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Abstract

Clustered events are usually deemed as feature when several spatial point processes are overlaid in a region. They can be

perceived either as a precursor that may induce a major event to come or as offspring triggered by a major event. Hence,

the detection of clustered events from point processes may help to predict a forthcoming major event or to study the

process caused by a major event. Nevertheless, the locations of existing clustered events alone are not sufficient to identify

the area susceptible to a potential major future event or to predict the potential locations of similar future events, so it is

desirable to know the shape and the size of the region (the ‘‘territory’’ of feature events) that the feature process occupies.

In this paper, the support domain of feature (SDF), the region over which any feature event has the equivalent likelihood

to occur, is employed to approximate the ‘‘territory’’ of feature events. A method is developed to delineate the SDF from a

region containing spatial point processes. The method consists of three major steps. The first is to construct a

discrimination function for separating feature points from noise points. The second is to divide the entire area into a

regular mesh of points and then compute a fuzzy membership value for each grid point belonging to the SDF. The final

step is to trace the boundary of the SDF. The algorithm was applied to two seismic cases for evaluation, one is the Lingwu

earthquake and the other is the Longling earthquakes. Results show that the main earthquakes in both areas as well as

most aftershocks triggered by them fell into the estimated SDFs. The case study of Longling shows that the algorithm can

deal with a region containing more than two processes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many natural phenomena manifest themselves as
spatial point processes which produce numerous
events in space, such as earthquakes, landslides and

craters. For clarification, we define an occurrence of
a phenomenon located at a single point as an event
in contrast to a simple geometric point. An event set
is often not completely randomly distributed. Some
events assemble in a restricted region while other
events are dispersed over the remaining area. The
former, distributed with higher intensity, is viewed
as a cluster or ‘‘hotspot’’ (Brimicombe, 2003) and
probably reveals some meaningful pattern (Jemal
et al., 2002; Steenberghen et al., 2004), while the
latter, distributed with lower intensity, is considered
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as noise or background (Fraley and Raftery, 2002).
In many natural processes, the clustered events can
be deemed either as a precursor that may induce a
huge event to come or as offspring triggered by a
huge event. Hence, the detection of clustered events
from point processes may help us to predict a
forthcoming major event or allow us to study the
process caused by a major event (Wu et al., 1990;
Ogata, 2001; Pei et al., 2006). The issue of how to
detect a feature/cluster from a data set in the
presence of noise has been extensively discussed
(Ester et al., 1996; Byers and Raftery, 1998; Pei
et al., 2006; Wang et al., 2006). Nevertheless, the
locations of clustered events may not reveal the
region in which a major event or successive events
may take place, and the region may be very
important in the case of constructing a natural
disaster prevention plan, such as a quakeproof plan.
It is thereby desirable to know the region (the
‘‘territory’’ of feature events) where future similar
events might occur not only for identifying the area
susceptible to a potential major future event but
also for predicting the potential locations of future
events. However, the locations of existing feature
events alone are not sufficient to reveal the shape
and size of the ‘‘territory’’ of clustered events.
Therefore, it is necessary to construct a method that
can precisely delineate the support domain of
feature (SDF), which is referred to as the ‘‘territory’’
occupied by feature (clustered) events, in the
presence of noise (background).

The problem of how to estimate the boundary of
a point process, which is referred to as the convex
hull of a point process, has been widely discussed
(Ripley and Rasson, 1977; Davis et al., 1988; Hall
et al., 2002; Chiu and Molchanov, 2003). However,
their methods may overestimate the area of the
support domain of a point process when it is
distributed over a region with a concave shape, and
also are restricted to only one process. If two
Poisson processes with different intensities are
superimposed, the support domain of one is
included in that of the other. The methods for
estimating the convex hull, because they are
designed for approximating the boundary of one
point process, will not be applicable due to the
interference caused by the noise.

There are a number of studies addressing the issue
on contouring clustered events in the presence of
background noise. Banfield and Raftery (1993)
proposed a model-based clustering method in which
the clustered events are presumed to be mixtures of

Gaussian density. The clustered events can be
contoured at a specific value after the parameters
of each Gaussian model have been derived. Fraley
and Raftery (1998) constructed a multivariate
normal mixture model for the sake of accommodat-
ing the different components originating from noise
and feature. In their method, the Bayesian Informa-
tion Criterion is utilized to determine the number of
components. Jin et al. (2005) established a scalable
model-based clustering framework. This algorithm
is superior in analyzing large sets of complicated
data and also significantly reduces the runtime as
opposed to traditional algorithms. Although these
methods may contour the clustered events in light of
the difference in densities between the feature and
noise, all of these ideas are built on the predefined
model and therefore suffer from two limitations: a
point process is rarely a Gaussian mixture and
results from these methods are sensitive to depar-
ture from the model.

