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Abstract

Remote sensing is a potentially powerful technology with which to extrapolate eddy covariance-based gross primary production (GPP) to
continental scales. In support of this concept, we used meteorological and flux data from the AmeriFlux network and Support Vector Machine
(SVM), an inductive machine learning technique, to develop and apply a predictive GPP model for the conterminous U.S. In the following four-
step process, we first trained the SVM to predict flux-based GPP from 33 AmeriFlux sites between 2000 and 2003 using three remotely-sensed
variables (land surface temperature, enhanced vegetation index (EVI), and land cover) and one ground-measured variable (incident shortwave
radiation). Second, we evaluated model performance by predicting GPP for 24 available AmeriFlux sites in 2004. In this independent evaluation,
the SVM predicted GPP with a root mean squared error (RMSE) of 1.87 gC/m2/day and an R2 of 0.71. Based on annual total GPP at 15
AmeriFlux sites for which the number of 8-day averages in 2004 was no less than 67% (30 out of a possible 45), annual SVM GPP prediction
error was 32.1% for non-forest ecosystems and 22.2% for forest ecosystems, while the standard Moderate Resolution Imaging Spectroradiometer
GPP product (MOD17) had an error of 50.3% for non-forest ecosystems and 21.5% for forest ecosystems, suggesting that the regionally tuned
SVM performed better than the standard global MOD17 GPP for non-forest ecosystems but had similar performance for forest ecosystems. The
most important explanatory factor for GPP prediction was EVI, removal of which increased GPP RMSE by 0.85 gC/m2/day in a cross-validation
experiment. Third, using the SVM driven by remote sensing data including incident shortwave radiation, we predicted 2004 conterminous U.S.
GPP and found that results were consistent with expected spatial and temporal patterns. Finally, as an illustration of SVM GPP for ecological
applications, we estimated maximum light use efficiency (emax), one of the most important factors for standard light use efficiency models, for the
conterminous U.S. by integrating the 2004 SVM GPP with the MOD17 GPP algorithm. We found that emax varied from ∼0.86 gC/MJ in
grasslands to ∼1.56 gC/MJ in deciduous forests, while MOD17 emax was 0.68 gC/MJ for grasslands and 1.16 gC/MJ for deciduous forests,
suggesting that refinements of MOD17 emax may be beneficial.
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1. Introduction

Gross primary production (GPP), the integral of photosyn-
thesis by all leaves, is a critical component in ecological
systems. Carbon accumulated by ecosystem GPP and not used
for plant growth and maintenance is returned to the atmosphere
via respiration or disturbance (e.g. combustion), or is trans-
ported to other ecosystems through flow paths such as dissolved
organic carbon. Autotrophic respiration consumes about half of
GPP (Chapin et al., 2004); net primary production (NPP) is the
residual. Quantitative estimates of the spatial and temporal
distribution of GPP and NPP at regional to global scales are
critical for the understanding of ecosystem response to
increased atmospheric carbon dioxide (CO2) level and are
thus central to policy-relevant decisions (Metz et al., 2006).

Currently, GPP is estimated via process-based models and
satellite-data based models. Process-based models such as
BIOME-BGC (Thornton, 1998; White et al., 2000) can dynam-
ically simulate vegetation physiology (e.g. rubisco activities and
soil water stress), leading to potentially useful application at
watershed scales (Zhu & Scott, 2001). However, process-based
models are difficult to extend to large regions due to their
complex structures and requirements for complete coverage of
frequently poorly known land surface state variables such as
specific leaf area and respiration coefficients. On the other hand,
models based on or ingesting remote sensing data have two
central advantages over purely process-based models: (1) satel-
lite remote sensing offers broad spatial coverage and regular
temporal sampling; and (2) requirements for spatial and
temporal parameterization of vegetation physiological variables
are reduced or eliminated. Remote sensing models are thus
theoretically capable of accurately predicting actual carbon
fluxes at regional to continental scales.

Methods using remote sensing data for carbon flux calculation
are mostly based on the concept of light use efficiency (LUE).
Monteith (1972) suggested that the NPP of well-watered and
fertilized annual crop plants was linearly related to the absorbed
photosynthetically active radiation (APAR). This formulation
simplifies photosynthesis calculation over large region and is the
basis of many remote sensing-based GPP algorithms such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) GPP/
NPP algorithm (MOD17; Running et al., 2004), the Vegetation
Photosynthesis Model (VPM; Xiao et al., 2005) and the
Biosphere Model Integrating Eco-physiological and Mechanistic
Approaches using Satellite Data (BEAMS; Sasai et al., 2005). In
LUE-based GPP models, APAR (the product of photosyntheti-
cally active radiation (PAR) and the fraction of PAR absorbed by
plant canopies, FPAR) is usually linearly converted to GPP using
biome-specific maximum light use efficiency (emax, gC/MJ)
attenuated by temperature and water stress status. However,
recent studies have suggested that this approach may lead to
considerable errors in modeled GPP (Heinsch et al., 2006; Turner
et al., 2003, 2005; Zhao et al., 2005). Likely causes of the error
include uncertainties in PAR, FPAR, and the conversion from
incident shortwave radiation to PAR. Perhaps most centrally,
though, uncertainty in the spatiotemporal variation of emax is a
crucial limiting factor for LUE models.
While remote sensing has been used to extrapolate field-
measured NPP since the late 20th century (Paruelo et al., 1997),
the increasing availability of near-real time observations of
water and carbon exchange from eddy covariance flux towers
(e.g. AmeriFlux; Baldocchi et al., 2001) has sparked a renewed
interest in extrapolative techniques, especially through the use
of empirical modeling techniques using remote sensing explan-
atory variables. For example, Rahman et al. (2005) observed a
strong correlation between across-site tower-GPP and enhanced
vegetation index (EVI). Wylie et al. (2003) related coarse
resolution normalized difference vegetation index (NDVI) to
14-day average daytime CO2 fluxes in a sage–brush–steppe
ecosystem. Xiao et al. (2005) integrated emax derived from
tower-based net ecosystem exchange (NEE) and PAR into the
VPM model. Gilmanov et al. (2005) found that NDVI was
statistically significantly correlated with tower-based GPP and
ecosystem respiration leading to potential scaling-up of tower
fluxes to larger areas. Drolet et al. (2005) reported strong
correlations between MODIS-derived photochemical reflec-
tance index and tower-based LUE. These studies established the
potential of using statistical and machine learning methods to
extrapolate tower-based GPP to a regional to continental scale.

The goal of this paper is to explore the application of Support
Vector Machine (SVM) learning techniques for GPP prediction
at a continental scale. To do so, we tuned and trained SVMs
driven by ground measured and remotely sensed explanatory
variables to predict AmeriFlux GPP, tested the SVMs using a
withheld portion of the flux data, and applied the final model for
GPP prediction over the conterminous U.S. In the following
sections, we present: (1) a brief description of the SVM tech-
nique; (2) SVM tuning and training, including a description of
the AmeriFlux GPP observations and the selection of explan-
atory variables; (3) results from independent testing of the
SVMs; (4) a comparison of SVM GPP to MOD17 GPP; and
(5) extrapolation of the SVMs to the conterminous U.S. Finally,
to demonstrate the potential use of the SVM GPP for a broad
modeling community, we present a method to estimate emax for
the conterminous U.S. by coupling the SVM GPP with the
MOD17 GPP algorithm.

