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ABSTRACT: 111is paper presents a knowledge discovery approach to extracting knowledge from area-class
resource maps. Prototype theory forms the basis of the approach which consists of two major components:
(1) a scheme for organizing knowledge used in categorizing geographic entities which allows for the model-
ing of indeterminate boundaries and non-uniform memberships within categories; and (2) a data mining
method using the Expectation Maximization (EM) algorithm for extracting such knowledge from area-class
maps. A case study on knowledge discovery from a soil map demonstrates the details of the approach. The
study shows that knowledge for classifying geographic entities with indeterminate boundaries is embedded
in area-class maps and can be extracted through data mining: and that continuous spatial variation of geo-
g,-aphic entities can be beuer modeled iFthe knowledge discovery process retains knowledge of within-class
variations as well as transitions between classes.

Introduction

The development of geographic knowl-
edge discovery arose out of the need to
intelligently and automatically trans-

form geographic data into information and syn-
thesize geographic knowledge (Yuan et al. 200 I).
Research in this area has received continuous
attention during the past decade. Moreover,
studies have extended the scope of knowledge
discovery from remote sensing data sources to
traditional maps (Malerba et al. 2002; Qi and
Zhu 2003).
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The map is a powerful medium for presenting
spatial information and geographical relationships.
Much of our understanding of the relationship
among spatial phenomena is embedded in maps.
Tn natural resource management practice, [or
example, decades of survey practice have gener-
ated and amassed large volumes of inventory map~.
In particular, maps of natural resources such as
soils, wildlife habitats, and potential environmen-
tal hazards are usually created through knowl-
edge-driven environmental modeling (Skidmore
2002). That is, the distributions of these resources
are inferred from other easily observable envi-
ronmental conditions using expert knowledge
of the relationships between the resources and
these relevant environmental conditions (Zhu et
al. 2001). For example, wildlife habitat maps can
be modeled using species-environmental relation-
hips where the environmental factors include cli-

mate, vegetation, landscape characteristics, and
human factors. Wildfire assessment maps can be
modeled using three main environmental factors:
fuel (biomass type, moisture levels, etc.), weather,
and topography (Skidmore 2002). Based on these
models, the natural resources are classified and
represented as area-class maps (Mark and Csillag
1989). These maps thus contain rich luunoledge on
such relationships.

Previous studies (Moran and Bui 2002; Qi and
Zhu 2003; Qi 2004) have demonstrated the use
of inductive learning methods to extract these
relationships from area-class resource maps.
The extracted knowledge is valuable in at least
two ways. First, it facilitates traclitional, resource
inventory map updates. Inventory maps need to
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be updated when relevant environmental condi-
tion change or b tter reference maps exist. The
resource-environment relationships used to create
the original map often exist as domain experts'
tacit, undocumented knowledge. When the domain
expert is not available during the update (which is
often the case with oil mapping where the update
cycle i usually longer than the career span of a
soil expert), a new local model needs to be devel-
oped from cratch. This would involve tremendous
amounts of fieldwork. Therefore, if the knowledge
implicitly embedded in the original map could be
retrieved and repre ented in a quantitative format,
it would facilitate the update process. Second, if
the extracted knowledge could model continuou
spatial variations of the natural resource, it might
lead to maps that are more accurate or to improved
representations of the spatial distribution of such
resources through automated knowledge-based
inference.

The area-cia presentation of the resource maps,
however, limited previous studie (Moran and Bui
2002; Qi and Zhu 2003; Qi 2004) to extract knowl-
edge that can only model natural resources in a
traditional way, such as generalized and discrete
classes (categories). That i , a particular location
is a ociated with one and only one cia s with
full membership. As a result, spatial entities are
delineated as polygons with cri p boundaries and
no overlaps, within which areas share a member-
ship of unity to each of the prescribed catego-
ries. In reality, though, most geographic entities
have indeterminate boundaries in both attribute
pac and geographic pace (Burrough 1996) and

exist more or less as continuums. Fitting such
continuums into di crete categories with uniform
memberships limits the portrayal of geographic
entitie in term of both spatial detail and attribute
accuracy (Burrough 1996), thus failing to meet
the needs of many environmental management
applications.

