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Most multiple-flow-direction algorithms (MFDs) use a flow-partition coefficient

(exponent) to determine the fractions draining to all downslope neighbours. The

commonly used MFD often employs a fixed exponent over an entire watershed.

The fixed coefficient strategy cannot effectively model the impact of local terrain

conditions on the dispersion of local flow. This paper addresses this problem

based on the idea that dispersion of local flow varies over space due to the spatial

variation of local terrain conditions. Thus, the flow-partition exponent of an

MFD should also vary over space. We present an adaptive approach for

determining the flow-partition exponent based on local topographic attribute

which controls local flow partitioning. In our approach, the influence of local

terrain on flow partition is modelled by a flow-partition function which is based

on local maximum downslope gradient (we refer to this approach as MFD based

on maximum downslope gradient, MFD-md for short). With this new approach,

a steep terrain which induces a convergent flow condition can be modelled using

a large value for the flow-partition exponent. Similarly, a gentle terrain can be

modelled using a small value for the flow-partition exponent. MFD-md is

quantitatively evaluated using four types of mathematical surfaces and their

theoretical ‘true’ value of Specific Catchment Area (SCA). The Root Mean

Square Error (RMSE) shows that the error of SCA computed by MFD-md is

lower than that of SCA computed by the widely used SFD and MFD algorithms.

Application of the new approach using a real DEM of a watershed in Northeast

China shows that the flow accumulation computed by MFD-md is better

adapted to terrain conditions based on visual judgement.

Keywords: Digital elevation model (DEM); Multiple flow direction algorithm

(MFD); Terrain analysis; Flow accumulation; Geographic information system

(GIS)

1. Introduction

Flow direction is one key factor in many research fields (such as distributed
hydrological modelling, watershed feature extraction, geomorphology, soil erosion,

etc.) (Beven and Kirkby 1979, Moore et al. 1991, Wilson and Gallant 2000) and thus

becomes an important subject of terrain analysis. The computation of flow direction

is based on the assumption that the local hydraulic gradient can be estimated with
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the local slope gradient which is derived from the DEM, especially the gridded DEM

(Beven and Kirkby 1979, O’Loughlin 1986, Wilson and Gallant 2000). Therefore,

most flow-direction algorithms use gridded DEM to determine the flow direction of

a point according to the elevations in a 363 window around it (Wilson and Gallant

2000).

Current flow-direction algorithms can be classified into two main types according

to the flow-direction schemes used: single flow direction (SFD) and multiple flow

direction (MFD) algorithms (Wolock and McCabe 1995). The basic idea of SFD

algorithms is that all water from a point (or pixel) should flow into one and only one

neighbouring pixel which has the lowest elevation. This idea of the steepest descent

direction is easy to implement, and suited for modelling convergent flow. Many

SFD algorithms have been proposed and frequently used in many flow routing

applications (O’Callaghan and Mark 1984, Martz and de Jong 1986, Jenson and

Domingue 1988, Fairfield and Leymarie 1991, Lea 1992). However, SFD has

evident defects, i.e. the inability to model divergence of flow and the production of

parallel flow (Freeman 1991, Fairfield and Leymarie 1991, Wilson and Gallant

2000). A detailed discussion of SFD and its shortcomings are beyond the scope of

this paper, and interested readers are referred to Bertolo (2000) for more discussion

on SFD.

MFD assumes that flow from the current position could drain into more than one

downslope neighbouring pixel. The flow-partitioning proportion among downslope

neighbouring pixels is determined based on slope gradient (Quinn et al. 1991). Much

research has shown that MFD is obviously better than SFD when the spatial pattern

of hydrological parameters (such as flow accumulation and topographic index) is

computed (Moore et al. 1993a, Wolock and McCabe 1995, Pan et al. 2004). The key

issue in MFD is how to partition the flow into multiple downslope pixels. A

commonly used approach for modelling divergent flow is the fixed-exponent

strategy (Freeman 1991, Quinn et al. 1991), although other approaches have been

examined (Costa-Cabral and Burges 1994, Tarboton 1997). The fixed-exponent

strategy is unsuitable when the terrain conditions include both convergence and

divergence because the exponent cannot be altered in response to local terrain

conditions during the execution of the programme. In other words, this approach is

not adaptive to local terrain conditions which are important for partitioning local

flow. Some efforts have been made to model the flow partition in complex terrain

using a varying exponent strategy (e.g. Quinn et al. 1995, Kim and Lee 2004).