Allard and Fraley (1997) constituted a maximum
likelihood estimator for a mixture of uniform point
processes using the Voronoı̈ tessellation defined by
the data themselves. Although the method based on
the Voronoı̈ tessellation can determine the support
domain of feature events by connecting the Voronoı̈
polygons containing the feature events, it is limited
in that the support domain of feature must be
restricted to a single connected component without
holes, and the boundary of features is of a specific
geometry. Huo and Lu (2004) presented a digraph-
based algorithm to estimate the boundary of the
higher concentration regions (HCRs) from point
processes. Although the method can adapt to HCRs
with arbitrary shapes, users have to predefine the
geometric constraint to the boundary of the HCR
and specify the center(s) of the underlying region in
advance.

In this paper, the support domain of feature is
regarded as the ‘‘territory’’ occupied by feature
events. In fact, the SDF is defined as the region in
which a given feature event is equally likely to occur
anywhere. An algorithm is developed in this paper
to delineate the SDF from a region containing
spatial point processes. The algorithm assumes that
the entire region contains two point processes with
different intensities. Any point in the region can be
classified as feature or noise based on the distance
between itself and its kth nearest event. Then, the
entire region is divided into a mesh grid and each
node is endowed with a fuzzy membership value of
belonging to the SDF. Finally, the boundary of the
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SDF is traced out from the entire region based on
the mesh grid.

This paper is arranged in six sections. In Section 2,
the definition of the SDF and the probability
density functions (pdfs) of the kth nearest event
(point)-to-event distances of Poisson process are
reviewed. The algorithm for delineating the SDF is
described in Section 3. Section 4 discusses the
algorithm in terms of prior conditions, complexity,
its extension to more than two processes and factors
affecting the precision of the estimation of the SDF.
In Section 5, two seismic cases, one in Northern
China and the other in Southwestern China, are
studied using the algorithm for delineating the
potential zone in which strong earthquakes may
occur. Conclusions and future work are discussed in
Section 6.

2. Key concepts

2.1. The definition of the support domain of feature

A spatial point process can be defined as a
stochastic model that governs the locations of
events {si} in A, where A is a subset of Rd. A
Poisson process has the property that: conditional
on NðAÞ the number of events in the bounded
region A � Rd , the events of the process are
independently and uniformly distributed over A.
That is, given NðAÞ ¼ n, the ordered n tuple of
events ðs1; s2; . . . ; snÞ in An satisfies

Prðs1 2 B1; . . . ; sn 2 BnÞ

¼
Yn

i¼1

ðjBij=jAjÞ; B1; . . . ;Bn � A,

where jBj �
R

B
ds. Intuitively, this says that events

are equally likely to occur anywhere within A and
do not interact with each other, either repulsively
(regularity of events) or attractively (clustering of
events) (Cressie, 1991). It can be shown that NðBÞ

has a Poisson distribution with mean mðBÞ, for all
B 2 A:

PfNðBÞ ¼ ng ¼
ðmðBÞÞne�mðBÞ

n!
; n ¼ 0; 1; . . . ,

where mðBÞ is the intensity of the process. If the
process is a homogeneous one, mðBÞ is a constant
number. A homogeneous Poisson process is a
special case of a (inhomogeneous) Poisson process.

Region A is the support domain of the point
process. If a region is occupied by two Poisson

processes with different intensities, the area contain-
ing the process with higher intensity can be treated
as the SDF, and the remaining area is viewed as the
support domain of noise (SDN). The feature events,
distributed with higher intensity, are equally likely
to occur anywhere within the SDF, while noise
events, distributed with lower intensity, have the
equivalent likelihood to appear anywhere within
the SDN. Our target is to trace the boundary of the
SDF from the region in which a feature process and
noise are superimposed.

2.2. The distance of event-to-event and that of point-

to-event

In this context, we define the kth nearest event-to-
event distance as the one from event si to its kth
nearest-neighbor event sjðiajÞ and the kth nearest
point-to-event distance as the one from point p 2 Rd

to its kth nearest event sh. For clarification, the kth
nearest event-to-event distance is denoted as Wk and
the kth nearest point-to-event distance as Xk. The
distance order of point (pi) or event (si) refers to the
ordinance of the nearest neighbor from pi or si.