In the area of soil mapping, scientists have begun
developing new approaches to map continuous
spatial variations of oil u ing fuzzy logic (Zhu et
al. 1996; De Gruijter et al. 1997; Zhu et al. 2001;
hi et al. 2004; Qi et al. 2006). De Guijter and

colleagues mapped soil properties using the fuzzy
k-means clustering method with large amount
of field points (De Cruijter et al. 1997). Other
studies (Zhu et al. 1996; Zhu et al. 2001; hi et
al. 2004; Qi et al. 2006) followed the traditional
knowledge-driven soil modeling approach, but they
adopted a number of fuzzy inference methods to
infer soil description ba ed on oil-environment
relationships acquired directly from local soil experts.

For example, Zhu and colleagues (1996, p. 200 I)
worked with local oils experts to acquire knowl-
edge on membership gradations within soil classes
through interactive graphic interface. In a later
study, Shi and colleagues (2004) u d case-based
reasoning where soi I expert provided the typical
case of oil las e . Qi and colleagues (2006) later
addre ed ome of the limitations of the previous
methods and designed a new knowledge acquisi-
tion methods based on prototype theory.

The common ground of these methods is that
they all acquire knowledge directly from local
expert, either through on-site interview tech-
nique or through expert-controlled computer
input with graphic interfac . Knowl dge acqui-
sition directly from domain expert, however, has
alway b en considered as a bottleneck [or the
development of knowledge-based approaches
and sy terns (Molokova 1993). In an area where
no experienced soil expert i available, this type
of knowledge acquisition would be difficult. An
alternative way to overcoming thi difficulty is to
acquir knowl dge that ha already been expressed
by experts but exists in other carrier forms. This
paper expands on previou work in knowledge
discovery from resource maps (Moran and Bui
2002; Qi and Zhu 2003; Qi 2004) by exploring
these forms and focusing on the extra tion of
membership gradations within clas es on them.
We present an approach to extracting the knowl-
edge for classifying natural re ource in a way
that explicitly reflects the indeterminate nature
of class boundaries and member hip gradations
within classes. The belief is that such knowledge i
embedded in the area-class map presentation and
can be extracted by taking into consideration how
human cognitively use geographi knowledge in
categorizing th ontinuou geographic entities
and creating the maps.

Our approach con i t of two major components:
I) a scheme for organizing knowledge u ed in cat-
egorizing geographic entitie ,which allow for the
modeling of indeterminate boundaries and non-
uniform membership within cat gorie ; and (2) a
data mining method for extracting uch knowledge
from map data. The cheme [or organizing knowl-
edge i ba ed on prototype theory (Ro ch 1973;
Lakoff 1987), a well endor ed cognitive theory of
human categorization. The data-mining method
is based on an empirical measure of the typicality
of category member that were fir t introduced
by psychologist Ro hand Mervi (1975) within
the context of protoLype theor .
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Household Item Listed Features Familv Resemblance Measure

Chair F.151' F,(4) F,(3) F (21 14

Sofa F (5) U41 FJ3) F.(2) 14

Cushion F (5) F (4) F (1) F.l21 12

Rua F.(5) U3) F (2) F (1) 11

Vase F (5) U2) F,(1) F ,(1) 9

Teleohone F (41 F.(2) F .(1) F .(1) 8
a. Numbers in parentheses indicate how often each feature occurs in set of instances.

Table 1. Experimental Results of the Family Resemblance analysis. [Source: Rosch and Mervis (1975).]

Prototype Theory
One of the central concerns of cognitive psychol-
ogy is the process of categorization (and subse-
quent classification) by which humans organize
and represent their knowledge of the world
(Rosch 1978; Tversky and Hemenway 1984).
Classical category theory views the world as
being comprised of natural partitions, and the
purpose of categorization is to allocate objects
into the appropriate partitions (Hahn and
Rarnscar 2001). Under this view, all instances
of a category share common features that are
singly necessary and jointly sufficient for defin-
ing the category (Smith and Medin 1981). Thus,
an instance that possesses all of the def ning
features belongs to the category with full mem-
bership, while an instance that lacks any of th
defining features must be excluded from the cat-
egory completely.