However, the effect of local terrain conditions on the dispersion of local flow has

still not been effectively modelled in these efforts. The shortcomings of current

MFDs are further discussed in the next section.

This paper presents an adaptive approach for varying a flow-partition exponent

based on local terrain conditions. Section 2 reviews current MFD algorithms and

highlights the key problems associated with the fixed exponent strategy. Section 3

presents the new flow-partition approach. Section 4 provides a quantitative

evaluation of the new approach using mathematical surfaces. Section 5 presents

an application of the method using a real watershed in Northeast China.

Conclusions are made in section 6.

2. MFD algorithms based on a flow-partition exponent

In MFD, the cell with the steeper descent, among all downslope neighbouring cells,

will receive more flow. Quinn et al. (1991) made the original contributions for MFD

444 C. Qin et al.
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and presented the following expression to model this flow partition:

di~
tan bið Þp|Li

P8

j~1

tan bj

� �p
|Lj

ð1Þ

where di is the fraction of flow into the ith neighbouring cell; tan bi is the slope

gradient of the ith neighbouring cell; the exponent p is the flow-partition exponent

(p.0) (some authors refer to this as the ‘variable exponent’ (Holmgren 1994) or the
‘flow partitioning factor’ (Kim and Lee 2004)); and Li is the ‘effective contour

length’ of pixel i. The value of Li is 0.5 for pixels in cardinal directions and 0.354 for

pixels in diagonal directions (Quinn et al., 1991). Recently, Chirico et al. (2005)

suggested that the Li value should be uniform for both cardinal and diagonal

directions when SFD or D‘ (Tarboton 1997) is applied. For the convenience of

comparing the results of the new method with that of Quinn et al. (1991)’s

algorithm, we decided to follow the effective contour length defined by Quinn et al.

(1991).

The selection of p determines the flow-partition scheme of MFD. The larger the

value of p, the more similar MFD is to SFD. Actually, SFD can be deemed to be a

special case of MFD under the extreme condition of pR + ‘ (Holmgren 1994). The
earlier MFD algorithms take a positive constant as the exponent to model divergent

flow on hill slopes (Freeman 1991, Quinn et al. 1991, Holmgren 1994). As a result, all

terrain conditions, no matter how flat or steep, divergent or convergent, are modelled

as the same. The difference of local terrain conditions on flow distribution is ignored.

As an example, figure 1 shows three areas of 363 pixels with a grid resolution of

1 m, and the flow dispersion from the central pixel is computed by a representative

MFD, Quinn et al. (1991)’s algorithm (referred to as ‘MFD-Quinn’ in this paper).

The terrain conditions of these three areas range from steep to smooth (the

maximum downslope angles are 35.3u, 8.0u, and 2.4u, respectively). Under the steep

terrain condition, most of the flow from the centre pixel should drain to the

Figure 1. Examples of the MFD-Quinn algorithm.

Selecting a flow-partition exponent 445
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neighbouring cell with the steepest downslope, which should be similar to the

situation modelled by SFD. The flatter the terrain condition, the more divergent

the flow. Thus, the flow from the centre pixel should be distributed more evenly to

the neighbouring dowslope pixels. Under MFD-Quinn which sets p51 (Quinn et al.

1991), the flow is partitioned in a uniform manner for all three areas, and the

partition of flow cannot adapt to different local terrain conditions, no matter how

steep or flat (figure 1). This deficiency is also seen in all other MFD algorithms

which set p as a constant (fixed p). Although more convergent flow might be

modelled using a higher p value (Holmgren 1994), for an MFD with a fixed p value,

the p value cannot be altered according to local terrain conditions during the

execution of the algorithm. Thus, the particular fixed p value might be good for

some locations but not for others. This means that MFDs with a fixed p value

cannot adapt to local terrain conditions.

Some algorithms try to set up a flow-partition scheme to accomplish both MFD

for a divergent surface and SFD for a convergent surface. Moore et al. (1993b) set

up an FD8/FRho8 method. FD8/FRho8 requires the specification of a critical

upslope contributing area for channel initiation. Then, the MFD with a fixed p value

proposed by Freeman (1991) is applied in upland areas above defined channels, and

the D8 (O’Callaghan and Mark 1984) or Rho8 (Fairfield and Leymarie 1991)

algorithm is applied below the points of channel initiation. But the appropriate

value of a critical upslope contributing area might vary depending on the

characteristics of catchment (Güntner et al. 2004). The transition from MFD to

SFD can cause an irregularity in the frequency distribution of the contributing area

(Wilson and Gallant 2000).