2.3. The probability density function of Wk and that

of Xk

If a spatial point process is a homogenous
Poisson process and is distributed in the region S,
then we can find the distribution of the kth nearest
event-to-event distance (Wk) from a randomly
chosen event in the process to its kth nearest
neighbor. For x 2 ½0;1Þ,

PðW kXxÞ ¼
Xk�1

m¼0

e�lpx2

ðlpx2Þ
m

m!
¼ 1� GW k

ðxÞ, (1)

where k is the parameter referring to the distance
order, GW k

ðxÞ is the cumulative distribution func-
tion (cdf) of Wk, l is the intensity of the Poisson
process (Byers and Raftery, 1998). The equation is
obtained by conceiving a circle of radius x centered
at the event under consideration. If Wk is greater
than x, there must be one of 1,2,y,k�1 events in
this circle. Its pdf gW k

ðk; lÞ is the derivative of
GW k
ðxÞ:

gW k
ðk; lÞ ¼

dGW k
ðxÞ

dx
¼

e�lpx2

2ðlpÞkx2k�1

ðk � 1Þ!
, (2)

where l and k are the same as those in Eq. (1).
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Because the cdf of Xk shares the same form
as (1) (Thompson, 1956), we can derive the pdf of
Xk as

f X k
ðk; lÞ ¼

e�lpx2

2ðlpÞkx2k�1

ðk � 1Þ!
, (3)

where k and l have the same meanings as those in
Eq. (1). In the region S containing a homogenous
point process, the pdf of Xk and pdf of Wk share the
same parameter, namely, the intensity l.

3. The algorithm for delineating the support domain

of feature

3.1. The Bayesian function for classifying the feature

points and noise points

Suppose the feature process and noise in the
region S are distributed within their own support
domains with intensities of l1 and l2, respectively.
Xks of points within the SDF are distributed under
the function of f X k

ðk; l1Þ. Similarly, Xks of points in
the SDN are distributed under the function of
f X k
ðk; l2Þ. Because any point in S corresponds to its

kth nearest point-to-event distance (Xk), points in S

can be classified into feature and noise based on the
difference in their Xk. In this paper, we employ the
Bayesian function to accomplish the classification
(see Eq. (4)).

PðoijX kÞ ¼
pðX kjoiÞPðoiÞP2
j¼1pðX kjojÞPðojÞ

ði; j ¼ 1; 2Þ, (4)

where Xk represents the kth nearest point-to-event
distance, o1 represents the feature and o2 represents
the noise, Pðo1Þ is the prior probability of belong-
ing to SDF, Pðo2Þ is the prior probability of
belonging to SDN. pðX kjo1Þ refers to the posterior
pdf of belonging to SDF, and pðX kjo2Þ re-
presents the posterior pdf of belonging to
SDN. Actually, pðX kjo1Þ is the pdf of Xk of
feature points and pðxjo2Þ is the pdf of Xk of noise
points.

Three parameters remain to make the Bayesian
function available, they are: the intensity (l1) of
pðX kjo1Þ, the intensity (l2) of pðX kjo2Þ and the
prior probability Pðo1Þ (prior probability Pðo2Þ

equals to 1� Pðo1Þ). Our next job is to evaluate
these three parameters.

3.2. Estimation of the parameters of the Bayesian

function

3.2.1. Estimation of l1 and l2

Byers and Raftery (1998) proposed an Expecta-
tion–Maximization (EM) algorithm to estimate the
intensity (l1) of feature events and that (l2) of noise
events when two point processes are superimposed
in a restricted region. The main idea is described as
follows.

For a region S containing two point processes
with different intensities, the pdf of Wk can be
treated as a mixture pdf with different intensities,
that is,

W k�pgW k
ðk; l1Þ þ ð1� pÞgW k

ðk; l2Þ, (5)

where p is the proportion coefficient, l1 and l2 are
intensities of each distribution, k is the order of
distance. The EM algorithm can be employed to
evaluate the parameters of l1, l2 and p. For more
details about the EM algorithm and its applications,
please refer to Moon (1996) and Chawla et al.
(2001).

The E-step in this context is

Eðd̂
ðtþ1Þ

i Þ ¼
p̂ðtÞgW k

ðk; l̂
ðtÞ

1 Þ

p̂ðtÞgW k
ðk; l̂

ðtÞ

1 Þ þ ð1� p̂ðtÞÞgW k
ðk; l̂

ðtÞ

2 Þ

,

while the M-step is

l̂
ðtþ1Þ

1 ¼
k
Pn

i¼1 d̂
ðtþ1Þ

i

p
Pn

i¼1 w2
k;id̂
ðtþ1Þ

i

and

l̂
ðtþ1Þ

2 ¼
k
Pn

i¼1 ð1� d̂
ðtþ1Þ

i Þ

p
Pn

i¼1 w2
k:ið1� d̂

ðtþ1Þ

i Þ

with pðtþ1Þ ¼
Xn

i¼1

d̂
ðtþ1Þ

i =n, ð6Þ

where n is the number of points, wk;i is the kth
nearest event-to-event distance of event qi

(i ¼ 1; 2; . . . ; n) and t is the number of iterations. If
we define the component with l1 representing the

feature, then events with d̂
ðtþ1Þ

i X0:5 belong to

feature and events with d̂
ðtþ1Þ

i o0:5 can be viewed

as noise. For more details, please refer to Byers and
Raftery (1998).