2. Methods

2.1. SVM for regression

Regression methods attempt to construct an approximate
function which maps an input domain to a real valued output
domain based on a set of data examples (Cristianini & Shawe-
Taylor, 2000). Commonly used regression methods include con-
ventional statistical methods, such as multiple regressions, and
machine learning methods, such as neural network and SVM.

Multiple regression is a standard statistical method designed
to predict the values of a target concept from two or more
explanatory variables. It is conceptually simple but less suited
for highly nonlinear problems, especially those outside a pre-
scribed range of nonlinear approaches. Neural network is a
computing system motivated by the function of a human brain
(Haykin, 1998). It is widely used for regression due to its ability



Fig. 1. Land cover and the distribution of AmeriFlux sites. Land cover was
derived from 2001 MODIS land cover products (MOD12Q1) and regrouped into
forest (Evergreen Needleleaf Forest, ENF; Deciduous Broadleaf Forest, DBF;
Mixed Forest, MF), non-forest (Closed/Open Shrubland andWoody Savannas and
Savannas, SH and SV; Grassland, GL; Cropland and Cropland/Natural vegetation
mixture, CL), and non-vegetation (Water, urban and barren or sparsely vegetated
areas) regions. The 36 Ameriflux sites are shown as plus symbols.
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to approximate any nonlinear function. However, neural
network suffers from challenges in selecting proper network
structure and finding optimal solutions due to its complexity
and high nonlinearity (Haykin, 1998).

The problems inherent to neural network led researchers to
look for alternatives such as SVM for nonlinear regressions.
SVMs were first developed by Vapnik (Vapnik, 1998; Vapnik &
Chervonenkis, 1991) for solving pattern classification pro-
blems, but they have been extended to the domain of regression
approximation. For example, Zhan et al. (2003) used SVM for
the nonlinear approximation of the relationships between ocean
chlorophyll concentration and remotely sensed marine reflec-
tance. Yang et al. (2006) used SVM for evapotranspiration
prediction from satellite remote sensing.

SVMs transform nonlinear regression into linear regression
by mapping the original low dimensional input space to a higher
dimensional feature space using kernel functions satisfying
Mercer's condition (i.e. the kernel function must be positive
semi-definite) (Vapnik, 1998). A linear model is then con-
structed in the new feature space, leading to a convex quadratic
programming (QP) problem guaranteed to have a global optimal
solution. We used SVM in this study due to its simplicity, global
optimality and great predictive power. For details of SVM
regression, readers are referred to Cristianini and Shawe-Taylor
(2000) and Yang et al. (2006). For model comparisons between
multiple regressions, neural network and SVM, information can
be found in Yang et al. (2006).

2.2. Explanatory variable selection

Vegetation photosynthesis is a complex process influenced
by a large suite of edaphic, atmospheric, and physiological
variables operating at different spatiotemporal scales. Spatially,
individual leaf level photosynthesis is regulated by stomatal
conductance and is limited by light, water and nutrient avail-
ability while regional GPP is affected by light, water and tem-
perature (Chapin et al., 2004; Nemani et al., 2003). Temporally,
hourly and daily photosynthesis reflect the influence of sunlight
and temperature while monthly and seasonal photosynthesis
anomalies are related to climate variations (Chapin et al., 2004;
Goulden et al., 1996). Based on the availability of remote
sensing data for real-time SVM implementation over large
regions, we selected land surface temperature (LST), enhanced
vegetation index (EVI), incident shortwave radiation (SWR),
and land cover as explanatory variables.

2.3. Data

We required five types of data for our SVM analysis: (1)
tower-based GPP from AmeriFlux sites (Baldocchi et al., 2001)
for training and testing; (2) explanatory environmental datasets
(LST, EVI, SWR, land cover) for both the AmeriFlux sites and
the continental application; (3) MOD17 GPP for model com-
parison at AmeriFlux sites; (4) NDVI and FPAR for GPP
predictive performance comparison with EVI at AmeriFlux
sites; and (5) inputs for emax estimation. Temporally, we used
data from 2000–2004 for AmeriFlux research, 2004 for
conterminous U.S. application, and 2004 for SVM comparison
with MOD17. For the continental application, all inputs were
resampled and/or reprojected to an 8 km resolution.

2.3.1. Tower-based GPP
We acquired CO2 flux or NEE (CO2 flux with storage CO2

flux corrected) from hourly or half-hourly measurements at 36
available AmeriFlux sites with a wide diversity of vegetation
structures (Baldocchi, 2003; Baldocchi et al., 2001) (Fig. 1 and
Table 1). We used site-provided GPP when available and
otherwise calculated hourly or half-hourly daytime GPP using
NEE (CO2 flux was used as a surrogate of NEE if NEE not
available) in the following three steps.

First, we performed outlier removal for each flux site in
2000–2004. We grouped flux observations for each year in
2000–2004 into nine bins: [−∞, −100], [−100, −80], [−80,
−60], [−60, −40], [−40, 40], [40, 60], [60, 80], [80, 100], and
[100, +∞] (μmol/m2/s; excluding missing data) and accepted all
observations in central [−40, 40] range without outlier detec-
tion. Otherwise, we computed the percentage of records in each
bin. If the percentage was smaller than 0.1%, we replaced the
NEE observations in the corresponding bin as missing. This
process detected an overall 0.02% records as outliers.

Second, we filtered nighttime flux measurements (PAR less
than 10 W/m2, ≈45.5 μmol/m2/s) using friction velocity (u⁎)
(Gu et al., 2005). We identified the upper uH⁎ and lower uL⁎

thresholds for all unique collections of nighttime fluxes (grouped
by site, season, and year) and used the flux values with u⁎

between uH⁎ and uL⁎ to develop a temperature response func-
tion (Gu et al., 2002),

Re ¼ c1e
c2½c3Taþð1−c3ÞTs� þ d1e

d2Ts ð1Þ

where Re is the ecosystem respiration, c1, c2, c3, d1 and d2 are
regression coefficients, Ta is air temperature and Ts is soil



Table 1
Name, latitude, longitude, vegetation structure and years of data available for each flux site in this study

Name Latitude (°) Longitude (°) Vegetation structure a Year

Forest
Indiana MMSF, IN (IN) b, c 39.3232 −86.4134 Mixed hardwood deciduous forest dominated by sugar maple,

tulip poplar, sassafras, white oak, and black oak
2000–2002

Blodgett, CA (BL) 38.8953 −120.6328 Mixed evergreen coniferous forest dominated by ponderosa pine (N70%) 2000–2004
University of Michigan, MI (UM) b 45.5598 −84.7138 Mid-aged conifer and deciduous, northern hardwood with

mostly deciduous, old growth hemlock
2000–2003

Niwot Ridge Forest, CO (NI) b 40.0329 −105.5464 Subalpine coniferous forest dominated by subalpine fir,
engelmann spruce, and lodgepole pine

