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[1] The AmeriFlux network of eddy covariance towers has played a critical role in the
analysis of terrestrial water and carbon dynamics. It has been used to understand the
general principles of ecosystem behaviors and to scale up those principles from sites to
regions. To support the generalization from individual sites to large regions, it is essential
that all major ecoregions in North America are represented in the AmeriFlux network. In
this study, we examined the representativeness of the AmeriFlux network by comparing the
climate and vegetation across the coterminous United States in 2004 with those at the
AmeriFlux network in 2000–2004on the basis of remote sensing products.We found that the
AmeriFlux network generally captured the climatic and vegetation characteristics in the
coterminous United States with under-representations in the Rocky Mountain evergreen
needleleaf forest, the Sierra NevadaMountains, the Sonora desert, the northern Great Plains,
the Great Basin Desert, and New England. In terms of site representativeness, our analysis
suggested that Indiana Morgan Monroe State Forest, Indiana, and Harvard Forest,
Massachusetts, were among the forest sites with high representativeness extents; while
Audubon Research Ranch, Arizona, and Sky Oaks Young Chaparral were among the
nonforest sites with high representativeness extents.
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1. Introduction

[2] The AmeriFlux network of eddy covariance towers
was established in 1996 to quantify the spatial and temporal
variations of water and carbon exchanges between terrestrial
ecosystems and the atmosphere, and to understand the
underlying processes regulating the interannual variations
of water and carbon fluxes at different scales [Hargrove et
al., 2003]. The network also serves as the backbone for the
North American Carbon Program (NACP) to measure and
understand the sources and sinks of carbon dioxide (CO2),
methane (CH4) and carbon monoxide (CO) in North Amer-
ica [Hargrove et al., 2003; S. C. Wofsy and R. C. Harriss,
2002, North America carbon program (NACP): A report of
the NACP Committee of the U.S. carbon cycle science
steering group, available at http://www.carboncyclescience.

gov/default.php]. By 2005, the AmeriFlux network included
more than 120 independently funded sites operating across
North, Central and South America (B. E. Law et al., 2005,
AmeriFlux Strategic Plan, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, available at http://public.ornl.gov/
ameriflux/about-strategic_plan.shtml).
[3] Measurements from the AmeriFlux network have

been used to investigate the seasonal and interannual
patterns of vegetation photosynthesis and respiration pro-
cesses [Falge et al., 2002], the influence of vegetation
phenology on net carbon uptake [White and Nemani,
2003], the impact of disturbance on carbon balances
[Saleska et al., 2003], and the relationships between cli-
mate, energy, water, and carbon dynamics [Baldocchi et al.,
2001]. However, most of these studies are site-specific.
Studies on water and carbon dynamics from the AmeriFlux
network over large areas are only made possible with
increasing flux observations in recent years coupled with
empirical modeling techniques using remotely sensed data.
For example, Wylie et al. [2003] related coarse resolution
normalized difference vegetation index (NDVI) to 14-day
average daytime CO2 fluxes in a sage-brush-steppe ecosys-
tem. Rahman et al. [2005] observed a strong correlation of
0.77 between tower-based gross primary production (GPP)
and enhanced vegetation index (EVI). Nagler et al. [2005]
developed an empirical relationship for evapotranspiration
(ET) predictions over large reaches of western U.S. rivers
by combining remote sensing with flux observations. These
studies established the potential of extrapolating knowledge
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learned at AmeriFlux sites to large regions (Law et al.,
2005). More recently, Yang et al. [2006, 2007] had used an
inductive machine learning technique for the development
of predictive ET and GPP models from the AmeriFlux
network and applied the models to the coterminous United
States with results comparable to other existing ET and GPP
models [Nishida et al., 2003; S. W. Running et al., 1999,
MODIS daily photosynthesis (PSN) and annual net primary
production (NPP) product (MOD17), algorithm theoretical
basis documents, available at http://www.ntsg.umt.edu/
modis/ATBD/ATBD_MOD17_v21.pdf].
[4] To support the generalization from individual sites to

