END FOR;

Seeds.delete(CurrentP);//delete CurrentP from Seeds

END WHILE;//Seeds ,. Empty

RETURN True;

END;//ExpandCluster

The function of FindingBorderPoints is to find border points of each cluster, as

described below. The result of the function FindingBorderPoints is to allocate –Id

to the border points, whose IDs are different from those of core points of the same

cluster.

FindingBorderPoints(NoiseSet, Eps, FeatureSet) : Boolean;

FOR i FROM 1 TO NoiseSet.size DO

ResultP :5NoiseSet.get(i);//get ith point from NoiseSet

Result :5FeatureSet.regionQuery(ResultP,Eps);

IF Result.IsContainFeatureP Then

Id :5Result.GetFeatureID();//get the ID number of feature point in Result

ChangeId(ResultP,-Id);//change ID of ResultP to -Id

END IF

END FOR;

RETURN True;

END;//FindingBorderPoints

The function of the GetFeatureID return the ID of feature points in Result. If

two clusters M1 and M2 are close enough to each other, it might be that Result

contains points which belong to two different clusters. In this case, function

GetFeatureID will return the ID of feature point discovered first.

The function of regionQuery can be implemented by spatial access methods, such

as R-tree (Beckmann et al. 1990), whose runtime is O(log n). Function

IsContainFeatureP is used to check if the Result contains the core points.

Apparently, the efficiency of the algorithm is determined by the efficiency of the
function of regionQuery. The complexity of regionQuery is O(log n), where n is the

number of points. Hence, the algorithm of DBSCAN has the runtime of O(n * log

n). In our approach, the complexity of the algorithm is reduced. This is because

we have removed the noise before determining the number of clusters, that is, the

original data have been divided into feature set and noise set. If we assume that

the number of feature points is m1 and the number of noise point is m2, then

the complexity of FeatureSet.regionQuery reduces to O(log m1). The total com-

plexity of the algorithm (the total complexity of function ExpandCluster and
FindingBorderPoints) reduces to O(n * log m1), where m1 + m25n. Therefore, it is

reducing the complexity of the function regionQuery that improves the efficiency of

the algorithm. The next section will discuss the influence of k on the clustering

result.
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3.3. Lifetime of number of clusters

From the analysis above, we think that the number of clusters may depend on the

value of k. Figure 3 shows the clustering results with k55, 9, 18. When k is small,

some small features (the three small clusters in figure 3(a)) appear, which may be

viewed as pseudo-features which disappear as k.8. When k59, small features are

filtered out. As k increases, some features, which should be viewed as distinctive

clusters, may merge into a large one. For instance, in figure 3(c) the one on the right

side and the one at the bottom are united. The effect of k on the number of clusters

makes it difficult to determine the correct number of clusters in a spatial point set.

The concept of lifetime of number of clusters is introduced in this paper to assist

in the determination of the correct number of clusters in a spatial point set. The

lifetime of the number of clusters is defined as the period a given number of clusters

exists over k, under the condition that no existing clusters disappear and no new

clusters emerge during this period. That is to say, not only does the number of

clusters need to be stable but also the clusters must remain the same (‘alive’) during

the lifetime of a specific number of clusters. The number of clusters can be readily

determined at different k, whereas the assessment of aliveness of a cluster may not

be easily achieved.

For this reason, we define aliveness as follows. When considered as ‘alive’, a

cluster must satisfy two conditions: (1) for a given cluster (A1) at k, there must be a

cluster (A2) at k + 1 which shares more than 50% core points of itself with A1; (2)

A1 shares more than 50% core points of itself with A2. The threshold of 50% applied

in the paper will be sufficient for identifying the newly emerged cluster and the

disappeared cluster. In that way, A1 and A2 can be assumed as the same, though

they may be different in the number of points. Hence, the lifetime of a given number

of clusters can be acquired based on the condition that each cluster must be

confirmed as ‘alive’ during this period, and this can be easily implemented by

counting common core points between clusters at different k.

The concept of lifetime can be used to measure the stable degree of the

segmentation result. For example, the lifetime of five clusters simply means the

total number of times producing five clusters in the data set within the scope of

k (k51…l).