Pilesjö et al. (1998) designed a ‘form-based’ MFD. The basic idea is that the

topographic form of a sub surface (i.e. ‘form’) dictates the flow distribution. If the

form is concave or flat, SFD is applied. If the form is convex, the MFD-Quinn

algorithm is applied. This is a clever idea, but the method is also very sensitive to the

quality of DEM because small errors in DEM could shift the form from the convex

to the concave or vice versa. However, flow on convex forms is still modelled with a

fixed flow-partition exponent.

Quinn et al. (1995) described a MFD algorithm where the flow-partition exponent

was changed continuously from 1 (full dispersion) to a large value (SFD) as the

contributing area increased, giving a smooth change from MFD to SFD. They used

the MFD-Quinn algorithm to compute a spatial distribution of flow accumulation.

Then, an ‘optimal’ channel initiation threshold (CIT) was identified for computing

the flow-partition exponent using the following equation:

p~ A=threshz1ð Þh ð2Þ

where A is the pre-computed accumulation of the interested cell; thresh is the

accumulation threshold of the application region, the same as the channel initiation

of Moore et al. (1993b); and h is a positive constant. The larger the value of h, the

faster the method approaches SFD. Some researchers also focused on how to

acquire a varying p value according to the accumulation distribution pre-computed

by other SFD or MFD. An example is the SDFAA method which computes a p

value by a genetic algorithm (Kim and Lee 2004). These MFD algorithms are based

on an assumption that the pre-computed accumulation distribution can sufficiently

reflect the effects of local terrain conditions on flow distribution. But flow

accumulation is not actually a ‘local’ topographic attribute. The accumulation of a

446 C. Qin et al.
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cell is affected by all cells in its upland areas. Moreover, different flow-direction

algorithms might produce very different accumulation distributions. So the

rationale of this assumption is questionable, and this type of MFD is not

independent of other flow-direction algorithms. Furthermore, the identification of

‘optimum’ CIT is subjective and complicated (Quinn et al. 1995, Güntner et al.

2004). Despite these deficiencies, the varying flow-partition exponent could still

yield more reasonable results than the fixed exponent (Quinn et al. 1995, Kim and

Lee 2004).

The above discussion leads us to see both the deficiencies of current MFD

algorithms and the need for an adaptive strategy for determining the flow-partition

exponent according to local terrain conditions. In the next section, we present an

adaptive approach to varying the exponent p, which is based on local topographic

attribute that reflects the effects of local terrain conditions on flow distribution.

3. Adaptive approach to varying the flow-partition exponent for MFD

3.1 Basic idea

We believe that the local terrain conditions control flow partitioning at each cell. It

is more reasonable to use local topographic conditions to determine the flow-

partition exponent than to use global topographic attributes (such as flow

accumulation). Using local topographic conditions also makes the algorithm more

adaptive to local terrain conditions which directly control the local flow partition.

This idea results in the development of a new flow-partition approach to MFD.

There are two steps in building this new approach. The first is the selection of the

local topographic attribute (e) which can directly describe the effect of local terrain

on flow partitioning. The second step is the construction of a function of e (f(e)) for

computing the flow-partition exponent which is adaptive to the local terrain

conditions. So, the varying flow-partition exponent is determined through a flow-

partition exponent function f(e) based on local terrain conditions. The two steps are

discussed below in detail.

3.2 Selection of local topographic attribute

The candidates of local topographic attribute for our flow-partition scheme should

be those which not only reflect the local terrain conditions but also control the local

drainage. It is natural to use something similar to a local slope gradient because the

local hydraulic gradient is estimated with the local slope gradient, which is

computed by the centre cell and all of its neighbouring cells, according to the basic

assumption of flow-direction algorithms (Beven and Kirkby 1979). Hjerdt et al.

(2004) argued that the downslope topography is an important factor for estimating a

hydraulic gradient. Among the topographic attributes related to the local slope

gradient, Güntner et al. (2004) also showed that the local downslope gradient

computed by the centre cell and its downslope neighbouring cell can quantify flow

of water better than the local slope in explaining the soil water content of catchment.

Therefore, we use downslope gradient as the local topographic attribute to model

the impact of local terrain on flow partition.