3.2.2. Estimation of P(o1) and P(o2)

For simplicity, we denote the area of the entire
region, that of the SDF and that of the SDN as |S|,
|Bf| and |Bn|, respectively. Theoretically, the prior
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probability of belonging to the SDF is equal to the
ratio between |Bf| and |S|, and the prior probability
of belonging to the SDN is equal to the ratio
between |Bn| and |S|. However, the areas of those
two support domains cannot be calculated directly
until the membership of each point in the entire
region is known.

Fortunately, the areas of the support domains of
a process can be derived from the equation

jBf j ¼
Nf

lf

and jBnj ¼
Nn

ln

,

where lf and ln are the intensities of feature and
noise, respectively, Nf is the number of feature
events, Nn is the number of noise events. All of them
can be acquired from the EM algorithm which was
discussed in Section 3.2.

If |Bf| and |Bn| are known, the prior probability of
belonging to the SDF may be approximated by the
equation below:

Pðof Þ ¼
jBf j

jBf j þ jBnj
¼

Nf =lf

Nf =lf þNn=ln

, (7)

and the prior probability of belonging to the SDN
may be approximated by

PðonÞ ¼
jBnj

jBf j þ jBnj
¼

Nn=ln

Nf =lf þNn=ln

. (8)

With the intensities and the prior probabilities
being estimated, the fuzzy membership value of
belonging to the SDF can be calculated from
Eq. (4). The curve of Eq. (4) is a z-shape function.
With this function, each point in the research region
can be assigned a membership value of belonging to
the SDF. As each node is endowed with a fuzzy
membership value, a mesh grid covering the
research region can be constructed. Then, from the
mesh grid we can trace out the boundary of the
SDF. For any point within the SDF, its fuzzy
membership value of belonging to the SDF should
be greater than 0.5.

3.3. Selection of the value of k in Eq. (4)

So far we assume that the k in Eq. (4) has been
chosen by users. In fact, the estimated SDF is
greatly influenced by the value of k in terms of the
size, the location and shape.

Next an example is given to demonstrate how the
estimated SDF evolves along with the increase of k.
Fig. 1 shows the simulated data which is composed
of a rectangle feature and a set of noise events. The

intensity of feature is 0.00162 and that of noise is
2.0057� 10�4. Due to the edge effect, events or
points near the edge (or the corner) of the region
will have fewer neighbor events than those in the
center of region. This may cause the Wk s (Xk s) of
those events (points) to be overestimated and
thereby increase the error of the classification. To
correct the edge effect, the events in the region have
been transformed into toroidal edge-corrected data.
Interested readers are referred to Byers and Raftery
(1998) for details.

In order to quantify the accuracy of the estimated
SDF, we adopt three indices, namely, the error rate
of the entire region, the false rate of the SDF and
the missing rate of the SDF. The error rate of the
entire region is referred to as the proportion of the
misclassified area in the area of the entire region.
The false rate of the SDF is defined as the ratio of
the area of the false SDF to the area of the actual
SDF. The missing rate of the SDF I s used to
measure to what extent the actual SDF is excluded
outside the estimated SDF.

Fig. 2 presents curves of those three indices versus
k, which is calculated from the data in Fig. 1. It is
found that the error rate of the entire region
decreases below k ¼ 8 and increases above it. The
false rate of the SDN decreases from k ¼ 2 to 5 and
keeps stable at k ¼ 5–8, then increases dramatically
as k increases. The missing rate of the SDF
decreases at all times until zero along with the
increase of k.

The explanation for the trend of the error rate of
the entire region mainly lies in that the increase of k

exerts a two-side effect on the Xk s of points in the
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Fig. 1. Simulated data containing feature and noise. (Solid dots

represent feature events and crosses represent noise events.)
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region. We will illustrate the effect based on a
comparison between the pdfs of Xk computed and
the theoretical ones at k ¼ 3, 7 and 35, which are
presented in Fig. 3.

On one hand, the increase of k tends to reduce the
error rate of the entire region. This can be illustrated
by the overlapping area between the pdf of Xk of
feature and that of noise, which changes with the
increase of k and is shown in Fig. 3. When k is
small, say, k ¼ 3, the estimated pdf of Xk of noise
points and that of feature points are not well
separated and thereby produce a large overlapping
area (the shade area in Fig. 3a) between them. This
area represents the loss of the misclassification using
Eq. (4) (interested readers are referred to Gelman et
al., 1995 for more details). However, as k increases,
those pdfs appear more distinct in bimodal and the
overlapping area significantly shrinks at k ¼ 7 and
35. The reason lies in that the increase of k enlarges
the gap between the expectation of Xks of feature
and that of noise and breaks the mixed pdfs away by
degrees. Hence the overlapping area is reduced, so is
the classification error. We define this effect as the
‘‘separated effect’’.