This classical view of categories received intense
criticism in the 1970s as new theories started to
emerge (Smith and Medin 1981). Of the newly
developed theories of categorization, prototype
theory (Rosch 1973; 1978) is the most widely
endorsed. Prototype theory emphasizes the fact
that category membership is not homogenous
and that some members are better representa-
tives of a category than others-observations
that are noted as the "prototype effects" (Lakoff
1987). To quantify prototype effects, Rosch and
Mervis (J 975) experimented with natural concepts,
developing a measure of "family resemblance" as
the determinant of an item's typicality. In their
experiments, subjects were asked to list features of
various subsets of a superordinate concept, such as
furniture, For which the subsets varied in typicality
(chair is typical, lamp atypical). Table I illustrate
their analysis on the distribution of listed features.
Each feature listed for a subset is weighted by the
total number of subsets that it is listed for; then,
for each subset, the weights of all of its feature

are summed, yielding a family resemblance mea-
sure. In short, an item has a greater degree of
family resemblance ifit contains features shared by
many other members of that same concept group.
Rosch and Mervis's study shows that these family
resemblance measures are very highly correlated
with typicality ratings of the subsets determined
by other means, and it allows for the quantifica-
tion of prototype effects.

In terms of knowledge representation, prototype
theory assumes that categories are mentally rep-
resented by prototypes that summarize a person's
previous exemplar experiences (Minda and Smith
2001). The categorization of possible members
is based on how similar they are to the prototype
(Hampton 1995). The prototype of' a category i
a composite or average of all the real instance
experienced which 1) reflects some measure of
central tendency of the instances' properties; 2)
consequently, is more similar to some category
members than others; and 3) is itself realizable as,
but may not necessarily be, an instance (Smith and
Medin 1981). Compared to the classical view of
categories, the prototype is a summary representa-
tion of a category in terms of features that may be
only probable to the members of the category.

Implications for Geographic Knowledge
Discovery
Due to the complexity and continuity of most
geographicfeaturesand phenomena, geographic
classification is a complicated abstraction pro-
cess. In an ideal situation, an indefinite number
of categories should be used to approximate
one-to-one correspondences for the modeling of
spatial variations in full detail. However, we typi-
cally categorize in such a way that few concepts
capture rich situations, and the categories are,
as a result, the most informative (MacEachren
1995). In this case, we often discretize the contin-
uous geographic features to a limited number of
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classes (categoric ). This leads to an irresolvable
indefinite correspondence between the .oncepts
and the represented world. Because this discreti-
zation results in inherent gradation of member-
hips to categorie , it generates prototype effect

of the geographic categories (Lakoff 1987).
We traditionally partition our geographic environ-

ment into variou kinds of categories that exhibit
such prototype effects. For example, in the case
of landform recognition, the natural landscape
is commonly seen as hills and valley , OJ~ on a
larger scale, ummits, houlders, back slopes, foot
slopes, and drainage way. Prototype eff cts are
refle ted in that a particular foot slope location
may be perceived to be a better exam pIe of a foot
lope than some other location. Moreover, in

the case of oil cia ification, the continuou soil
body is categorized into soil classes. Prototype
effects are shown when soil scienti ts claim that a
certain pedon is more representative of one soil
cia than another, although both are classified
in the same way.

Our traditional products of the classification
practice, however, are rooted in the clas ical view
of categories. The area-class representation of soil
classes, for example, does not explicitly model the
prototypical characteristic of the soil categories
that exist in soil cientist ' mental representations
and i an over-generalization of soil variations
in both the spatial and attribute domains (Zhu
1997). Previous studie on knowledge discovery
from such maps overlooked the explicit prototypi-
cal characteri tics and extracted knowledge that
fails to capture the indeterminate boundaries of
the oil classes. To overcome this deficiency, we
developed a knowledge discovery approach that
explicitly consider the characteristics of geographic
categorie delineated by prototype theory,