We consider three downslope gradients as candidates for our MFD scheme: the

maximum downslope gradient, the minimum downslope gradient, and the average

downslope gradient. We determine which candidate of these local topographic

attributes is the most appropriate for the new flow-partition scheme based on two

Selecting a flow-partition exponent 447
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principles. The first is that the chosen local topographic attribute can express the

change in local terrain condition which has evident geomorphological meanings for

the change in flow partitioning. As discussed before, the flow-partition scheme

should be more similar to SFD when the terrain condition consists of a higher

downslope gradient in the steepest descent direction. Most directly, the maximum

downslope gradient, among the three candidates, can quantify the steepness in the

steepest descent direction.

The other principle for choosing the local topographic attribute is related to the

sensitivity to subtle variations in DEM. The local topographic attribute should not

be too sensitive to subtle variations of DEM because not only is the effect of subtle

DEM variations on flow partition often small, but also the likelihood of subtle

DEM variations being errors is high. Theoretically speaking, the subtle variations of

DEM have a much more marked effect on the minimum downslope gradient than

the maximum downslope gradient. The average downslope gradient is also sensitive

to the subtle variations in DEM error because these subtle variations can change the

number of neighbouring downslope cells. The maximum downslope gradient should

be less sensitive to the DEM error than the minimum or average downslope

gradients.

Figure 2 illustrates the sensitivity of these three candidates and slope gradients to

subtle variations in DEM for the watershed described in section 5. Through visual

comparison, all of them show the variation of local terrain conditions, more or less.

But there are many disorderly and unsystematic breaks in the image of an average

downslope gradient and a minimum downslope gradient. The spatial distribution of

the maximum downslope gradient, which is similar to that of a slope gradient,

follows the terrain conditions on the contour maps (see also figure 4) the best.

Therefore, the maximum downslope gradient meets the two principles best and was

chosen as the local topographic attribute for the new flow-partition scheme.

Figure 2. Comparison of (a) maximum downslope gradient, (b) minimum downslope
gradient, (c) average downslope gradient, and (d) slope gradient.

448 C. Qin et al.
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3.3 Determination of flow-partition exponent using the maximum downslope gradient

The construction of the function f(e) for determining the flow-partition exponent using

the maximum downslope gradient includes two issues: the function form of f(e) and its

uppper and lower bounds. The principle used in constructing f(e) is that f(e) can

properly model the effects of the maximum downslope gradient on flow partitioning.

Furthermore, the function form should be as simple as possible. When the maximum

downslope gradient is large, the value of f(e) should be large accordingly to model the

convergent flow. If the maximum downslope gradient is small, the corresponding f(e)

should also be small to model the divergence of flow. A linear function would meet

both conditions. Therefore, we chose a linear function of the maximum downslope

gradient as f(e). Equation (3) gives the form of this linear function

f eð Þ~
pl ; eƒeminð Þ

e{emin

emax{emin
| pu{plð Þzpl ; eminvevemaxð Þ

pu ; e§emaxð Þ

8
><

>:
ð3Þ

where e is the tangent value of the maximum downslope gradient (tan b and b being the

maximum downslope gradient); f(e) is the flow parition function; pu and pl are the

upper and lower bounds of f(e) and are used as the p values representing completely

divergent and convergent flows, respectively (see discussion below); and emin and emax

are the e values which are associated with pl and pu, respectively. The determination of

the bounds (i.e. pu and pl) for f(e) depends on many researchers’ comparison and

discussion about the best value of the flow-partition exponent for modelling the

complete divergence or convergence of flow. Among integers, p51 is proposed for the

complete divergence of flow (Quinn et al. 1991, Holmgren 1994, Pilesjö and Zhou

1997). Freeman (1991) proposed p51.1 as the best value after he analysed the instances

of p being 1, 1.1, and 1.25, respectively. So, we choose p51.1 as the lower bound for

f(e). Both Holmgren (1994) and Quinn et al. (1995) recommended p510 for modelling

the single directional flow. Their recommendation is taken here as the upper bound of

f(e). So, the domain of f(e) is defined as [1.1, 10].