large regions and to understand the behaviors of water and
carbon variations across North America, it is essential that
major ecoregions from North America are represented in the
AmeriFlux network [Hargrove et al., 2003]. Fortunately, a
study conducted by Hargrove et al. [2003] has already
shown that the distributions of AmeriFlux sites are gener-
ally representative for the coterminous United States. The
results were based on a cluster analysis with 59 AmeriFlux
sites using 25 climatic and physiographic forcings including
elevation, mean and extremes of annual temperature, mean
monthly precipitation, soil nitrogen, organic matter, water
capacity, frost-free days, soil bulk density and depth, solar
aspect and insolation. Hargrove et al. [2003] found that the
vast continental interior was well-represented by the Amer-
iFlux network but that the Pacific Northwest, the Sierra
Nevada Mountains, the Sonora desert, and Texas grassland/
croplands were under-represented.
[5] Assessing the representativeness of the AmeriFlux

network is a challenging task that should benefit from
multiple approaches staged throughout the life of the
network. We suggest that the representativeness of the
AmeriFlux network will be more convincing if independent
studies come to similar conclusions. Hence, the goal of our
research is to provide an independent study for the Ameri-
Flux representativeness analysis. More specifically, instead
of using a broad spectrum of topographic, soil, and climate
variables [Hargrove et al., 2003], we focused our represen-
tativeness analysis on remotely sensed climate and vegeta-
tion products. Such an analysis can serve as a complement
to previous work [Hargrove et al., 2003]. In the following
sections, we present (1) a brief description on AmeriFlux
sites; (2) a description on data and methods used; and
(3) results of our representativeness analysis.

2. Sites

[6] Our analysis included all active AmeriFlux sites in
2000–2004 over the coterminous United States with data
compiled and published by Oak Ridge National Laboratory
(ORNL) (Table 1 and Figure 1). These sites represent a wide
diversity of climate and vegetation structures: climatic
conditions range from temperate, tropical, to arid regions;
vegetation varies from boreal to evergreen forests, decidu-
ous forests, grassland, shrublands, and agricultural crop-
lands (Law et al., 2005).
[7] AmeriFlux sites report hourly or half-hourly measure-

ments of biosphere-atmosphere carbon, water and energy
fluxes, and meteorological observations with additional
information on vegetation structures and soil characteristics.
By 2005, the average running length was 2.5 years with

approximately 20% of the sites having 5–10 years of
records (Law et al., 2005).
[8] Flux footprint is an important concept in the Ameri-

Flux network and is defined over an upwind area of the
measurement site contributing to the flux measured. It
varies with atmospheric stability and surface roughness
[Horst and Weil, 1994]. A concept closely related to
footprint is fetch, which is defined as the extent of a
relatively uniform area upwind. A rule of thumb suggests
a ratio of 100:1 between fetch and tower height [Moncrieff
et al., 1997]. However, studies [Horst and Weil, 1994] have
found that the fetch-height ratio can be considerably greater
than 100:1 under stable conditions with heterogeneous
vegetation and rough terrains. The tower height of Ameri-
Flux sites varies from 2 m (Varia Ranch, California) to 73 m
(Wind River, Washington) with the exception of Park Fall,
Wisconsin, which has a height of 447 m (Table 1). Gener-
ally, because of high surface heterogeneity, forest sites have
tower heights greater than 20 m, and consequently represent
a fetch greater than 2 km.

3. Data and Methods

3.1. Remote Sensing Variable Selection

[9] Decades of ecosystem modeling efforts have identi-
fied that the most critical environmental driving variables
for ecosystem studies are incident shortwave radiation
(SWR), land surface temperature (LST), humidity, precip-
itation, and wind [Waring and Running, 1998]. Weather
station networks have long been the primary data source for
these variables. A common practice is to acquire meteoro-
logical data from weather station networks and then extrap-
olate the data across the landscape.
[10] Since the early 1970s, satellite remote sensing has

been widely used for ecological studies. Remote sensing has
the advantage of broad spatial coverage and regular tempo-
ral sampling. Therefore, models based on or ingesting
remote sensing data are theoretically capable of accurately
predicting critical ecological variables such as water and
carbon fluxes at large regions.
[11] SWR and LST are among the most critical environ-

mental driving variables for ecosystem studies currently
available from remote sensing. Although humidity and
precipitation are preferred if available, they are closely
related to LST [Hashimoto et al., 2008]. On the other hand,
wind is too variable to be predicted from satellite remote
sensing or geostatistical methods. Therefore, a constant
wind speed is often assumed in many ecosystem analyses
[Waring and Running, 1998]. On the basis of these consid-
erations and data availability, we selected SWR and LST as
the climatic variables for our representativeness analysis.
[12] Vegetation physiological properties are also impor-