2000–2004

Howland Forest, ME (HO) 45.2041 −68.7403 Boreal — northern hardwood transitional forest with 41%
red spruce, 25% eastern hemlock, 23% other conifers and 11% hardwoods

2000–2004

Harvard Forest, MA (HA) b, c 42.5378 −72.1715 Temperate deciduous forest dominated by red oak,
red maple, black birch, white pine, and hemlock

2000–2004

Lost Creek, WI (LC) b 46.0827 −89.9792 Alder-willow deciduous wetland 2000–2004
Willow Creek, WI (WC) b 45.9059 −90.0799 Temperate/boreal forest, lowland and wetland forest, upland hardwoods

dominated by white ash, sugar maple, basswood, green ash, and red oak
2000–2004

Park Falls, WI (PF) 45.9459 −90.2723 Deciduous and coniferous forest with 70% deciduous
(aspen, birch, maple, basswood, alder) and 30% conifer
(balsam fir, jack pine, black spruce, white cedar)

2000–2004

Metolius Intermediate, OR (MM) b, c 44.4524 −121.5572 Temperate coniferous forest dominated by pinus ponderosa,
purshia tridentate, and arctostaphylos patula

2002–2004

Metolius Old Young, OR (MY) b, c 44.4372 −121.5668 Temperate coniferous forest dominated by ponderosa pine 2000–2002
Metolius Old, OR (MO) b, c 44.4992 −121.6224 Temperate coniferous forest dominated by pinus ponderosa, purshia tridentate 2000–2000
Sylvania Wilderness Area, MI (SW) b 46.2420 −89.3477 Old-growth eastern hemlock/sugar maple/basswood/yellow birch 2001–2004
Duke Forest Pine, NC (DP) 35.9782 −79.0942 Even-aged loblolly pine plantation, deciduous, oak-hickory type,

mixed hardwood species, evergreen coniferous. Tree density=3700/ha
2000–2003

Black Hills, SD (BH) 44.1580 −103.6500 Conifer forest dominated by Ponderosa pine 2001–2004
Donaldson, FL (DN) b 29.7548 −82.1633 Pine plantation dominated by pinus elliottii 2000–2002
KSC Scrub Oak, FL (KO) b 28.6086 −80.6715 Scrub-oak palmetto dominated by schlerophyllous evergreen oaks and

saw palmetto serenoa repens
2000–2003

KSC Slash Pine, FL (KP) 28.4583 −80.6709 Old pine flatwoods ecosystem 2002–2002
Mize, FL (MI) b 29.7648 −82.2448 Pine plantation dominated by pinus elliottii 2000–2003
Wind River, WA (WR) b 45.8205 −121.9519 Old coniferous, temperate rainforest, evergreen forest dominated

by Douglas fir, western hemlock
2004–2004

Walker Branch, TN (WB) 35.9588 −84.2874 Mixed-species, broad-leaved forest, deciduous forest, oak/hickory
dominated by oak, hickory, maple, tulip poplar and loblolly pine

2002–2004

Ozark, MO (OZ) b 38.7441 −92.2001 Oak hickory forest located in the transitional zone between central
hardwood region and grassland region of USA

2004–2004

Non-forest
Walnut River, KS (WA) 37.5208 −96.8550 C3/C4 mixed grassland, tallgrass prairie 2001–2004
Bondville, IL (BO) 40.0061 −88.2919 Annual rotation between corn and soybeans 2000–2004
Mead Rainfed, NE (MF) b 41.1797 −96.4396 Maize–soybean rotation 2001–2004
Mead Irrigated, NE (MI) b 41.1651 −96.4766 Continuous maize 2001–2004
Mead Rotation, NE (MR) b 41.1649 −96.4701 Maize–soybean rotation 2001–2004
Vaira Ranch, CA (VA) 38.4067 −120.9507 Grazed C3 grassland opening in a region of oak/grass savanna 2000–2004
Tonzi Ranch, CA (TO) 38.4316 −120.9660 Blue oak trees in the overstory and annual grasses in the understory 2001–2004
Fort Peck, MT (FO) 48.3079 −105.1005 Temperate grassland 2000–2004
Sky Oaks Old Chaparral, CA (SO) 33.3739 −116.6230 Chaparral on hilly terrain 2000–2004
Sky Oaks Young Chaparral, CA (SO) 33.3772 −116.6230 Chaparral on hilly terrain 2000–2004
Canaan Valley, WV (CV) 39.0633 −79.4208 Temperate grassland 2004–2004
Goodwin Creek, MS (GO) 34.2500 −89.9700 Temperate grassland 2002–2004
Audubon Grasslands, AZ (AU) 31.6000 −110.5104 Desert grassland 2002–2004
Arm Oklahoma, OK (AO) 36.6050 −97.4850 Winter wheat, some pasture and summer crops 2003–2004

The names in the parentheses are abbreviations of flux sites.
a Descriptions on vegetation structures come from site information available at http://public.ornl.gov/ameriflux/.
b NEE provided.
c GPP provided.
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temperature. Eq. (1) describes a respiration model of two carbon
pools with the first term on the right hand side representing the
above-ground biomass respiration while the second term
representing soil respiration (Gu et al., 2002). We removed all
nighttime fluxes with u⁎ below uL⁎ or above uH⁎ and filled the
resulting Re gaps using Eq. (1). We did not conduct Re filtering if
PAR, Ta, Ts, or u⁎ was missing or if fewer than five nighttime
measurements were present.

http://public.ornl.gov/ameriflux/
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Third, we computed daytime GPP by subtracting NEE from
Re (upward flux positive by convention). If the result was
smaller than zero, we set GPP to zero. We marked GPP as
missing if daytime PAR, Ta, or Ts was missing and set GPP to
zero during nighttime.

We then processed the tower-based GPP to 8-day averages to
correspond with satellite compositing intervals. Because the
tower-based GPP had only 65% coverage due to system failures
or data rejection, we gap-filled the flux observations and treated
missing values as follows (Falge et al., 2001): (1) if more than
70% of data were missing in an 8-day period, we marked the
period as missing; (2) if a particular time of day was missing in
all 8 days, i.e. all eight 2 a.m. values were missing, we marked
the period as missing; (3) if neither condition 1 nor 2 were met,
we filled missing values with the mean from the non-missing
days, i.e. if a single 2 a.m. value was missing from the 8-day
period, we filled it with the mean of the remaining seven 2 a.m.
values.