Previous work by geographers has examined the
connection of prototype theory and geographic
categorization from everal p I' pectives. For example,
aspects of map reading and human knowledge
construction have been studied (Lloyd 1994; Lloyd
and Carbone 1995). Building GIS data model that
refl ct prototype ffects (U ery 1993) and model-
ing spatial relations between ge graphic entities
(Mark and Egenhofer 1994) have also been topics
of interest, as ba comparing spatial categories in
the context of GIS interoperability (Rodri ' guez
and Eg nhofer 2004; Feng and Flewelling 2003;
Ahlqvisl2005). Few, however, have been reported n
the application of prototype theory in geographic
knowledge discovery. This research bring a tart
in this direction by introducing an approach to
representing knowl dge for c1as ifying geographic

ntities with indeterminate boundaries and extract-
ing such knowledge from an area-cia s map.

For knowledge repre entation chemes to be
capable of retaining tbe prototype effects of geo-
graphic c1as e , they should take into con ideration
the way that human experts organize their knowl-
edge mentally. For individual domain expert, the
development of their knowledge about the catego-
rie of their specialty is a proce s of con tructing
the categories' prototypes based on accumulated
in tanc xperiences (MacEachren 1995; Minda
and Smith 200 I). Thi gives insight to knowledge
representation in terms of prototypes. Classification
is then performed tbrougb the cornpari on of
new instances to such established prototypes, and
memb r bip of an in tance is determined ba ed
on its similarity to the prototype.

Development of a knowledge di covery algorithm
capable of deriving prototype effects from classified
example is the next step. implied by prototype
theory, prototyp are defined by modal feature
bundles; and the "family re ernblance" mea ure
d veloped by Ro ch and Mervis (1975) is a direct
estimate oftbe typicality of member . While Ro cb
and Mervi (1975) experimented with only binary
feature (absence or presence of an attribute), the
notion of a family resemblance score can be ea ily
adapted for multi-valued and numerical features.
The value of a feature that leads to the highe t par-
tial family resemblance is the modal value among
all category members. In other words, when we
obtain the frequency di tribution of the value of
a feature for all in tance of the ame category,
the prototype of thi category re ide at the point
with the highest frequency, and the shape of the
frequency di tribution curve indicate how mem-
bership changes when an in tance departs from
the prototype.

Geographic Knowledge
Discovery Based on Prototype

Theory

Knowledge Repre entation
According to Markman (1999), different repre-
entation model are best for different cogni-

tive ta k . For example, long-term memory uses
emantic nets, while categorization tasks u e

featural model. In a featural model, a category
is represented by a composite set of features
(properties). Ba ed on prototype theory, such
feature hould summarize the real instances

226 Canography and Geographic l nfonnation Science



Frame ID - f-+ forest Type i\
Instance: /

Elevation: <600ft

Aspect: North

Instance: 2
Elevation: 800-1200ji

Aspect: SOllf)'+

Instance ill

Frame Slot

~Iot ID

Figure 1. Frame representation of a forest class.

of the category which serve as the cognitive ref-
erence points for inference (Minda and Smith
2001).

A widely adopted knowledge representation of
categories using the featural model organizes the
set of features of a category into frames (Minsky
1975; Fillmore 1985). Figure 1 shows an example
of using a frame to represent the distribution of
a forest resource category with its environmen-
tal features. In such a representation, a frame is
composed of a number of instances that define
the typical featural configurations of the category.
Each instance consists of a list of slots to describe
the values of the features. The slots and fillers
together then define the forest category in term
of its geographical location. 10 incorporate the
prototypical properties of geographic classes, the
most straightforward way is to explicitly model the
prototypes and membership gradations in a frame
representation. This means storing the prototypes
of classes using a common frame structure, while
the membership gradations are represented with
optimality functions (Zhu 1999).