tant factors that must be considered in ecological analysis.
However, it is inevitable that stand-level details (e.g., the
characteristics of individual trees or species) have to give
way to general physiological properties (e.g., vegetation
index) to facilitate ecosystem studies over large regions.
Two important vegetation products available from remote
sensing are leaf area index (LAI) and vegetation indices
(VIs). Because many studies [e.g., Wylie et al., 2003; Yang
et al., 2006, 2007] have shown that VIs are a good indicator
for predictions of water and carbon fluxes over large
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regions, we selected VIs as the vegetation characteristic for
our representativeness analysis. In addition, we also includ-
ed land cover in our analysis so as to further differentiate
different vegetation types. In summary, we selected LST,
SWR, VI and land cover as the basis of our representative-
ness analysis of the AmeriFlux network.

3.2. Data

3.2.1. Data Sources and Considerations of Spatial and
Temporal Resolutions
[13] We examined two types of data: (1) meteorological

data (LST and SWR); and (2) vegetation data (VI and land
cover); among which LST and VI came from the standard
Moderate Resolution Imaging Spectroradiometer (MODIS)
products, land cover came from ground observations and
MODIS, and SWR came from the Surface Radiation Budget
project (SRB) derived from the Geostationary Operational
Environmental Satellite (GOES) [Pinker et al., 2002]. We
used MODIS products due to its moderate spatial resolution
(250 m � 1 km), high temporal resolution (daily � 16-day)
and free accessibility, making it ideal for regional ecosystem
studies [Lillesand et al., 2003]. MODIS provides two

vegetation indexes, NDVI and EVI. EVI has been designed
to be robust to background noise and remain sensitive to
high biomass regions (e.g., forests) [Huete et al., 2002];
hence we selected EVI as the vegetation index. Currently,
GOES-SRB SWR is the only remotely sensed radiation data
set routinely available at continental to global scales.
[14] Conceptually, we used a temporal and spatial anal-

ysis design to match both data availability (section 3.2.2)
and generally the flux tower footprint (section 2). Tempo-
rally, we chose 2000–2004 for AmeriFlux sites and 2004
for the coterminous United States. We retained the 8-day
time step consistent with many MODIS products (LST and
SWR but 16-day for EVI) and assumed that land cover was
stable in 2000–2004. Spatially, we chose a resolution of
7 km and resampled and/or reprojected data for the coter-
minous United States accordingly. Our rationale for the 7 km
choice is based on several criteria. First, flux tower foot-
prints varies considerably from site to site with an average
of roughly 1–3 km2 [Running et al., 1999].
[15] Second, the MODIS ASCII subset project provides a

7 km � 7 km subset around each flux tower as the MODIS

Table 1. Name, Latitude, Longitude, Vegetation Structure, and Years of Data Available for Each Flux Site in This Study

Name Latitude (�) Longitude (�) Vegetation Structure Tower Height (m) Year

Forest
Indiana Morgan Monroe State Forest (MMSF), Indiana 39.3232 �86.4134 deciduous broadleaf forest 48.0 2000–2002
Blodgett, California 38.8953 �120.6328 evergreen needleleaf forest 12.5 2000–2004
University of Michigan, Michigan 45.5598 �84.7138 mixed forest 50.0 2000–2003
Niwot Ridge Forest, Colorado 40.0329 �105.5464 evergreen needleleaf forest 26.0 2000–2004
Howland Forest Main, Maine 45.2041 �68.7403 mixed forest 29.0 2000–2004
Howland Forest West, Maine 45.2091 �68.7470 mixed forest n/a 2000–2004
Howland Forest Harvest, Maine 45.2072 �68.7250 mixed forest n/a 2003–2005
Harvard Forest, Massachusetts 42.5378 �72.1715 deciduous broadleaf forest 30.0 2000–2004
Willow Creek, Wisconsin 45.9059 �90.0799 mixed forest 30.0 2000–2004
Park Falls, Wisconsin 45.9459 �90.2723 mixed forest 447.0 2000–2004
Metolius Intermediate, Oregon 44.4524 �121.5572 evergreen needleleaf forest 31.0 2002–2004
Metolius Old Young, Oregon 44.4372 �121.5668 evergreen needleleaf forest n/a 2000–2002
Metolius Old, Oregon 44.4992 �121.6224 evergreen needleleaf forest 47.0 2000–2000
Sylvania Wilderness Area, Michigan 46.2420 �89.3477 mixed forest 37.0 2001–2004
Duke Forest Pine, North Carolina 35.9782 �79.0942 mixed forest 20.6 2000–2003
Dukeforest Hardwood, North Carolina 35.9736 �79.1004 mixed forest 42.0 2000–2004
Black Hills, South Dakota 44.1580 �103.6500 evergreen needleleaf forest 24.0 2001–2004
Donaldson, Florida 29.7548 �82.1633 evergreen needleleaf forest 15.0 2000–2002
Austin Cary, Florida 29.7381 �82.2188 evergreen needleleaf forest 30.0 2000–2004
Kennedy Space Center (KSC) Scrub Oak, Florida 28.6086 �80.6715 evergreen broadleaf forest 18.0 2000–2003
Kennedy Space Center (KSC) Slash Pine, Florida 28.4583 �80.6709 evergreen broadleaf forest n/a 2002–2002
Mize, Florida 29.7648 �82.2448 evergreen needleleaf forest 7.0 2000–2003
Wind River, Washington 45.8205 �121.9519 evergreen needleleaf forest 73.0 2004–2004
Walker Branch, Tennessee 35.9588 �84.2874 deciduous broadleaf forest 44.0 2002–2004
Ozark, Missouri 38.7441 �92.2001 deciduous broadleaf forest 30.0 2004–2004