2.3.2. LST, EVI, SWR and land cover
For LST, we used the MODIS 8-day average 1 km daytime

subsets (Cook et al., 2004) consisting of 7 km×7 km regions
centered on flux towers for each AmeriFlux site. At each time
step, we computed flux site LST as the average of the pixels
marked as good quality (mandatory quality assurance (QA) flag
being zero in the QA data) (Wan et al., 2002). If none of the 49
values was of good quality, we treated the period as missing. For
the 2004 conterminous U.S. extrapolation, we obtained the
MODIS 8-day average 1 km daytime LST product (MOD11A2;
Wan et al., 2002), which has a deviation of ±1 °C compared to
ground measurements (Wan et al., 2004; Wan et al., 2002).

For EVI, we again used the subsets for the AmeriFlux sites
and the standard MODIS product (MOD13A2; Huete et al.,
2002) for continental application. Based on RMSE from ground
validations, EVI RMSE is about 0.03 (Gao et al., 2003). EVI is
composited on a 16-day basis; for both the AmeriFlux and
continental applications, we therefore assigned each 16-day
composite EVI to the corresponding two 8-day periods.

We used satellite- and ground-based inputs for SWR. For
continental application, we obtained daily 0.5° resolution SWR
from the Surface Radiation Budget project (SRB), derived from
the Geostationary Operational Environmental Satellite (Pinker
et al., 2002) and processed 8-day averages. The daily SWR from
GOES-SRB has an RMSE of 24 W/m2 (∼2.07 MJ/m2/day)
(Pinker et al., 2003). Due to the coarse resolution of remotely
sensed SWR, we opted to use ground-base SWR (converted
from PAR by assuming 45% incident shortwave radiation is
PAR) for SVM tuning, training, and testing over the AmeriFlux
sites.

We obtained AmeriFlux land cover from the site descrip-
tions. Due to data availability, we regrouped the land cover
classes into two categories (Fig. 1): forest (evergreen needleleaf
forest, deciduous broadleaf forest, and mixed forest) and non-
forest (savanna, shrubland, grassland, and cropland). For the
conterminous U.S., we obtained land cover from the MODIS
land cover product (MOD12Q1) (Friedl et al., 2002) and again
regrouped classes to forest and non-forest (Fig. 1). Based on
ground comparisons at the continental scale, the accuracy of
MODIS land cover is 70–85% (Friedl, 2003).

2.3.3. MOD17 GPP
We compared the performance of the SVM GPP against the

standard MODIS GPP product MOD17A2 (Heinsch et al.,
2006; Running et al., 2004). As for LST and EVI, we used GPP
subsets for the AmeriFlux sites. Although MOD17 GPP
performs well in forest ecosystems, overestimating tower-
based GPP by only 20–30% (Heinsch et al., 2006; Running
et al., 2004), other researches have found that MOD17
overestimates low GPP and underestimates high GPP (Rahman
et al., 2005; Turner et al., 2006), suggesting that alternate
methods, such as the SVM approach presented here, may
provide useful alternatives.

2.3.4. NDVI and FPAR
Although we based our primary SVM vegetation character-

ization on EVI, we also explored the use of two additional
remote sensing products: NDVI and FPAR. As for LST and
EVI, we used subsets for the AmeriFlux sites. NDVI was
derived from the standard MODIS product MOD13A2 (Huete
et al., 2002) while FPAR was derived fromMOD15A2 (Myneni
et al., 2002).

2.3.5. Inputs for emax estimation
For emax estimation, we used four types of data: (1) 8-day

composite MODIS FPAR products (MOD15A2; Myneni et al.,
2002); (2) daily 0.5° resolution PAR converted from GOES-
SRB SWR described in Section 2.3.2; (3) daily minimum
temperature (Tmin), and (4) daily vapor pressure deficit (VPD).
To generate Tmin and VPD, we first created 8 km surfaces of
daily maximum temperature (Tmax) and Tmin using Ordinary
Kriging (Jolly et al., 2005) with two independent point
observation datasets from National Climatic Data Center
(NCDC) and Climate Prediction Center (CPC). An average of
1650 stations was used for the spatial interpolation over the
conterminous U.S. in 2004. We then calculated daytime VPD as
the residuals of saturated and actual vapor pressures using the
DAYMET algorithm (Thornton et al., 1997). The saturated
vapor pressure was calculated from daytime temperature
derived from Tmax and Tmin (Thornton et al., 1997). The actual
vapor pressure was calculated by assigning Tmin as the dew
point temperature (Campbell and Norman, 1998).

2.4. Experiments

2.4.1. SVM tuning, training, and testing
Using AmeriFlux tower-based GPP observations, we tuned

and trained the SVM with 2000–2003 data and tested the
SVMwith 2004 data. Our input variables were LST, EVI, SWR,
and land cover, and our target concept was GPP. After removing
8-day periods in which one or more of these variables were
missing, we had a total of 2603 data examples from 33 flux sites
in the GPP training set and a total of 736 data examples in
the GPP test set. We scaled all the input variables to the range of
−1 to +1 based on the minimum and maximum values of the
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2000–2003 data, as per standard SVM techniques to eliminate
the influence of variables with different absolute magnitudes.

The configuration of SVM regression requires three types of
parameters: C for the cost of errors, ε for the width of an
insensitive error band (ε-insensitive band), and kernel para-
meters. The parameter C determines the tradeoff between model
complexity and the training error, with higher values of C
decreasing the impact of the model complexity on the optimi-
zation formulation. The parameter ε controls the tolerance for
training errors. Data examples that have training errors smaller
than ε are ignored in the optimization formulation. Finally, the
kernel parameters vary with the selection of the kernel function.

In this study, we configured SVM as follows. First, we
selected the radial basis function (RBF) kernel, as opposed to
linear, polynomial, or sigmoid kernels, because it is highly
flexible and requires only one parameter, σ (Chang & Lin,
2005). Second, we tuned C, ε, and σ using a grid search with a
three-fold cross validation training process (Chang & Lin,
2005). In this approach, the training examples are randomly
divided into three non-overlapping subsets; training is
performed three times on two of the subsets with the remaining
subset reserved for testing; parameters yielding the lowest cross
validation errors are selected. We initially conducted a coarse
grid search (Chang & Lin, 2005) for C (2−1, 20, 21, …, 24),
ε (2−4, 2−3, 2−2, …, 22), and σ (2−3, 2−2, 2−1, …, 24) and
identified the C, ε, and σ combination producing the lowest
mean cross validation RMSE. We then used a progressively
finer grid search until the variance of the RMSE was smaller
than 0.01. Third, using the selected (C, ε, σ), we conducted a
final training of the SVM with the 2000–2003 AmeriFlux data.

Lastly, we tested the trained model on the test set for three
groups: forest, non-forest, and forest and non-forest combined.
The GPP testing dataset (2004) was from 24 flux sites (12 forest
and 12 non-forest sites) based on data availability. We evaluated
SVM performance using RMSE, R2, scatterplots of predictions
versus observations, seasonal variations between the predictions
and observations, and residual analysis.