On the other hand, the increase of k will distort
the estimated pdfs as opposed to the actual pdfs.
Compared with those at k ¼ 7, the pdfs estimated
from Xks (the dashed line) at k ¼ 35 significantly
deviate from the actual pdfs (the solid line). This can
be explained as follows: the noise points, especially
those near the boundary of the SDF, own more
feature events as their kth nearest neighbor with the
increase of k. This will make the Xk s of these noise
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points less on average compared with Xk s of those
far away from the SDF. On the contrary, as k

increases, the Xk s of the feature points near the
boundary of SDF become larger on average
compared with Xk s of those located in the center
of the SDF. Hence, the Xk s of noise points and
those of feature points, which are both near the
boundary of the SDF, will be respectively under-
estimated and overestimated. Thus, the pdfs of Xk s
for both noise points and feature points will deviate
from the theoretical pdfs and the deviation of
the pdfs affirmatively increases the error rate of the
entire region. We define this phenomenon as the
‘‘inner edge effect’’. The increase of k will magnify
the ‘‘inner edge effect’’ and will thereby increase the
error rate of the entire region.

The ‘‘separated effect’’ is prone to decreasing the
error rate of the entire region whereas the ‘‘inner
edge effect’’ is prone to increase it. Only if these two
effects reach a compromised point at some value of
k, for example, k ¼ 7 in this case, can the entire
region achieve the minimum error rate. Further-
more, the ‘‘separated effect’’ plays a leading role in
reducing the error rate of the entire region when k is
at a small value, while the ‘‘inner edge effect’’
dominates the process and increases the error rate
when k is of a moderate value or larger.

In addition, ‘‘the separated effect’’ and ‘‘the inner
edge effect’’ also have a strong impact both on the
missing rate of the SDF and the false rate of the
SDF. When k is of a small value, both the false rate
of the SDF and the missing rate are dominated by
the ‘‘separated effect’’. The false rate of the SDF
decreases dramatically at k ¼ 2–5 while the missing
rate declines rapidly at k ¼ 1–6. These trends are
also consistent with the change of the SDF in terms
of the shape, area and the number of polygons. This
can be found in Fig. 4 which demonstrates the
growing process of the SDF along with k. From
Fig. 4a we notice that at k ¼ 3 the estimated SDF is
composed of many polygons, among which the
smaller ones undoubtedly are the false SDF. When
k ¼ 7 those small polygons almost disappear and
the number of polygons is significantly reduced.
Although a few small polygons, i.e. the false SDF,
still remain, we can easily remove them by checking
if each of their areas is smaller than a specific
threshold. Then, the big polygon at the center of the
region highly approximates the actual SDF in terms
of the shape and the size.

When k is of a moderate value or larger, for
example, k48, ‘‘the inner edge effect’’ begins to
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events.)
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dominate the process. The effect tends to transform
noise points outside the SDF into feature points as k

increases rather than transform the feature points
within SDF into noise points. The false rate of the
SDF increases sharply when k48, whereas the
missing rate of the SDF keeps decreasing until zero
at k ¼ 28. These curves also vary consistently with
the behavior of the SDF in two dimensions.
Compared with that at k ¼ 7 (Fig. 4b), the
estimated SDF at k ¼ 35 (Fig. 4c) significantly
expands and completely covers the actual SDF at
the expense of producing a larger false positive area
(the false rate arrives at 0.52).

In conclusion, the estimated SDF is an outcome
of the interaction between ‘‘the separated effect’’
and ‘‘the inner edge effect’’ over varied values of k,
and k is the only parameter to estimate the SDF
when using this algorithm. In this paper, two

aspects, i.e. the error rate of the entire region and
the missing rate of the SDF, are taken into account
when finding the optimum value of k. If one cares
more about the error rate of the entire region or the
accuracy of the SDF (namely, the size, the location
and the shape of the SDF), then a moderate value,
for example, k ¼ 4–8, is appropriate. Nevertheless,
if one cares more about the missing rate of the SDF,
a larger value (k ¼ 9–30) is appropriate, especially
when predicting the susceptible area of the disaster
that occurs in a point pattern. In that case, we
would rather decrease the missing rate of the SDF
at the expense of producing a larger false area.

3.4. Several other examples

In order to evaluate the algorithm, we apply it to
four different simulated data sets, containing
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features in the shape of ‘I’, ‘S’, cross and annulus.
Fig. 5 shows the classification results of different
simulated data at k ¼ 6 using the algorithm. It is
found that all the estimated SDFs are close to the
actual ones. The results indicate that the algorithm
can adapt to an arbitrarily shaped SDF.

4. Analysis of the algorithm

Four more issues need to be illustrated when
applying the algorithm to identify the SDF. They
are: (i) how to determine if a data set contains
clusters; (ii) how to deal with a data set containing
more than two point processes; (iii) the major steps
of the algorithm and its complexity and (iv) the
impact of the resolution of the mesh grid on the
SDF.