Table 1 lists the cluster number along with different k. We found that the cluster

number equals 5 when k59, 10, …, 17 and each of the 5 clusters is ‘alive’ during this

period. In other words, no new clusters emerged during this period. Consequently,

the lifetime during which 5 clusters stay ‘alive’ is 9. This means that the most stable

state of the simulated data should be divided into 5 clusters. Besides 5, the 8 and 4

clusters have the lifetime of 3 after the aliveness of each cluster was checked. These

two results are the sub-stable states. Hence, 5 clusters will be considered as the

proper number of clusters in the simulated data set according to the lifetime of

number of clusters.

3.4. Restriction of the algorithm

Although this algorithm can find the clustered points and detect the number of

cluster features, it still has one limitation: this algorithm can only be applicable to

those point sets, in which only two point processes are dominant, i.e. the feature and

the noise. Otherwise, the l calculated cannot be used to represent each cluster

feature.
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Figure 3. Clustering result of simulated data. (a) k55; (b) k59; (c) k518. The number of
clusters decreases, and the number of border points increases as k increases (encircled symbols
represent border points; solid points represent noise).
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4. Case study: determining spatial clusters of earthquakes

4.1. Clusters of earthquakes

Clustered earthquakes are usually considered as the foreshocks or aftershocks of a

strong earthquake. Clustered earthquakes are perceived to be foreshocks if a strong

earthquake breaks out after the clustered earthquakes and are viewed as aftershocks

if a strong earthquake breaks out before the clustered earthquakes. Thus, clustered

earthquakes could serve as a primary clue to predict earthquakes if the possibility of

their being aftershocks of some strong earthquakes can be excluded (Chen et al.

1999, Ripepe et al. 2000). In addition to foreshocks, aftershocks of strong

earthquakes can also be considered as clustered earthquakes, namely a seismic

sequence (Wu et al. 1990). The determination of the area of a seismic sequence is

very useful for understanding its changing trend and the mechanism of strong

earthquakes. Therefore, the determination of clustered earthquakes is attracting

more and more attention in the seismic-research community.

As we known, foreshocks and aftershocks are not only spatially clustered but also

temporally clustered. Hence, the temporal segmentation can sometimes help to pick

out the spatially clustered earthquakes. However, in most cases, some background

earthquakes simultaneously break out with those spatially clustered earthquakes,

and in particular, aftershocks and (or) foreshocks within different areas may happen

in the same period, so the temporal segmentation may only provide the temporally

clustering information of earthquakes and cannot effectively determine the spatially

clustered earthquakes. In order to locate the spatially clustered earthquakes,

background earthquakes should be removed using spatially concentrated nature of

clustered earthquakes (in the following text, ‘clustered earthquakes’ are referred to

as ‘spatially clustered earthquakes’). The background earthquakes are referred to as

several small earthquakes that break out at a stable rate within a certain area (Diao

et al., 1994, Wyss and Toya 2000, Pei et al. 2003). In this regard, background

earthquakes and clustered earthquakes can be deemed as two overlaid spatial

Poisson processes with different rates of l. The separation of these two types of

earthquakes can be used as a test case for evaluating the proposed method of

detecting spatial clusters from a point data set.

4.2. Study area and seismic data

4.2.1. Study area. The study area is located between 100–107uE and 27–34uN

(figure 4). It contains the east part of Tibet, south part of Sichuan and Chongqing,

north part of Yunnan, and west part of Guizhou. From geotectonic point of view,

this area is the transition from the Tibetan plateau to the Yangtze Platform. It is one

of the areas with the most intensive seismicity in China. Sixteen devastating

earthquakes (M>6.0) occurred in this area from 1970 to 2002 (Feng and Huang

1980, 1989, China Seismograph Network Data Management Center 2004). The

seismic records in this area may not only indicate the law of seismicity but also

Table 1. Number of clusters of simulated data for different values of k.

Value of k 1 2 3 4 5 6 7 8 9 10
Cluster number 47 11 9 9 8 8 8 6 5 5
Value of k 11 12 13 14 15 16 17 18 19 20
Cluster number 5 5 5 5 5 5 5 4 4 4
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provide evidence to help us to understand the tectonic movement of this area (Wang

et al. 2003).