We set emin50 and emax51 (tan 45u) for this experiment. This means that the flow-

partition exponent is set to pu to model the single flow direction when the local

maximum downslope gradient is 45u or above, and to pl when the local maximum

downslope gradient is 0. It is understandable to choose 0u for emin because we expect

flat areas to be typical areas of divergent flow. The determination of 1 (or tan 45u) to

be associated with pu is made under an assumption that a location with a maximum

downslope gradient of 45u or above will have a complete convergent flow. In

addition, the 45u for emax allows us to capture most of the gradient values for flow

parition because slope gradient values for most terrains are in the range of 0–45u,
and multiple flow directions often occur in areas with low gradient values (,45u).
Although the determination of emin50 and emax51 are slightly arbitrary, these

settings are made to illustrate the advantages of this adaptive approach to varying

flow-partition exponent for MFD algorithms. A detailed study on the effect of these

settings on the algorithm will be reported in a separate paper.

With the above settings, the final form of the flow-partition exponent function is

as follows:

f eð Þ~8:9|min e, 1ð Þz1:1 ð4Þ

where min(e, 1) is the minimum between e and 1.

Selecting a flow-partition exponent 449
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The new MFD algorithm proposed in this paper then takes the following form:

di~
tan bið Þf eð Þ

|Li

P8

j~1

tan bj

� �f eð Þ
|Lj

ð5Þ

where f(e) is computed from equation (4), and the definition of other symbols is the

same as that in equation (1). We name the new MFD algorithm MFD-md (MFD

algorithm based on the maximum downslope gradient).

Figure 3 shows flow partitioning by MFD-md for the same three areas shown in

figure 1. The spatial grid resolution is 1 m. When the terrain is steep, MFD-md

drains the flow mainly into the neighbouring cell in the direction with the steepest

downslope, which is similar to the situation modelled by SFD. When the terrain

becomes flatter, MFD-md partitions the flow adaptively and more evenly distributes

the flow among all downslope neighbouring cells, which is similar to the result by

MFD-Quinn (figure 1). Thus, in virtue of the adaptive approach to varying flow-

partition exponents, MFD-md can more accurately model flow partitioning under

different terrain conditions.

4. Quantitative assessment for MFD-md

This method for assessing flow-direction algorithms is necessary because different

algorithms can produce very different results, even for the same DEM (Wilson and

Gallant 2000). The most commonly used method of assessing error is to apply the

algorithm to a real DEM. However, this assessment is data-dependent and hard to

quantify (Zhou and Liu 2002). A few artificial DEMs were used to show the

rationality of the flow-direction algorithm. An example is an artificial cone surface

used in Freeman (1991). However, the flow accumulation computed by the MFD

algorithm of Freeman (1991) was subjectively judged to be ‘reasonable’ or

‘unreasonable’. If the ‘true’ value of flow accumulation or Specific Catchment

Figure 3. Examples of the MFD-md algorithm.

450 C. Qin et al.
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Figure 4. Mathematical models, the contour maps of artificial surfaces, and the ‘true’ SCA
distributions of four typical mathematical surfaces: (a) ellipsoid; (b) inverse ellipsoid; (c)
saddle; and (d) plane. The unit represented is in metres.

Selecting a flow-partition exponent 451
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Area (SCA for short, which is defined as ‘upslope area per unit width of contour’

(Wilson and Gallant 2000)) of artificial surfaces can be pre-determined by

mathematical inference, the flow-direction algorithms can then be quantitatively

assessed.

There are two quantitative methods with which artificial DEMs are used to assess

the error of grid-based flow-routing algorithms. One was developed by Zhou and

Liu (2002) and the other by Pan et al. (2004). Both create artificial DEMs to

simulate typical terrain conditions, such as planar, convergent, divergent, and so on.

The root mean square error (RMSE) can be used to assess the errors between the

theoretical flow accumulation (or SCA) and the result computed by flow-direction

algorithms. Comparatively, the artificial DEMs created by Zhou and Liu (2002)

include one more terrain type, i.e. the saddle surface representing the ridge. The

ellipsoid surface in Zhou and Liu (2002) is more similar to the practical convex slope

than to the cone surface in Pan et al. (2004). We use the method developed by Zhou

and Liu (2002) to assess MFD-md.

4.1 Method and material

According to Zhou and Liu (2002)’s method, four types of artificial surfaces are

constructed using mathematical models. They are based on an ellipsoid (represent-

ing convex slopes), an inverse ellipsoid (representing concave slopes), a saddle

(representing ridges), and a plane (representing straight slopes) respectively. Figure 4

shows an example of the mathematical models, the contour maps of the artificial

surfaces, and the ‘true’ SCA inferred from the mathematical models. The artificial

DEMs are generated from the mathematical surfaces at a resolution of 1 m.