4.1. How to determine if the data set contains

clusters

There is a tremendous amount of literature
focusing on how to determine if locations of a set
of events are in complete spatial randomness (CSR,
synonymous with a homogenous Poisson process),
cluster or regular pattern (Eberhardt, 1967; Johnson
and Zimmer, 1985; Cressie, 1991; Prayag and
Deshmukh, 2000; Lucio and Brito, 2004). The
methods for the determination are categorized into
several types, i.e. the quadrat-based, the distance-
based and the distance-based coupled with angle.
Compared with the methods based on quadrat, the
distance-based and those coupled with angle make
use of precise information on the locations of events
and have the advantages of not depending on
arbitrary choices of quadrat size and shape, hence
they have been adopted by more and more
researchers (Liu, 2001). A number of test statistics
based on the distance method have been proposed
to determine if an event pattern is in CSR,
aggregation (cluster) or regularity (Cressie, 1991).
In this paper, the statistic of Clark and Evans (1954)
is employed for the verification of aggregation
because of their simplicity. In detail, the test statistic
of R1 ¼ 2ðlÞ1=2

Pn
i¼1w1;i=n has the asymptotic dis-

tribution of Nð1; ð4� pÞ=npÞ under CSR when n is
large, where n is the number of events in the event
set, w1;i is the first nearest event-to-event distance of
event qi (i ¼ 1,2,y,n), l is given by n=ðp

Pn
i¼1w

2
1;iÞ. If

R1 is significantly greater than 1, then aggregation is
indicated; if R1 is significantly less than 1, then

regularity is indicated. Interested readers may
consult Cressie (1991) for details.

For the event set in Fig. 1, we obtain R1 ¼ 0.8819
with n ¼ 376 and l ¼ 3.7309� 10�4. When setting
significant level (a) to 0.05, we can derive cmin and
cmax from F NðcminÞ ¼ a and FNðcmaxÞ ¼ 1� a,
where the F Nð�Þ is the cdf of Nð1; ð4� pÞ=npÞ.
Here only cmin is needed for the test of the
aggregation. Because cmin ¼ 0.9904 and R1ocmin,
we can conclude that the event set in Fig. 1 contains
cluster(s).

4.2. The multi-scale algorithm for detecting SDFs

When a data set contains more than two
processes, say, three processes, the feature/noise
separated from the algorithm is still a mixed process
in which two or more components remain. The
remnant can be classified by reapplying the
entire procedure until each remnant at the final
stage is confirmed as a homogenous Poisson
process, and we call this process the multi-scale
algorithm. Thus, the data set can be segmented into
several homogenous Poisson processes grouped as a
binary tree.

Fig. 6 shows a simulated data set consisting of
three Poisson processes and the result at k ¼ 7 using
the multi-scale algorithm. The segmentation scheme
clearly reveals the SDFs at different scales.
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4.3. The major steps of the algorithm and its

complexity

For the convenience of programming, we sum-
marize the steps for delineating the SDF as follows:

(1) Compute the kth nearest event-to-event distances
of each event (Wks) within the study region.

(2) Determine if the data set contains clusters. If the
data set contains clusters, then go to the next
step, otherwise, end the algorithm.

(3) Evaluate the parameters of each component at k

with the EM algorithm and derive the prior
probability of belonging to the SDF and that of
belonging to the SDN, then build the discrimi-
nation function (Eq. (4)) at k for the classifica-
tion.

(4) Construct the mesh grid at a resolution of
xn*yn, and compute Xk for each node. Then,
assign each node with a fuzzy membership value
acquired from Eq. (4).

(5) Trace out the boundary of the SDF based on the
mesh grid.

(6) Determine if the subgroups, namely the feature
events and noise, contain clusters. If yes, then go
back to Step 2; otherwise, end the algorithm by
outputting the boundary of the SDF.

The runtime of the algorithm is dominated by
Steps 1, 3, 4 and 5. The substantial part of Step 1 is
to query for the kth nearest neighbor of each event,
where n is the number of events. The function of the
query can be implemented by spatial access
methods, such as R-tree (Beckmann et al., 1990),
whose runtime is O(log n). Therefore, the complex-
ity of Step 1 is k*n*O(log n). The complexity of Step
3 approximates to O(m*n), where m is the number
of iterations for the E-step and the M-step. Step 4
needs to query the kth nearest neighbor for each
node of the mesh grid, and its complexity is
O(xn*yn*k* log(n)), where xn is the resolution of
the mesh grid in x-direction and yn is the resolution
of the mesh grid in y-direction. Step 5 involves
tracing out the boundary of the SDF, and its
complexity is O(xn*yn). Consequently, the total
complexity of the algorithm is k*n*O(log n)+
O(m*n)+O(xn*yn*(k* log(n)+1)) if the data set
under consideration contains only two point pro-
cesses. When the data set contains more than two
point processes, the increment of complexity will be
less than the complexity of the first classification
(for simplicity, we omit the proof). When xn�ynbn,

the last item of the complexity formula, i.e.
O(xn*yn*(k* log(n)+1)), will dominate the runtime
of the algorithm. The resolution is defined by users
and will significantly influence the complexity of the
algorithm.