4.2.2. Seismic dataset. All of the catalogue data are from the Seismic Catalog of

West China (1970–1975, M>1) (Feng and Huang 1980) and Seismic Catalog of

West China (1976–1979, M>1) (Feng and Huang 1989). The selected seismic data

are from 15 February 1975 to 15 August 1976 and larger than 2 (M). Thus, 236

epicentres are obtained altogether. Because the devastating Xingtai quake (M57.2)

caused serious losses in 1966, the Chinese government paid more attention to

monitoring and predicting the seismicity, and began to set up the seismograph
network across the whole country. In the following few years, more than 400

seismograph stations were founded, and the monitoring ability for seismicity has

been greatly promoted in terms of the measurement precision and reaction speed

(Jiao et al. 1990). According to Jiao et al. (1990), in the research area the floor limit

of seismic monitoring and measuring in this area has been lowered to 2 (M). In

addition, the errors of the epicentres (3.M>2) were less than 15 km, and the errors

of the epicentres (M>3) were less than 5 km. Therefore, the integrality and the

quality of this dataset satisfy the requirement of this research.

4.3. Results of the case study

The number of clusters with different values of k is listed in table 2. We found that

there are two stable states in the sequence of number of clusters, 4 and 3, after

Figure 4. Location of the research area.

Table 2. Number of earthquake clusters in western China for different values of k.

Value of k 1 2 3 4 5 6 7 8 9 10
Cluster number 29 20 12 8 6 5 4 4 4 4
Value of k 11 12 13 14 15 16 17 18 19 20
Cluster number 4 3 3 3 3 3 3 2 2 2
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checking the aliveness of each cluster. Moreover, 3 clusters have the longest lifetime.

According to the lifetime trend and the spatial distribution of clustered earthquakes

(figure 5), we think that the features in figure 5(b) are more likely the clustered

earthquakes in the research area.

By running the algorithm with k512, we obtain three clustering features (taking

k512 is to reduce the number of border points). We mark them as feature A, B, and

C, respectively.

Figure 5. Clustered earthquakes with different k. (a) k54 (8 clusters); (b) k512 (3 clusters).

New approach to the nearest-neighbour method to discover cluster features 165



4.4. Analysis and discussion of the case-study results

Do these clustered earthquakes really belong to aftershocks or foreshocks of strong

earthquake? The seismic records allow us to answer this question. For features B

and C, they can be viewed as the aftershocks of strong earthquakes. According to
Zhang (1986), feature B is the aftershocks of Kangding-Jiulong quake (M56.2),

which broke out at 29u 269 N, 101u 489 E on 15 January 1975. Feature C is the

aftershocks of Daguan quake (M57.1), which broke out at 28u 069 N, 104u 009 E

on 11 May 1974. Feature A can be viewed as the foreshocks of Songpan quake.

The strong earthquake of Songpan (M57.2) broke out at (32u429 N,104u069 E)

on 16 August 1976 (Zhang 1990). The main shock was located not in the centre

of feature A but in the south part of the area. Feature A apparently indicated the

outbreak of the Songpan strong quake (note that the seismic data used in this case
study span from 15 February 1975 to 15 August 1976).

5. Conclusions and future work

Finding clustering features and determining their number from the spatial database
are major challenges in spatial data mining. Most methods cannot achieve both of

these in an automated way. In this paper, we present a new approach based on the

NN method to accomplish the task. We also employed the concept of density-

connected and the concept of the lifetime of a number of clusters to determine the

proper number of clusters. Our approach requires only one parameter k and reduces

the run time. Although the method was applied to seismic data for discerning spatial

patterns of clustered earthquakes, it can be easily applied to other areas of point

processes such as landslide and spatial distribution of cancers.
As discussed in section 3.4, this algorithm is limited to those point sets in which

only two points processed are dominant; future theoretical work will focus on the

analysis for the overlaid process, which may contain more than two point processes.
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WU, K.T., JIAO, Y.B., LŰ, P.L. and WANG, Z.D., 1990, Panorama of Seismic Sequence

(Beijing: University Press) (in Chinese).

WYSS, M. and TOYA, Y., 2000, Is background seismicity produced at a stationary poissonian

rate. Bulletin of the Seismological Society of America, 90, pp. 1174–1187.

ZHANG, Z.C., 1986, Earthquake Cases in China (1966–1975) (Beijing: Seismological Press) (in

Chinese).

ZHANG, Z.C., 1990, Earthquake Cases in China (1976–1980) (Beijing: Seismological Press) (in

Chinese).

168 New approach to the nearest-neighbour method to discover cluster features