Nonforest
Walnut River, Kansas 37.5208 �96.8550 grassland 2.1 2001–2004
Duke Forest Openfield, North Carolina 35.9712 �79.0934 grassland 2.8 2001–2004
Lost Creek, Wisconsin 46.0827 �89.9792 shrubland (deciduous wetland) 10.2 2000–2004
Bondville, Illinois 40.0061 �88.2919 cropland 10.0 2000–2004
Mead Rainfed, Nebraska 41.1797 �96.4396 cropland 6.0 2001–2004
Mead Irrigated, Nebraska 41.1651 �96.4766 cropland 6.0 2001–2004
Mead Rotation, Nebraska 41.1649 �96.4701 cropland 6.0 2001–2004
Vaira Ranch, California 38.4067 �120.9507 grassland 2.0 2000–2004
Tonzi Ranch, California 38.4316 �120.9660 shrubland/savanna 23.0 2001–2004
Fort Peck, Montana 48.3079 �105.1005 grassland 3.5 2000–2004
Sky Oaks Old Chaparral, California 33.3739 �116.6230 shrubland/savanna 4.5 2000–2004
Sky Oaks Young Chaparral, California 33.3772 �116.6230 shrubland/savanna 2.5 2000–2004
Canaan Valley, West Virginia 39.0633 �79.4208 grassland 4.0 2004–2004
Goodwin Creek, Mississippi 34.2500 �89.9700 grassland 4.0 2002–2004
Audubon Research Ranch, Arizona 31.6000 �110.5104 grassland 4.0 2002–2004
ARM Oklahoma, Oklahoma 36.6050 �97.4850 cropland 60.0 2003–2004
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footprint for the validation of MODIS products [Cook et al.,
2004]. Third, there is no consensus on the most appropriate
scale for the generalization from flux towers to large
regions. For example, Rahman et al. [2005] considered
vegetation of a 3 km radius around flux towers homoge-
neously for the exploration of relationships between EVI
and GPP. Divakarla [1997] and Mecikalski et al. [1999]
suggested that flux aggregation errors be minimized at
10 km scale. Considering the flux footprint, the MODIS
footprint and existing studies on flux generalization analysis
[e.g., Divakarla, 1997; Mecikalski et al., 1999; Rahman et
al., 2005], we chose 7 km as our spatial resolution for this
analysis.

3.2.2. Data Preparation
[16] For LST, we used the MODIS 1 km daytime ORNL

ASCII subsets consisting of 7 km � 7 km regions centered
on the flux tower for each AmeriFlux site [Cook et al.,
2004]. (The ORNL ASCII subsets are not really geograph-
ically centered on the flux towers. They only count equal
numbers of cells in all rows and columns away from the
flux towers, in the sinusoidal projection.). At each time step,
we computed flux site LST as the average of the pixels
marked as good quality (mandatory quality assurance (QA)
flag being zero in the QA data) [Wan et al., 2002]. If none of
the 49 values was of good quality, we treated the period as
missing. For the coterminous United States, we obtained the
MODIS 1 km daytime LST product (MOD11A2) [Wan et
al., 2002], which has a deviation of ±1�C compared to
ground measurements [Wan et al., 2002, 2004].