4.4. The impact of the resolution of the mesh grid on

the SDF

The resolution of the mesh grid affects not only
the complexity of the algorithm but also the error
rate of the entire region. Taking the data set in
Fig. 1 as an example, we display the scatter plot of
the error rate of the entire region versus the
resolution of the mesh grid in Fig. 7. The plot
shows that the error rate decreases sharply when the
resolution is less than 100 and keeps stable when the
resolution is greater than 100. The relationship
between the error rate and the resolution implies
that the finer resolution, or rather, more runtime,
may not bring the equivalent accuracy after it
exceeds some value, say, 100 in this case. Hence, we
may adopt a moderate resolution to delineate the
boundary of the SDF after balancing its precision
against the complexity of the algorithm.

5. The case studies: identifying the susceptible area of

strong earthquakes and aftershocks

5.1. The support domain of foreshocks and the

susceptible area of strong earthquakes

Background earthquakes are referred to as small
earthquakes that occur with a stable intensity within
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a certain region (Wyss and Toya, 2000; Pei et al.,
2003). Clustered earthquakes are referred to as a
swarm of earthquakes that occur within a limited
region (Matsu’ura and Karakama, 2005). In this
regard, background earthquakes and clustered
earthquakes can be seen as two overlaid spatial
Poisson processes with different intensities. As
opposed to background earthquakes, clustered
earthquakes occur with a higher intensity and are
probably associated with a strong earthquake in the
gestation mechanism (Reasenberg, 1999; Ogata,
2001; Kagan and Houston, 2005; Zhuang et al.,
2005). Clustered earthquakes are viewed as fore-
shocks if they occur before a strong earthquake or
as aftershocks if they occur after a strong earth-
quake. Therefore, clustered earthquakes could serve
as a very important clue to predict strong earth-
quakes if the possibility of them being aftershocks
can be excluded (Chen et al., 1999; Ripepe et al.,
2000; Umino et al., 2002).

Although clustered earthquakes may be the
precursors of a strong earthquake, their locations
may not provide the exact shape, precise position
and accurate area of the susceptible region of a
strong earthquake. The determination of the poten-
tial location of strong earthquakes is still a
subjective process when the foreshocks alone are
employed for the prediction. If the foreshocks are
presumed to be a homogeneous point process, the
support domain of the foreshocks is the SDF and
can be thought of as the region for generating a
strong earthquake and is thereby deemed as the area

susceptible to a strong earthquake. The algorithm
discussed in this paper can supply an automatic and
practical way to delineate the area susceptible to a
strong earthquake. Its efficiency will be validated by
two seismic cases in the next section.

5.2. The data set

China is one of the most seismically active
countries in the world. There were about 21 strong
earthquakes (MX6.5) on the Chinese mainland
from 1990 to 2005 and most of them were
concentrated in several regions, namely, North-
western China, Southwestern China, Northern
China and Southeastern China.1 Two regions were
selected to test our algorithm, one is located in
Northern China (region A) and the other is located
in Southwestern China (region B) (see Fig. 8).

The seismic data presented in this paper were
collected from the published seismic catalogs and
imported into a database. Data about region A were
acquired from the Institute of Geophysics China
Earthquake Administration (1989a, b, 1991) and
data about region B were from Feng and Huang
(1980, 1989). All the records are after the year 1974.
Due to the occurrence of the Xingtai earthquake in
1966, a devastating earthquake (M ¼ 7.2) in North-
ern China with a death toll of 8064, the Chinese
government paid more attention to monitoring and
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1China Seismograph Network (CSN) Catalog. Available online

at: http://www.csndmc.ac.cn (accessed in 2006).
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predicting seismic activity and began to set up a
nationwide seismographic network (Zhang, 1988).
Over the following few years, more than 400
seismograph stations were built. The monitoring
ability of seismic activity, especially in densely
populated areas including Northern China and
Southwestern China, has been greatly improved
(Jiao et al., 1990). Hence, the quality of the data set
involved in the case studies meets the requirement of
this research.

5.2.1. Detection of the susceptible area of the Lingwu

earthquake

Region A is located between 1051 and 1081E,
36.51 and 39.51N. The selected seismic data are from
January 1st, 1985 to August 9th, 1987 and no less
than 1.5 in Richter intensity (M). Thus, 131
epicenters have been obtained altogether.