Figure 2 shows an example of such an extended
frame representation for soil classes. The slots
and fillers of the frame define the prototype(s) of
a class; each slot also has a link to an optimality
function that describes how membership responds
when the value of the feature changes. Specifically,
if the value of a feature corresponds to an opti-
mality value of 1, the possession of such a feature
will most probably lead to the highest member-
ship in the class under review. On the other hand,
an optimality of 0 means that the corresponding
feature value does not favor the class at all. In
other words, the optimality value directly models
the partial family resemblance (normalized to [0,
1]) of an individual feature. For soil class vauon
(Figure 1), we see that the optimality value drops

immediately from 1 to 0 when the bed-
rock changes from Oneota to any other
type, meaning that an instance that i
found on any bedrock type other than
Oneota will lead to a 0 membership of
the instance to valion, Class member-
hip to flalton also depends on the slope

and curvature features: steeper slope
limit the development of valion, and
linear curvatures provide an optimistic
condition for the soil.

In our extended frame representation,
inter-frame links represent spatial rela-
tionships between geographic categories.
Figure 2 illustrates the representation of
four soil classes. It shows explicit spa-
tial relationships among the four soil

classes: directly downslope from flalton one may
find Lamoille; further below there are Elbauille and
Dorerton, Knowledge represented in such a way
can be obtained through traditional knowledge
engineering. Domain experts can define prototype
either in the form of descriptive knowledge (Type
I knowledge in Zhu 1999) or in the form of typi-
cal cases (Shi et al. 2004). These experts can also
define optimality functions (Type II knowledge in
Zhu 1999) or model them by using a 1Jri071 heu-
ristic curves (Qi et al. 2006). This paper presents
an alternative approach to obtain knowledge on
prototypes and membership gradations of geo-
graphic classes through knowledge discovery from
classified examples. Such an approach is especially
attractive when an experienced domain expert is
not available to provide the knowledge.

Classified examples exist in two formats: field
samples and existing inventory maps. For the
former, data mining algorithms can be directly
applied to derive class characteristics. While in
most situations the cost associated with massive
field sampling prohibits the collection of a large
number offield examples, existing inventory [naps
are an acceptable source of classified examples:
each location enclosed within a polygon is an
example of the class indicated by the polygon
label, although the memberships of the examples
labeled as the same class may vary.

This paper illustrates the knowledge discovery
approach with existing inventory maps, using soil
maps as examples. Such maps are created by soil
experts through predictive soil mapping: the distri-
bution of soil classes is inferred from the distribu-
tion of relevant environmental variables. The basic
idea of knowledge discovery from these maps is a
reverse engineering of the mapping process: by
associating the map with relevant environmental
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Figure 2. Frame representation of the knowledge about the distribution of four soil classes.

data layers, the knowledge for cla sif)ring the oil
cla e will be revealed.

Data Mining
The family resemblance mea ure developed by
Rosch and Mervis (1975) quantifie an instan e's

typicality based on a sum of feature that an
instance po e e, then the re ult is weighted by
how many other category members al 0 possess
those feature. An item is a typical member of a
concept if it contains features shared by many
other members of the ame concept. Applying
this to continuously valued features, a set of
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modal values of the defining features will define
the class prototype. Frequency distribution
curves of these features then model the mem-
bership gradations. The data-mining algorithm
for extracting knowledge from natural resource
maps is directly based on this notion of family
resemblance.

In deriving the prototypes and optirnality func-
tions of the mapped classes, histograms are first
constructed to obtain the frequency distribution of
the feature values of all existing examples belong-
ing to each individual class. The modal values
define the prototype(s), and the optimality func-
tions are obtained by fitting a curve to each of the
data histograms-under the assumption that the
examples are representative of the population of
the classes.

A smooth curve can be obtained by fitting a
histogram in a number of ways. For example, a
spline curve can be fitted to pass through the data
points. One concern with using a spline is that its
shape completely depends on the shape of the
data histogram; thus, it is sensitive to the number
of intervals used in plotting a histogram. A second
way is to fit a priori heuristic curves using the data
that generate the histogram. For example, in the
fields of natural resource mapping and land use
modeling, Gaussian curves are of Len employed as
fuzzy membership functions (Burrough eLal, 1992).
A Gaussian curve can be easily fitted using methods
such as maximum likelihood. However, it is often
the case that the histogram may nOLexactly follow
the curve because the data do not follow a normal
distribution. Figure 3 shows a histogram plotted
using the data ofa soil class. The histogram of soil
class Dorerton based on feature profile curvature,
for example, is clearly unsymmetrical, and the
Gaussian curve fitted with maximum likelihood
fails to capture the shape well (Figure 3a).