[17] For EVI, we again used the subsets for the Ameri-
Flux sites and the standard MODIS product (MOD13A2)
[Huete et al., 2002] for the coterminous United States with
negative EVI removed. On the basis of root-mean-square
error (RMSE) from ground validations, EVI RMSE is about
0.03 [Gao et al., 2003].
[18] We acquired SWR from daily 0.5� GOES-SRB and

processed 8-day averages for both AmeriFlux sites and the
coterminous United States. The SWR for each AmeriFlux
site was calculated on the basis of the pixel value that is
closest to the flux site geographically.
[19] We obtained AmeriFlux land cover from the site

descriptions. For the coterminous United States, we
obtained 2001 land cover from the MODIS land cover
product (MOD12Q1) [Friedl et al., 2002]. MOD12Q1 land
cover includes forest (evergreen needleleaf forest, ENF;
evergreen broadleaf forest, EBF; deciduous needleleaf for-
est, DNF; deciduous broadleaf forest, DBF; mixed forest,
MF), nonforest (closed/open shrubland, SH; woody savan-
nas and savannas, SV; grassland, GL; cropland and crop-
land/natural vegetation mixture, CL; permanent wetlands),
and nonvegetation (water, urban/built up, snow or ice,
barren or sparsely vegetated areas) (Figure 1 and Table 2).
On the basis of ground comparisons at the continental scale,
the accuracy of MODIS land cover is 70% � 85% (M. A.
Friedl, 2003, Validation of the consistent-year V003
MODIS land cover product, internal PI document, available
at http://www-modis.bu.edu/landcover/userguidelc/
consistent.htm).

3.3. Methods

[20] We analyzed the representativeness of the AmeriFlux
network using remotely sensed LST, SWR and EVI as
follows. First, we examined the remotely sensed sample
space by generating two-dimensional histograms of LST–
SWR, LST–EVI, and SWR–EVI for the 2004 coterminous
United States and overlaying the corresponding LST–SWR,
LST–EVI, and SWR–EVI from the 2000–2004 AmeriFlux
sites. For the 2004 coterminous United States, we used
histogram cell sizes of 2�C for LST, 0.5 MJ m�2 d�1 for
SWR, and 0.02 for EVI (dimensionless). Similar to isoline
generation, we grouped the histogram frequencies into
several ranges and calculated the percentage of pixels in
each range. For example, we grouped the frequency of
LST–SWR into 0 � 5000, 5000 � 10000, 10000 � 15000,
and 15000+. We counted pixels that contributed to each
frequency range and then divided the counts by the total
number of pixels, yielding the percentage of pixels in each
range. For each frequency range in the histograms, we
computed the percentage of cells in the histograms that
were covered by at least one corresponding 8-day record of
(LST, SWR, or EVI) from AmeriFlux sites. We speculate
that the AmeriFlux network is unlikely to exhaust the space
of LST, SWR and EVI for the coterminous United States,
but it should cover at least the core areas (i.e., with high
occurrence frequency) of LST, SWR and EVI for the
coterminous United States.
[21] Second, we compared the seasonal variations of LST,

SWR and EVI from the AmeriFlux sites with those from the
coterminous United States. We suspect that if the Ameri-
Flux network is representative for the ecoregions in the
United States, the seasonal signatures of LST, SWR and

Figure 1. Land cover and the distribution of AmeriFlux
sites. Land cover was derived from 2001 MODIS land cover
products (MOD12Q1) and regrouped into six groups:
evergreen needleleaf forest (evergreen needleleaf forest
and evergreen broadleaf forest, ENF), deciduous broadleaf
forest (deciduous broadleaf forest and deciduous needleleaf
forest, DBF), mixed forest (MF), shrubland/savanna
(closed/open shrubland and savanna) (SH and SV), grass-
lands (GL), and croplands (croplands and cropland/natural
vegetation mosaic) (CL). The 41 AmeriFlux sites are shown
as plus symbols.
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EVI by land cover should be comparable between the
AmeriFlux sites and the United States. To facilitate the
comparison, we grouped vegetation land cover into six
groups (Table 2): ENF, DBF, MF, SH/SV, GL, and CL.
We ignored permanent wetlands due to marginal coverage
(0.05%) in the coterminous United States. For each land
cover and 8-day period, we performed hypothesis testing for
the difference in means of the LST, SWR and EVI from
AmeriFlux sites and the coterminous United States. We then
obtained the confidence interval for the true difference in
means at 95% significance level.
[22] Third, we examined the similarity between the