2.4.2. Contribution of input variables on GPP variations
We examined the contribution of each input variable on

SVM GPP predictions by sequentially removing one of the
input variables (LST, EVI, SWR, and land cover) and repli-
cating the cross validation training process. We assessed the
contribution of each input variable with the mean cross valida-
tion RMSE and R2 from the cross validation training process.

2.4.3. Comparison of tower-based GPP with SVM GPP and
MOD17 GPP

We compared the performance of SVMs to that of MOD17
GPP at the 24 Ameriflux sites in 2004 using RMSE, R2, and
scatterplots of predictions versus observations. Further, we
compared annual SVM GPP against MOD17 GPP. We used
only those sites with at least 30 non-missing 8-day averages (out
of a possible 45) and gap filled missing periods with linear
interpolation. Extrapolation was performed if the missing 8-day
averages were at the beginning or end of the year and was set to
zero if the extrapolated value was smaller than zero.
2.4.4. Comparisons of the predictive performance of EVI with
NDVI and FPAR

We compared the predictive performance of EVI with NDVI
and FPAR by replacing EVI with NDVI and FPAR to form two
new sets of input variables: (LST, NDVI, SWR, and land cover)
and (LST, FPAR, SWR, and land cover) and replicating the
tuning, training and testing processes described in Section 2.4.1.
We assessed the performance with the RMSE and R2 on the test
set.

2.4.5. Generalization from AmeriFlux sites to the conterminous
U.S.

Based on research showing that the AmeriFlux network is
representative of conterminous U.S. ecoregions (Hargrove et al.,
2003) and that the 36 flux sites in this study included most of the
active flux sites in the AmeriFlux network (Fig. 1), we reasoned
that the knowledge learned at flux sites can be extrapolated to the
conterminous U.S. In order to generalize the model learned from
flux sites to the conterminous U.S., we first conducted a new
training of the SVMwith the entire 2000–2004 dataset using the
selected (C, ε, σ) from Section 2.4.1. The trained models were
then used to investigate the spatial and temporal distribution of
GPP over the conterminous U.S. for 2004.

2.4.6. Estimation of emax for the conterminous U.S.
As an illustration of the SVMGPP estimations for ecological

applications, we examined the spatial distribution of emax over
the conterminous U.S. by coupling SVM GPP estimation with
the MOD17 GPP algorithm (Heinsch et al., 2006; Running
et al., 2004). MOD17 GPP is calculated as follows:

GPP ¼ emax � mðTminÞ � mðVPDÞ � PAR � FPAR ð2Þ

where m(Tmin) and m(VPD) are multipliers for emax used to
reduce the conversion efficiency in the condition of cold tem-
perature and high vapor pressure deficit, both of which reduce
photosynthesis. The multipliers range linearly from 0 (total
inhibition) to 1 (no inhibition). Eq. (2) includes five unknown
parameters: (1) emax, (2 and 3) daily Tmin at which m(Tmin)=1
(TMINstart) and m(Tmin)=0 (TMINfull), and (4 and 5) daily
VPD at which m(VPD)=1 (VPDstart) and m(VPD)=0
(VPDfull).

For the parameter estimation, we used Levenberg–Mar-
quardt nonlinear least squares algorithms with box-constraints
(Kanzow et al., 2004) to minimize the RMSE between monthly
variations in SVM GPP and MOD17 GPP for each pixel in the
conterminous U.S. in 2004. Because the covariance between
parameters in the relationships to GPP was high when all five
parameters were left unconstrained and simultaneously opti-
mized, we used MOD17 GPP approach to set the parameter
values for VPDstart, VPDfull, and TMINfull (Running et al.,
1999), and only optimized emax and TMINstart. We set the box
constraints for emax to between 0 and 3 gC/MJ and for TMINstart

to between 5 and 15 °C. We further compared the optimized
emax with the emax used in MOD17 by averaging the optimized
emax for six land covers: (1) evergreen needleleaf forest; (2)
deciduous broadleaf forest, (3) mixed forest, (4) closed/open
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shrubland plus woody savannas and savannas; (5) grassland,
and (6) cropland plus cropland/natural vegetation mixture.

3. Results and discussion

3.1. AmeriFlux sites

3.1.1. SVM performance
Using the full input training set of LST, EVI, SWR and land

cover, the parameter combination of C=14.929, ε=0.063 and
σ=3.732 produced the smallest mean cross validation RMSE
of 1.83 gC/m2/day and an R2 of 0.76. Using these parameter
values and the trained SVM, the testing on the 2004 AmeriFlux
data produced a RMSE for the forest and non-forest combined
sites of 1.87 gC/m2/day with an R2 of 0.71. Non-forest sites had
2.05 gC/m2/day RMSE and 0.63 R2 while forest sites had
1.63 gC/m2/day RMSE and 0.79 R2 (Fig. 2), indicating that the
SVM performed better in forest than in non-forest sites.

The SVM represented most features of the tower-based GPP
seasonality in the 2004 AmeriFlux test data (Fig. 3). For some
specific sites, episodes of under- or over-prediction occurred.
Four examples of and possible explanations for site-specific
SVM GPP over-prediction are presented below. The SVM GPP
at Blodgett (Fig. 3 — 1, ponderosa pine) typically agreed well
with tower-based GPP until the end of July. We speculate that at
this point our Re calculation method failed to capture the large
measured summer soil respiration variations (Misson et al.,
2006); errors in this case may therefore be due to errors in our
calculation of tower GPP, not predictions from the SVM GPP.
The over-prediction at Walnut River (Fig. 3 — 16, grassland)
was influenced by unusually high EVI in the summer of 2003
and 2004 (∼0.1 higher than in 2001 and 2002). The tower-
based GPP at Tonzi Ranch (Fig. 3— 19, savanna) was 2–3 gC/
m2/day lower during the early summer of 2004 than those in
2001–2003 yet the seasonal variations of LST, EVI and SWR
during 2004 were similar to those in 2000–2003, indicating that
GPP at Tonzi Ranch in the early summer of 2004 was in-
fluenced by other factors such as unusual wind and/or soil
moisture patterns. Although vegetation LUE declines during
plant senescence (Escudero & Mediavilla, 2003), EVI may
Fig. 2. Scatterplots of the observed AmeriFlux GPP versus predicted SVMGPP in 200
combined, but tested with non-forest and forest separately. Dashed lines show a 1:1
remain high due to favorable water and nutrient conditions,
possibly accounting for over-prediction at ARM Oklahoma
(Fig. 3 — 24, winter wheat) in May 2004.

Under-prediction errors occurred in the summer of 2004
at Niwot Ridge Forest (Fig. 3 — 2), Metolius Intermediate
(Fig. 3 — 7), Wind River (Fig. 3 — 11), Mead Irrigated
(Fig. 3 — 14) and Bondville (Fig. 3 — 17). Although factors
not explicitly included in the SVM, such as soil moisture and
nutrition uptake, may account for some under-prediction errors,
we speculate that use of 8-day mean conditions may inad-
equately represent the effects of non-linear GPP processes, i.e.
the SVM drivers of LST, EVI, and SWR may be incapable of
producing extremely high GPP values occurring during short
periods of super-optimal physiological and boundary layer
conditions. Further, unusually large fluxes might come from
certain atmospheric turbulent events rather than real ecological
or physiological processes (Gu et al., 2002), i.e. processes
beyond the SVM prediction capability.