1'0 obtain curves that better approximate the
shapes of data histograms, kernel functions can
be used. Figure 3b shows a curve fitted to the
underlying histogram using Gaussian kernel func-
tions for individual data points. A kernel function,
however, does not give a holistic representation of
the fitted curve with a single formula, thus clutter
the extracted knowledge with stored kernel points.
To obtain a holistic but realistic representation
of the fitted CUI-ve,each histogram can be fitted
using the composite of two Gaussian curves. The
combination of two curves shows a better approxi-
mation of the unsymmetrical shape of a histogram
than a single curve fitted using the maximum
likelihood method (Figure 3c). Furthermore, the
case study in the next section wi 11also show that

the decomposition of the curve into two separate
curves enables bimodal situations to be accounted
for and improves the accuracy of the knowledge
discovery.

When a single Gaussian curve is expressed with
the following formula:

1 _(x_~)2

2) - e 20D - N(~,a - aJ21t (I)

where D follows the Gaussian (Normal) distribu-
tion, with 11 being the mean and a the variance.
Our combined model is:

D- P'N(~"a,2)+(1-p)'N(~2,ai) (2)

where p is the proportion of the two distributions
when combining the two. The LwOcurves are
fitted using the Expectation Maximization (EM)
method (Dempster et al. 1977). As an iterative
optimization method, the EM algorithm is
known to best deal with problems of estimating
parameters in a distribution function when
information on the observed data is incomplete.
In the case of fitting two Gaussian distribution
to describe the feature values of a group of
examples, the incomplete information is the
Gaussian distribution to which an individual
example belongs. Set 0; E [0,1] for each data
point, where 0; = 1 if the ith data belongs to
N(Il,,<J,2) and 0; =0 ifit belongs to the other
distribution. Thus, each data point has a feature
value and an unknown o.. The EM algorithm
is then used to estimate the parameters of
p,Il"a, ,1l2,<J2 with the unknown 0; .

With each iteration, we compute an expectation
of the unknown 0; based on the current setting
of parameters with the following formula (the
expectation step):

(I) N( (I) ( 2 )(1))
E(o(I+')) = P~, ' a,

; p(l) N(~?), (a ,2)(1)) + (1- p )N(Il;I), (a it»)
(3)

where t refers to the number of iterations
o far. During the maximization step we

estimate the parameters using maximum likeli-
hood, given the current value of 0;, thu

N

" x.8(t)
~ II

'1(1) =...!..;-=.!, _
l"'" N

LO?)
;=, (4)
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Figure 3. Fitting a histogram to an optimality function using: a) Gaussian curve; b) kernel functions; and c) combination
of two Gaussian curves.
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where N is the number of data, and c-t) rep-
resents the tth step in the iterative process. The
calculation ceases when values of the parameters
in the M-step stabilize. Once the parameters are
estimated using the EM algorithm, the final curve
is then represented in the form of Equation (2)
and stored in the knowledge base.

Figure 4. Soil series map of the Raffelson watershed.

Case Study

(5)

To better illustrate the knowledge discover
method, we present here a case study on knowl-
edge discovery from a soil map. In many coun-
tries of the world, the spatial distribution of soils
is routinely coUected, presented, and archived
during soil surveys. The products are soil maps of
different scales. Previous research indicates that
valuable knowledge is embedded in archived soil
maps and that such knowledge can be revealed

through knowledge discovery (Moran
and Bui 2002; Qi and Zhu 2003). More
pecifically, the maps may yield knowl-

edge about the environmental condi-
tions under which each of the mapped
oil class developed. Environmental

conditions are typically described using
uch variables as bedrock, elevation, and

lope, and these variables are the very fea-
tures that soil experts used to identify soil c1asse
in soil mapping.