Zhou and Liu (2002) take the SCA defined as the upstream length at the point

where the contour length tends to zero. The details of computing SCA at any given

point on a given mathematical surface are not included in this paper. Interested

readers are referred to Zhou and Liu (2002). The error at each cell caused by the

flow-direction algorithm can be computed by (Zhou and Liu 2002):

Ei~
SCAtrue

i {SCAi

cell size
ð6Þ

where Ei is the error at the ith cell; SCAtrue
i and SCAi are the ‘true’ value of and

computed SCA for the cell, respectively. Thus, the RMSE can be computed for the

assessment and comparison of the flow-direction algorithms:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i~1

Eið Þ2

n

v
u
u
u
t

ð7Þ

where n is the number of cells for assessment.

We use the artificial DEMs in figure 4 and the method of Zhou and Liu (2002) to

quantitatively assess MFD-md. For comparing MFD-md with classical SFD and

MFD, we compute SCAs of artificial DEMs using D8 (a representative SFD) and

MFD-Quinn (a representative MFD), and MFD-md, respectively. Here, we do not

choose a current MFD with varying flow-partition exponent (e.g. Quinn et al.

(1995)’s MFD) as the reference MFD. This is mainly because of their dependence on

other flow-direction algorithms, as discussed in section 2.

452 C. Qin et al.
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4.2 Results of quantitative assessment for MFD-md

Table 1 lists the RMSE of errors computed by D8, MFD-Quinn, and MFD-md.

Under all tested terrain conditions, MFD-md produces the lowest error among the

three tested algorithms. The lowest error of all is produced by the ellipsoid surface as

opposed to other terrain conditions. This shows that the flow-direction algorithm is

more suitable for convex slopes than other typical terrains. All three algorithms

obtain their highest errors for inverse surfaces. This may partly be related to the fact

that the surface of an artificial inverse ellipsoid has no outlet for flow. For the plane

surface (representing the straight slope), MFD-Quinn yields the highest error

because MFD-Quinn does not accurately model the flow on the steeper terrain. In

summary, MFD-md can model the four kinds of terrain conditions better than D8

and MFD-Quinn.

5. Application of MFD-md

5.1 Data and the pre-processor for depressions and flat areas in DEM

A typical small catchment in the Nenjiang watershed in Northeast China is applied

with MFD-md. The catchment is approximately 1.6 km61.3 km in size and has a

relatively low relief as a whole (figure 5). The DEM is in a regular 10 m grid with

more than 20 000 pixels.

A pre-processor for DEM is nearly always necessary for applying the flow-routing

algorithms. This is because the real DEM often contains depressions or flat areas

which interfere with the execution of flow-routing algorithms (Jenson and

Domingue 1988, Kong and Rui 2003). The usual method for dealing with

depressions is to fill them (O’Callaghan and Mark 1984). There are two ways for

Figure 5. DEM of application area.

Table 1. RMSE for four mathematical surfaces in figure 4 using D8, MFD-Quinn, and
MFD-md algorithms.

Ellipsoid Inverse ellipsoid Saddle Plane

D8 65.76 1906.44 125.05 96.02
MFD-Quinn 6.60 500.51 109.78 412.45
MFD-md 6.09 431.61 97.01 39.77
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processing the flat areas. The first way is to keep the elevation unchanged and assign

a flow direction for every cell in flat areas according to a set of rules (Jenson and

Domingue 1988). This method is aimed at SFD, not MFD. The second way is to

mildly amend the elevation of the cells in flat areas according to the terrain

conditions. A good example is the DEM-processing method proposed by Martz and

Garbrecht (1998). Their method makes every cell in flat areas have reasonable

downslope neighbouring cell(s) without changing the veracity of the DEM. We use

Martz and Garbrecht’s DEM-processing method to fill depressions and amend

elevation of cells in flat areas before MFD-md is applied. The details of this method

are not included in this paper, and interested readers are referred to Martz and

Garbrecht (1998) for details.

5.2 Application and discussion of MFD-md, SFD, and MFD

The MFD-md and two comparing algorithms are applied after the DEM is pre-

processed. The resulting accumulations are shown in figure 6. In the flow

accumulation computed by D8 (figure 6(a)), there are a large number of narrow

and parallel lines with higher accumulation values which demonstrates the

shortcoming of D8 for computing the spatial distribution of flow accumulation.