Based on examination of site-specific RMSE and R2, SVM
performance varied by flux site and land cover (Table 2). For
forest sites, Black Hills had the lowest RMSE of 1.00 gC/m2/
day and Wind River had the highest RMSE of 3.08 gC/m2/day.
In terms of R2, the lowest R2 of 0.39 occurred at Blodgett and
the highest R2 of 0.93 occurred at Sylvania Wilderness Area. In
comparison to forest sites, non-forest sites had greater variation
of RMSE and R2: RMSE varied from 0.62 gC/m2/day at
Aububon Research Ranch to 3.31 gC/m2/day at Mead Irrigated,
and R2 varied from 0.00 at Aububon Research Ranch to 0.95 at
Walnut River.

Residual analysis showed that RMSE averaged across all
AmeriFlux sites showed a strong seasonality (Fig. 4). In abso-
lute magnitudes, winter had low prediction errors (b1.0 gC/m2/
day) while warm season errors often exceeded 2.0 gC/m2/day.
Yet when expressed as a percentage of RMSE to the mean
tower-based GPP, the pattern was reversed: winter errors were
often above 80% but summer errors rarely exceeded 60%. This
is not surprising because the rapid changes of ecosystem
productivity in spring are likely to introduce great uncertainty in
tower-based GPP measurement and remotely sensed input vari-
ables (LST, EVI and SWR). Further, we suspect that the
4 for non-forest and forest sites. The SVMwas trained with non-forest and forest
relationship; solid lines show a least squares regression line.



Fig. 3. Comparison of seasonal variations of the observed AmeriFlux (open circle) and predicted SVM (closed triangle) 8-day average GPP at flux sites for 2000–2004
(sites that do not have data available in 2004 testing set are not shown). The predicted GPP for 2000–2003 are training results; the predicted GPP for 2004 are testing
results. The vertical dashed lines separate testing results from training results.

116 F. Yang et al. / Remote Sensing of Environment 110 (2007) 109–122



Fig. 3 (continued).
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measurement error from the explanatory variables had additive
or multiplicative influence on GPP prediction. Thus, potential
users should carefully consider the sensitivity of the system
under study to the seasonality of absolute and relative GPP
prediction errors.

Analysis of the mean GPP from AmeriFlux and SVM also
showed that SVM performance varied by flux sites and land
cover (Fig. 5). The predicted and tower-based mean GPP was
within 40% of the 1:1 line for all sites except Vaira Ranch (VA),
Table 2
Site name and statistics (RMSE and R2) for GPP at flux sites in 2004 for the
number (N) of available MODIS and tower 8-day average datasets

Name RMSE (gC/m2/day) R2 N

Forest
Blodgett, CA 1.25 0.39 33
Niwot Ridge Forest, CO 1.24 0.89 38
Howland Forest, ME 1.07 0.89 34
Harvard Forest, MA 1.82 0.87 31
Lost Creek, WI 1.43 0.92 29
Willow Creek, WI 1.59 0.90 25
Metolius Intermediate, OR 1.90 0.87 41
Sylvania Wilderness Area, MI 1.08 0.93 26
Black Hills, SD 1.00 0.80 23
Wind River, WA 3.08 0.59 31
Walker Branch, TN 1.18 0.88 26
Ozark, MO 1.32 0.90 10

Non-forest
Walnut River, KS 2.74 0.95 32
Bondville, IL 2.17 0.64 30
Mead Rainfed, NE 2.59 0.63 37
Mead Irrigated, NE 3.31 0.81 36
Mead Rotation, NE 1.86 0.76 36
Vaira Ranch, CA 1.42 0.66 37
Tonzi Ranch, CA 1.53 0.23 42
Fort Peck, MT 1.46 0.46 25
Canaan Valley, WV 1.68 0.51 16
Goodwin Creek, MS 1.27 0.91 30
Audubon Grasslands, AZ 0.62 0.00 39
Arm Oklahoma, OK 2.36 0.43 29
Walnut River, Fort Peck (FO), ARM Oklahoma (AO) and Wind
River (WR). High over-prediction occurred at Vaira Ranch
(VA, 52.1%), Walnut River (WA, 49.8%), ARM Oklahoma
(AO, 47.7%) whereas high under-prediction occurred at Fort
Peck (FO, 66.3%) and Wind River (WR, 40.8%). In terms of
land cover, the predicted mean GPP was within 20% of the 1:1
line for all forest sites except Niwot Ridge (NI), Metolius
Intermediate (MM), Wind River (WR) and Lost Creek (LC); but
of the non-forest sites, only Audubon Grassland (AU), Good-
win Creek (GO), Mead Rotation (MR) and Canaan Valley (CV)
were within 20% of the 1:1 line. The overall prediction error
was 31.8% for non-forest and 17.7% for forest. Given the
heterogeneity of the AmeriFlux data and the simplicity of the
model inputs, model performance was promising.

3.1.2. Contribution of input variables on GPP variations
As measured by changes in cross validation error statistics,

the removal of EVI caused the largest reduction in performance
of the SVM GPP (Table 3): RMSE increased from 1.83 gC/m2/
day to 2.68 gC/m2/day and R2 decreased from 0.76 to 0.49.
Fig. 4. Seasonal variations of GPP prediction errors averaged across all flux
sites. Left axis shows RMSE error expressed as gC/m2/day; right axis shows
RMSE error expressed as a percent of average tower-based GPP.



Fig. 5. Mean observed AmeriFlux GPP versus mean predicted SVM GPP in
2004 for forest and non-forest sites. Error bars are standard errors (defined as the
standard deviation divided by the square root of the number of observations) of
the observed and predicted 8-day average GPP. Solid line shows a 1:1
relationship. Dotted lines are the confidence limits at 20% range defined by
mean predicted GPP=0.8×mean observed GPP for the lower limit and mean
predicted GPP=1.2×mean observed GPP for the upper limit. Abbreviations of
flux sites refer to Table 1.