Our study area is the Raffelson watershed in
outhwestern Wisconsin. A recent soil survey pro-

duced a soil series map that shows 16 different soil
eries (classes) in the area. Figure 4 shows the soil
series map of the watershed. We used this soil series
map to extract the knowledge required to classify
oils at the watershed. A uniquely constructed GI

database captured the local soil-formative envi-
ronment. The database contains five commonly
used soil-formative environmental variables at
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the watershed scale and five spatial
variables. The five primitive variables
are elevation, slope gradi nt, plan-
form curvature, profile curvature, and
geology. Three of the spatial variables
capture the spatial relations of the
oil-formative environmental factor :

di tance to treams, topographic wet-
ness index, and percentage of col-
luvium from competing bedrock.
The remaining two spatial variable
apture topological and directional

relations between oil classes-the
upslope and downslope neighbors
of each mapped location.

Pixels in the study area were grouped
acc rding to the different soil series
as assigned on the oil map. We then
constructed histograms for the values of all pixels
in a particular clas for every individual feature.
The frequency hi togram can be either unimodal
or bimodal. Data pr proce ing detected bimodal
case and separated the double prototype through
visualization. Human experts examined the his-
tograms and identified the soil-feature pair with
significant bimodal histogram. When a bimodal
case was detected, the two mode were regarded
a two prototypes, and the two Gau· ian functions
derived with the EM method were viewed indepen-
dently, a were their as ociated optimality function.
Figure 5 hows an example of a bimodal case.

Evaluation

Frequency

0.8

0.6

0.4

0.2

o
0.1 0.15 0.2 0.25 0.3

Slope Gradient

Figure 5. Histogram Curve for Soil Series Lamoille
Gradient.

Extracted knowledge, especially knowledge in
the form of optimality function, i diffi ult to
validate directly. To evaluate this knowledge di -
covery method, extracted knowledge was used
for soil inference so that the inference re ult
could be evaluated using field samples. Qi and

based on Slope

colleagues (2006) used prototype-based infer-
ence to infer spatial distribution of oils and
their properties from knowledge provided by
soil experts. With prototype-based inference, the
degree of imilarity to the cla s prototypes for
any pixel in the mapping area determine their
respective degrees of class membership to the
soil series. Every pixel is then as ociated with
a set of member hip values to all 16 soil series.
Soil classification in the traditional sense can be
ea ily conducted by a signing each location the
soil cla s that has the highest membership value
among all classes. Figure 6 illustrates the cla -
ification proce s.
The inferred membership values were evaluated

in an indirect way as no experienced soil expert was
available to rate the samples using the asse ment
method described by Gopal et al. (2001). In our
study, the continuou variation of soil was repre-
ented by continuou soil property map derived

From the e member hip value. Continuou soil
property maps of surface oil te ture in term

Similarity to Soil type A = 0.7D Similarity to Soil type B = 0.1

Similaritv to Soil tvoe C = 0.1

•

---.0 oil type A

•

Mapping area

Similarity to Soil type A = 0.2

Similarity to Soil type B = 0.6

S imilaritv to Soil tvoe C = 0.0

oil type B

Figure 6. Classifying soil pixels based on membership values.
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Figure 7. Membership map of soil Elbaville.

of percentage of sand and silt in the A horizon
were generated in this case study following the
approach used in Zhu et al. (1997) and Qi et al.
(2006). For the sake of comparison, soil texture
maps were also derived from the original map
by assigning each pixel the typical texture values
of the labeled soil series, based on official soil
urvey records.
To evaluate the inference results, we collected

data from 99 field points in the Raffelson water-
shed; of these, all were classified and assigned
oil series names by the USDA-NRCS local office

and 49 were given a texture analysis to determine
the percentages of sand and silt in the A horizon.
The inference results were then evaluated in two
aspects. First, the soil series map was compared to
the original map (from which the knowledge was
extracted) to assess classification accuracy. Second,
the property maps derived from the original soil
map and from knowledge discovery were com-
pared to examine the estimation accuracies of
both sets of property maps. Three indices were
computed to evaluate the performances of all
property maps against the field samples: mean
absolute error (MAE), root mean squared error
(RMSE), and agreement coefficient (AG). The AC
index is defined by Willmott (1984) as:

AC = 1- n·RMSE
2

PE

M emb ershi p 0

M emb ershi p 1

where rI is the number of observations and PE the
potential error variance defined as:

1/

PE = L/I P; -0 I + 10; -01)2
j~ (l~

given that ° is the observed mean, and P and 0, ,
are the estimated and observed value, respectively.
AC values vary between 0 and 1, with I indicating
perfect agreement and 0 means complete disagree-
ment between the estimated and observed value
(Willmott 1984).