This defect of SFD has been discussed by many researchers, such as Fairfield and

Leymarie (1991), and Wilson and Gallant (2000). Compared with D8, MFD-Quinn

has a much smoother spatial distribution of flow accumulation in which the state of

flow in the low relief areas is much more reasonable (figure 6(b)).

The spatial distribution of flow accumulation by MFD-md is intergradation

between that shown by D8 and MFD-Quinn. MFD-md has a similar result to

MFD-Quinn where the main difference is in the areas of hillslope (figure 6(b) and

figure (c)). Figure 7 shows a map of difference between figure 6(c) (MFD-md) and

figure 6(b) (MFD-Quinn). The negative values in figure 7 mean that the flow

accumulation value from MFD-md is smaller than that from MFD-Quinn (i.e.

MFD-md minus MFD-Quinn). The positions with a large negative difference (i.e.

the red region in figure 7) are mostly areas next to the v-shaped channels where slope

gradients are high. This is because the fixed flow-partition exponent used in MFD-

Quinn treats convergent flow as divergent flow and unnecessarily spreads flow to the

neighbouring pixels, thus producing higher flow accumulation values for these

pixels. For the same reason, for the v-shaped valleys, as in this study area, the pixels

at the valley centre receive a smaller flow accumulation based on MFD-Quinn

because the flow draining into them has been spread into other neighbouring pixels.

This explains the larger positive differences in the valley centres between the two

methods. The comparison of MFD-md, D8, and MFD-Quinn when applied to a

real DEM shows that the proposed algorithm is advantageous in modelling the

effect of local terrain on flow partitioning.

6. Conclusion and future work

Following on from Quinn et al. (1991)’s research, this paper proposes an adaptive

scheme to varying the flow-partition exponent for MFD algorithms. Within this

scheme, the flow-partition exponent is changed adaptively based on a local

topographic attibute which not only reflects the terrain conditions but also controls

the local drainage. Thus, the adaptive scheme can overcome the main problem of all

MFD algorithms with a fixed p value.
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This paper also presents the MFD-md algorithm, which is an implementation of

the proposed adaptive flow-partition scheme. MFD-md selects the local maximum

downslope gradient as the local topographic attribute in the adaptive scheme. Then,

Figure 7. Difference in flow accumulations (m2) computed by MFD-md and MFD-Quinn.
Contours with a 2.5 m interval of DEM are overlaid on the figure.

Figure 6. Spatial distribution of flow accumulation (m2) computed by (a) D8, (b) MFD-
Quinn, and (c) MFD-md. Contours with a 2.5-m interval of DEM are overlaid on the flow
accumualtion distribution.
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MFD-md uses a function of the local maximum downslope gradient to vary the

flow-partition exponent in response to local terrain conditions. Unlike some current

MFDs with varying flow-partition exponents (e.g. Quinn et al. 1995), MFD-md

does not need a spatial distribution of, or a threshold for, flow accumulation, which

must be pre-computed with a flow-routing algorithm for determining the flow-

partition exponent. Therefore, the MFD-md algorithm has a lower complexity and

is independent of other flow-direction algorithms.

MFD-md is evaluated using four artificial surfaces. MFD-md has the lowest error

rate in comparison with the D8 algorithm and the MFD-Quinn algorithm. This

evaluation suggests that the MFD-md can adaptively accommodate the effects of

terrain conditions on flow distribution. The real-world case further suggests that the

spatial distribution of computed flow accumulation by MFD-md is more accurate

than the result of D8 and is similar to the result of Quinn et al. (1991)’s MFD

algorithm. Further analysis of valley regions shows that MFD-md is more adaptive

to the terrain conditions than MFD-Quinn.

The adaptive scheme presented in this paper provides a flexible framework for

varying flow-partition exponent for MFD. During the implementation of the

adaptive scheme, the selection of both threshold of parameters and local

topographic attributes will deduce different models for local flow partitioning.

MFD with a fixed p value can be considered as a special case of this adaptive

scheme. For example, MFD-Quinn is the case when the adaptive scheme takes

pl5pu51 in equation (3). In future work, the impact of pu, pl, emin, and emax on

MFD-md will be quantitatively studied in order to enhance the usability and

robustness of this MFD-md algorithm. On the other hand, although the maximum

downslope gradient might be the most important local topographic attribute

controlling local drainage, it is not the only one. Other local topographic

attributes, such as plan curvature and profile curvature, should be considered

together with the maximum downslope gradient to model varying flow-partition

exponent.
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