When we identify the region in which strong
earthquakes are likely to happen, what we are
concerned with is the missing rate of the susceptible
area of the main earthquake, namely the missing
rate of the SDF in this context. In other words, we
would rather make a larger false susceptible area of
the main earthquake than miss a fraction of it.
Therefore, we set k ¼ 20 when employing the
algorithm to trace out the boundary of the SDF
for both of these two seismic cases. The support
domain of the clustered earthquakes in region A is
displayed in Fig. 9. Because no strong earthquakes
occurred ahead of those clustered earthquakes in
region A, we think they may be the foreshocks and
their support domain may imply the susceptible
area of a strong earthquake. This was proved by a
strong earthquake that occurred later. The Lingwu

earthquake (M ¼ 5.5), occurred at 106.411E and
38.111N on August 10th, 1987, was later confirmed
as the main earthquake of the foreshocks (Meng,
1996). Fig. 9 shows that the epicenter of the Lingwu
earthquake was included in the support domain of the
foreshocks. Interestingly, the epicenter of the Lingwu
earthquake is not located in the central part of the
clustered earthquakes, but to the east edge of the
epicenters of the foreshocks. If the epicenters of the
foreshocks alone are employed to predict the epicenter
of strong earthquake, then the epicenter of the main
earthquake will possibly be missed. The SDF may not
only indicate the epicenter of the main earthquake but
also delineate the possible area in which aftershocks
will appear. The subsequent seismic records show that
43 aftershocks occurred during the next 90 days and
all of them fell within the estimated SDF.

5.2.2. The detection of the susceptible area of the

Longling earthquakes and that of the aftershocks of

the Simao earthquakes

Region B is located between 981 and 1021E, 221 and
261N, including a small part of Burma. The selected
seismic data are from December 20th , 1975 to May
28th, 1976. A total of 543 epicenters were obtained.

We identified the clustered earthquakes with the
multi-scale algorithm and delineated two SDFs with

ARTICLE IN PRESS

105°E 106 107 108 

36.5°N

37.5

38.5

39.5

Fig. 9. Support domain of clustered earthquakes at k ¼ 20. (The

triangle represents main earthquake with M ¼ 5.5.)

22°N

23

24

25

26

98°E 99 100 101 102

Fig. 10. Support domains of clustered earthquakes at k ¼ 20 in

different scales. (The squares represent the Simao earthquakes;

the solid dots represent the aftershocks of the Simao earthquakes;

the triangles represent the Longling earthquakes; the asterisks

represent the foreshocks of the Longling earthquakes; the crosses

represent background earthquakes; the region bounded with a

dotted line is the support domain of the foreshocks; the region

bounded with a solid line is the support domain of the

aftershocks.)

T. Pei et al. / Computers & Geosciences 33 (2007) 952–965 963



Aut
ho

r's
   

pe
rs

on
al

   
co

py

different intensities (Fig. 10). Obviously, the north-
ern one is larger in area but lower in intensity and
the southern one is smaller but with a higher
intensity. We may note them as domain N and
domain S. The clustered earthquakes in these two
domains are in different stages of seismic sequence.
The earthquakes within domain S can be treated as
aftershocks because two strong earthquakes
(M ¼ 5.4 and 5.1), which are called the Simao
earthquakes, occurred on February 16th, 1976 and
February 19th, 1976 (Zhang, 1990) and both of
them appeared before the clustered earthquakes in
domain S. On the contrary, since no strong earth-
quakes occurred before the clustered earthquakes in
domain N, they can be deemed as foreshocks.
Strong earthquakes that occurred later also proved
that this was the case. In domain N, four main
earthquakes (M46) occurred after 28th May, 1976,
and all of the four epicenters fell into the domain N.
These four strong events were located near the
county of Longling and were thereby named the
Longling earthquakes (Zhang, 1990).

According to seismic catalogs of the aftershocks
of the Longling earthquakes, 2355 earthquakes were
recorded during the 30 days after the occurrence of
the main earthquakes and 2293 earthquakes fell into
domain N. Since the foreshocks, the main shock(s)
and the aftershocks are in the same local stress field,
they are the outcomes originating from the same
tectonic movement at different stages. Therefore,
domain N, from which the foreshocks are assumed
to come, may not only imply the epicenters of the
strong earthquakes but also the epicenters of
aftershocks.

6. Conclusions and future work

In the community of spatial data mining, the
determination of feature events from a data set has
attracted much attention and many different meth-
ods have been constructed. However, people often
neglect to determine where these feature events
originated and what the spatial relationship is
between these events and forthcoming events if they
belong to spatio-temporal processes.

The algorithm proposed in this paper is designed
to delineate the boundary of the SDF from the
research region. It is built on the theory of nearest-
neighbor distance and requires only one parameter
(k). Moreover, the algorithm cannot only accom-
modate an SDF of arbitrary shape, but can also
adapt to event sets containing more than two point

processes. Since the SDF delineated from a region
containing point processes can be viewed as the
‘‘territory’’ of feature events, it can thus be employed
to predict the location of successive events. The
successful application of the algorithm to seismic data
reveals that it can also adapt to other point process,
such as landslides and distribution of epidemics. The
algorithm proposed in this paper is limited to 2D
point processes. Future work will be focused on
extending the algorithm into higher dimensions.
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