Results and Discussion
A set of optimality functions was fitted for the
16 soil series in the watershed using the method
detailed above; then the set was used for soil
inference. The inferred membership values to
a soil series Elbaville of all pixels in the area are
illustrated in Figure 7 The lighter pixels are
those with higher membership values than those
of the darker ones. White zones are usually the
typical positions at which to expect a particular
soil series; typicality gradually fades out to black
zones where memberships to the soil series are
zero.

A traditional soil series map was created by assign-
ing each location the soil class that has the highest
membership value among all classes (Figure 8).
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omparing Figure 8 to Figure 4, \ e note that the
two map are largely identical. 10st oil erie
appear to be on similar terrain po ition on both
maps, with a few howing lightl diff rent pa-
tial extents (soil erie Orion, for example). It wa
found that the original map correctly classified
the oil erie at 83 out of th 99 ite, while the
inferred soil ri map named 80 ite correctly.
The inferred map mi -cla ified only thr e it
that were correctly mapped by the original map.
Thi indicate that the extracted knowled Fe i able
to capture the spatial di tribution of oil erie
over the mapped area to a con iderable degree
of accuracy.

To validate the extracted knowledge in it ability
to capture within-cia s variation and tran itions
between cia s prototypes, horizon textur proper-
tie were derived using the memb r hip value.
Figure 9 and 10 how the re ultant oil texture
maps injuxtapo ition \ ith the corre ponding tex-
ture map, based on the original oil map. The
map derived from the inference re ult and tho e
ba ed on th original soil map show comparable
spatial letail . On noticeable difference betw en
th two et of maps i the continuity of oil tex-
ture variations. The inferred te tur map tend to
illu trate more continuou hange of the texture
values than those ba ed on the original map. With
the inferred map, abrupt changes of texture only
occur when parent material chang .

Table 2 list the computed tati tics for field
evaluation of th two sets of property map . The

MAE and RM E tati tics for the inf rence re ulis
are 10\ er than tho e for the original 'oil map.
This, together with th higher AC for the infer-
ence re ult, implie better performance by th
inferred property map in term of e timating
continuous soil propertie . Thi could be attributed
to their ability to capture the tran ition betwe n
oil prototypes, e pecially when the inferred map'

ac ura in prediciin oil serie name i even
lower than that of the original map.

Conclusions
The outcome of this case tudy how that
the knowledge n ed d for classifying natu-
ral r ource (uch as oil) \ ith indet rminate
boundaries i emb dded in exi ting area-clas
map and can be extracted u ing an appropriate
data mining metho I. The extra ted knowledge.
when u d to infer soil erie types, wa able to
achieve a level of accuracy comparable to that
of the original map. Moreover, the extracted
knowledge (particularly the prototype effect
lemeru of the knowledge) can be used to infer

cia s member hip to different 'oil eries. The
oil property map generated with the e mem-

bership value are more continuous and more
a curate than prop rt map derived from the
original map, even though the accuracy of the
inferred oil eries type i slightly Ie than that
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Figure 9. Left: A horizon sand percentage derived from the original raster map using field property values. Right: A
horizon sand percentage inferred from data mining results.

(Plo

90%1-- 1
Figure 10. Left: A horizon silt percentage derived from the original raster map using field property values. Right: A
horizon silt percentage inferred from data mining results.

Percentaoe of sand Percentaoe of silt

MAE RMSE AC MAE RMSE AC
Inference Result 9.69 14.47 0.81 8.17 12.14 0.82
Oriainal soil man 10.66 16.63 0.67 9.51 14.31 0.67

Table 2. Accuracy of the derived A horizon texture in the Raffelson watershed: the inference result vs. the original map.

of the source map. These results indicate that
knowledge of prototype effects is important for
classifying geographic entities with indetermi-
nate boundaries.
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