Table 4
Comparison of annual total GPP between tower-based calculation, SVM, and
MOD17 for sites which had no less than thirty 8-day averages available in 2004

Name Tower-based
(gC/m2/year)

SVM
(gC/m2/
year)

Relative
error (%)
(SVM)1

MOD17
(gC/m2/
year)

Relative
error (%)
(MOD17)1

Forest
Blodgett, CA 947 1088 14.9 (+) 1058 11.7 (+)
Niwot Ridge
Forest, CO

869 650 25.2 (−) 742 14.6 (−)

Howland Forest,
ME

1297 1208 6.9 (−) 1155 10.9 (−)

Harvard Forest,
MA

1737 1900 9.4 (+) 1187 31.7 (−)

Metolius
Intermediate
Site, OR

1548 1013 34.6 (−) 1081 30.2 (−)

Wind River, WA 1909 1109 41.9 (−) 1340 29.8 (−)

Non-forest
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Removal of LST produced comparatively minor changes:
RMSE rose to 1.97 gC/m2/day and R2 fell to 0.72. The removal
of land cover led to an increased RMSE of 1.91 gC/m2/day and
a decreased R2 of 0.74. The removal of SWR had the smallest
impact: the RMSE only increased by 0.06 gC/m2/day and the
R2 decreased by 0.02. This is consistent with other studies
where positive and statistically significant relationships have
been reported between vegetation index and photosynthesis
(Paruelo et al., 1997; Rahman et al., 2005; Sellers et al., 1992).
However, our input variable ranking was based on the 8-day
averages within 7 km×7 km regions. Thus, potential users
should be cautious on the relative importance of the input
variables reported in this study because the importance may
change with different spatial and temporal resolutions.

3.1.3. Comparison with MOD17 GPP
In terms of R2 and RMSE calculated from 8-day values,

SVM GPP outperformed MOD17 GPP in 2004 for both forest
and non-forest sites. SVM GPP had 2.05 gC/m2/day RMSE
with an R2 of 0.63 for non-forest sites and 1.63 gC/m2/day
RMSE with an R2 of 0.79 for forest sites while MOD17 GPP
had 2.71 gC/m2/day RMSE with an R2 of 0.39 for non-forest
Table 3
The impact of removing one of the four input variables on the predicting
performance of SVM on GPP

Variable removed RMSE (gC/m2/day) R2 C ε σ

None 1.83 0.76 14.929 0.063 3.732
LST 1.97 0.72 12.126 0.125 5.278
EVI 2.68 0.49 10.556 0.095 8.000
SWR 1.89 0.74 10.556 0.072 6.964
Land cover 1.91 0.74 12.126 0.065 6.964

The results shown are the average from three-way cross validation on the
training set.
sites and 2.08 gC/m2/day RMSE with an R2 of 0.67 for forest
sites. While both SVM GPP and MOD17 GPP performed better
in forest sites than in non-forest sites, MOD17 GPP showed a
systematic underestimation of the tower-based GPP for non-
forest sites.

Based on annual data, both SVM GPP and MOD17 GPP
again performed better in forest sites and SVM again
outperformed MOD17 for non-forest sites but had similar
performance for forest sites (Table 4). For SVM GPP in non-
forest sites, the highest over-prediction occurred at Walnut
River (77.6%) and the highest under-prediction occurred at
Mead Irrigated (40.7%), while for forest sites, the highest over-
prediction occurred at Blodgett (14.9%) and the highest under-
prediction occurred at Wind River (41.9%). MOD17 GPP
underestimated all sites except Blodgett, Audubon Grassland,
Vaira Ranch and Tonzi Ranch with the highest underestimation
of 66.1% at Mead Irrigated for non-forest sites and 31.7% at
Harvard Forest for forest sites. Overall, annual SVM GPP had
an error of 32.1% for non-forest sites and 22.2% for forest sites,
while annual MOD17 GPP had an error of 50.3% for non-forest
sites and 21.5% for forest sites.

Heinsch et al. (2006) reported a relative overestimation of
20.0–30.0% from MOD17 based on a comparison with 15 flux
sites (mostly forest ecosystem). We speculate the difference
may be due to different tower-based GPP calculations and
different spatiotemporal coverage. For example, based on the
Walnut River, KS 990 1759 77.6 (+) 683 31.1 (−)
Bondville, IL 926 663 28.4 (−) 458 50.5 (−)
Mead Rainfed, NE 773 1017 31.6 (+) 514 33.5 (−)
Mead Irrigated, NE 1403 832 40.7 (−) 476 66.1 (−)
Mead Rotation, NE 786 851 8.2 (+) 481 38.9 (−)
Vaira Ranch, CA 474 686 44.9 (+) 602 27.1 (+)
Tonzi Ranch, CA 386 521 34.7 (+) 595 53.9 (+)
Goodwin Creek,
MS

1650 1315 20.3 (−) 780 52.7 (−)

Audubon
Grasslands, AZ

117 114 2.3 (−) 233 98.8 (+)

1 Relative error is defined as (estimation−observation) /observation×100.
(+) Indicate over-estimation.
(−) Indicate under-estimation.



Table 5
Comparison of the predicted performance of EVI with NDVI and FPAR

Non-forest Forest

RMSE (gC/m2/day) R2 RMSE (gC/m2/day) R2

EVI 2.05 0.63 1.63 0.79
NDVI 2.27 0.57 1.77 0.74
FPAR 2.48 0.56 1.81 0.59
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site-specific GPP provided by Harvard Forest, we calculated the
annual tower-based GPP at Harvard Forest to be 1737 gC/m2/
year in 2004 (Table 4). However, Heinsch et al. (2006) reported
an estimation of 1600 gC/m2/year for the tower-based GPP at
Harvard Forest in 2001–2002. We thus concluded the overes-
timation ofMOD17 in the study of Heinsch et al. (2006) might be
the result of their different calculation of the tower-based GPP
and/or different spatiotemporal coverage from our study.

3.1.4. Comparison of the predictive performance of EVI with
NDVI and FPAR

SVM GPP with EVI had 2.05 gC/m2/day RMSE with an R2

of 0.63 for non-forest sites, and 1.63 gC/m2/day RMSE with an
R2 of 0.79 for forest sites on the 2004 AmeriFlux data (Table 5).
Fig. 6. Eight-day average SVM GPP for the conterminous U.S. for April 6–April 13,
2004. GPP greater than 12 gC/m2/day was truncated to 12 gC/m2/day for display purp
more input variables (LST, EVI, SWR).
Replacing EVI with NDVI yielded an RMSE 2.27 gC/m2/day
with an R2 of 0.57 for non-forest sites, and an RMSE of
1.77 gC/m2/day with an R2 of 0.74 for forest sites. Replacing
EVI with FPAR produced an RMSE of 2.48 gC/m2/day with an
R2 of 0.56 for non-forest sites, and an RMSE of 1.81 gC/m2/day
with an R2 of 0.59 for forest sites. Therefore we concluded that
EVI had better predictive performance on GPP variations than
NDVI or FPAR.

3.2. Generalization from AmeriFlux sites to the conterminous
U.S.

The purpose of our conterminous U.S. GPP application was
to assess whether or not the SVM technique produced spatio-
temporal GPP estimates consistent with expected patterns. In
the four 8-day periods in 2004 representing spring, summer, fall
and winter over the conterminous U.S., the SVM model trained
at the AmeriFlux sites generally captured the expected GPP
features (Fig. 6). Temporally, April GPP was low because of
low temperature and low radiation in the onset of growing
seasons; July GPP was high because of high precipitation, peak
vegetation, and intensive radiation; September GPP dropped as
vegetation senesced; and December GPP was lowest with
July 3–July 10, September 21–September 28, and December 2–December 9 of
oses. Areas shown as white are either barren or contained missing data in one or



Fig. 8. Estimated maximum light use efficiency (emax) for the conterminous U.S.
in 2004.
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coldest temperatures and lowest radiation. Spatially, April GPP
was high in California and Florida due to high temperature; July
GPP was highest in the southeastern U.S., due to high moisture
and energy availability; and September GPP showed patterns
consistent with early phenological decline of agricultural regions
in the Mississippi River valley and Midwest.

Examination of annual total GPP in 2004 showed that
eastern deciduous forest, and eastern and southern mixed
evergreen forest areas were the most productive regions in the
U.S. (Fig. 7). The Great Lakes, New England mixed forest,
Rocky Mountain evergreen forest and Pacific coastal evergreen
forest were modest in productivity. Low GPP regions included
the Great Plains (extending from eastern Montana and North
Dakota to Texas) and the Great Basin, Sonoran, Mojave, and
Chihuahua Deserts.

3.3. Estimation of emax for the conterminous U.S.

The spatial patterns of emax were strongly heterogeneous
across the conterminous U.S. (Fig. 8). Most semi-arid regions
had very low emax (b0.5 gC/MJ) but arid regions of south-
western U.S. had extremely high emax exceeding 2.0 gC/MJ.
While this finding may be due to difficulties in estimating FPAR
and/or SVM GPP, emax may also be adapted to optimize
assimilation during short periods of optimal environmental
conditions. Cropland regions and eastern forests had high emax

(N1.5 gC/MJ) (Fig. 8).
Estimated emax in each land cover class (Table 6) was

qualitatively consistent with ground-based observations (e.g.
Gower et al., 1999). First, except for cropland, emax was greater
for forest than for non-forest. Second, emax was greater for
deciduous than for evergreen forests. Third, croplands had high
emax. This agreement with ground observations suggests the
overall credibility of our emax estimation.

Comparison of emax in the MOD17 GPP algorithm with our
estimation strengthens the need for emax refinement in the
MOD17 model, especially in cropland regions (Table 6). The
Fig. 7. Annual total SVM GPP for the conterminous U.S. in 2004. GPP greater
than 2000 gC/m2/year was truncated to 2000 gC/m2/year for display purposes.
Areas shown as white are either barren or contained missing data in one or more
input variables (LST, EVI, SWR).
underestimation of MOD17 GPP products in non-forest regions
could be explained by its low emax values in grassland and
cropland. Along with several studies which reported large
uncertainties of emax in the MOD17 GPP algorithm (e.g.
Heinsch et al., 2006; Turner et al., 2005), our analysis has the
potential for improving the ecophysiological parameter estima-
tions in the MOD17 GPP algorithm.

3.4. Limitations and advantages of the proposed method

At least six factors may have limited the continental GPP
generalization: (1) use of 0.5° resolution GOES-SRB SWR for
the conterminous U.S. tended to smooth GPP variations; (2) use
of 16-day composite EVI for 8-day periods also tended to
smooth GPP; (3) the 36 flux sites included in this study may not
fully represent the spatiotemporal variation of actual GPP;
(4) the gap-filling method adopted in this study might not be
appropriate for all sites; (5) canopy storage flux uncorrected
may introduce errors in tower GPP; and (6) the tower-based
GPP may have measurement errors jeopardizing the model
generalization ability. Additional flux data would mitigate some
of these issues, as would finer resolution EVI (temporally) and
SWR (spatially).

The 36 AmeriFlux sites (Table 1) included in this study
represent a wide variety of vegetation types and climate regimes.
Depending on tower heights and site topography, the footprints
Table 6
Estimated and MODIS GPP algorithm based emax (gC/MJ) in each vegetation
class

Land cover This study MOD17 GPP

ENF (Evergreen needleleaf forest) 1.02 (0.40) 1.01
DBF (Deciduous broadleaf forest) 1.56 (0.36) 1.16
MF (Mixed forest) 1.31 (0.36) 1.12
SH, SV (Closed/open shrubland and
woody savannas and savannas)

0.79 (0.59) 0.81

GL (Grassland) 0.86 (0.73) 0.68
CL (Cropland and cropland/natural
vegetation mixture)

1.47 (0.53) 0.68

() shows its standard deviations.
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of flux sites can vary from a hundred meters to several thousand
meters (Kim et al., 2006). In our SVM GPP analysis, we chose a
7 km×7 km region as the spatial representativeness for each flux
site. Such simplification ignored landscape heterogeneity and
could lead to inadequate representation of the nonlinearity of
vegetation photosynthesis and respiration processes. The influ-
ence of vegetation structure and site topography on the selection
of appropriate scales for SVM GPP analysis deserves more
research.

Our GPP estimation method provides a potentially powerful
and independent tool for terrestrial carbon cycle studies. First,
because our method is driven by satellite data, it can possibly
monitor more spatially detailed patterns in surface heterogene-
ity than can process-based models. Second, we can use the
SVMGPP for independent tests of ecosystem models because it
does not require surface meteorological data. Third, the spatio-
temporal variations in data-driven GPP can potentially give
insights for ecosystem sciences and processes, as demonstrated
here with the spatial inversion of emax for optimization of LUE
models.

In summary, although there are potentially confounding
factors and it is difficult to validate GPP distribution over the
conterminous U.S., our results show that the SVM trained at
AmeriFlux sites generally captured the expected spatiotemporal
variations of GPP over the conterminous U.S. This result,
although not quantitatively conclusive, strongly suggests that
SVM models trained at flux sites can be generalized to larger
regions.

4. Conclusions

Using a combination of tower-based GPP, machine learning
techniques, and remotely sensed inputs, we developed a
technique to predict GPP over the conterminous U.S. with an
average test error of 1.87 gC/m2/day and a method to estimate
emax for the conterminous U.S. We found that EVI was the most
important factor for GPP prediction, suggesting that finer
temporal resolution for EVI (possibly by including Terra and
Aqua satellites) could substantially enhance regional and/or
continental GPP estimates. The method can also be improved
by increasing the number of GPP ground observations. A
central limitation of the SVM technique is that the knowledge
learned is encoded as weights that are not directly comprehen-
sible to humans. However, methods exist with which to convert
the structure learned by SVMs to a more understandable format,
such as rules, thus enhancing our understanding of GPP pro-
cesses at different scales. With these improvements, the com-
bination of satellite data with ground observation of GPP
through machine learning should be able to provide prediction
of GPP with sufficient accuracy and timeliness for application
in regional to continental natural resource management services
and may serve as a supplemental tool for existing GPP retrieval
methods. Furthermore, based on the product accuracy and the
spatiotemporal scale considered in this study, the SVM based
GPP prediction can also be useful for documenting hydro-
ecological models and for improving terrestrial biosphere
models at regional to continental scales.
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