coterminous United States and AmeriFlux sites using
Euclidian distance (The Euclidian distance between two
points X = (x1, x2, . . ., xn) and Y = (y1, y2, . . ., yn) is

defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n

xi � yið Þ2
r

) in the attribute space (i.e., LST,

SWR and EVI). We first scaled LST, SWR and EVI at
flux sites to the range of �1 and +1 on the basis of their
minimum and maximum values in 2000–2004 to elimi-
nate the influence of variables with different absolute
magnitudes. We scaled LST, SWR and EVI over the
coterminous United States in 2004 accordingly. We then
examined two types of similarity: 8-day similarity and
seasonal similarity. Eight-day was chosen to correspond
to the minimum temporal resolution of the standard
MODIS products and reflect the similarity in the finest
temporal granularity. On the other hand, time lag is an
important phenomenon for many ecosystem processes.
Hence, we believe that it is important to investigate the
seasonal signatures of the AmeriFlux network and the
coterminous United States.
[23] For 8-day similarity (EVI is composited on a 16-day

basis; we therefore assigned each 16-day composite EVI to
the corresponding two 8-day periods.), we computed the
Euclidian distance of 8-day average (LST, SWR and EVI)
for each pixel over the coterminous United States to all
available observations at flux sites in 2000–2004, a total of
5173 records. We identified the minimum distance and
assigned that distance to the corresponding 8-day period
and pixel. Finally, we computed the average of the mini-
mum distances (with a maximum possible of 45) for each
pixel and used the average as an indicator of how well the

ecosystem at that pixel was represented by the AmeriFlux
network.
[24] For seasonal similarity, we constructed a time series

(LST, SWR, and EVI) using all available 8-day average
(LST, SWR, and EVI) grouped by sites and years. We
excluded sites and years for which the number of 8-day
averages was less than 67% (30 out of a possible 45 peri-
ods). Similar to 8-day similarity, we computed the Euclidian
distance of the time series (LST, SWR, and EVI) for each
pixel over the coterminous United States to all available
observations at flux sites in 2000–2004, a total of 107
records. We then identified the minimum distance for each
pixel and used the distance as a measure of how well the
seasonal variations at that pixel were represented by the
AmeriFlux network.
[25] In the process of computing the 8-day and seasonal

similarity measures, we kept a tally for each flux site being
selected to have the minimum distance to pixels over the
coterminous United States. We then computed the percent-
age of the counts for each flux site and used the percentage
as a measure of the representativeness extent of the corre-
sponding flux site.

4. Results

[26] Examination of the AmeriFlux sampling space over
the coterminous United States revealed that in terms of
LST, SWR and EVI, the core regions (i.e., with high
occurrence frequency) of the coterminous United States
were well represented by the AmeriFlux network (Figure 2
and Tables 3–5). For example, in the LST–SWR sample
space, 66.6% of the pixels in the coterminous United States
was almost completely covered by AmeriFlux data (Figure 2
and Table 3). Similar patterns were also observed for
LST–EVI and SWR–EVI in which LST–EVI had cover-
age of 87.3–99.3% for 87.2% of the pixels, and SWR–EVI
had coverage of 84.6–96.9% for 88.8% of the pixels
(Figure 2 and Tables 4–5). The under-represented areas
were mostly located over the margins of the sampling
space with low occurrence frequency.
[27] Analysis of the seasonal variations of LST for

different land covers indicated that the AmeriFlux network
had similar distributions of mean LST as the coterminous
United States except for ENF where the AmeriFlux LST

Table 2. Land Cover, the Corresponding Percentage Coverage in the Coterminous United States and the Number of AmeriFlux Sites for

Each Land Cover Used in This Studya,b

Land Cover in This Study MOD12 Land Cover
Percent Cover in

Coterminous United States
Number of

AmeriFlux Sites

Evergreen needleleaf forest (ENF) evergreen needleleaf forest 6.35 12
evergreen broadleaf forest 0.69

Deciduous broadleaf forest (DBF) deciduous broadleaf forest 6.43 4
deciduous needleleaf forest 0.01

Mixed forest (MF) mixed forest 8.65 9
shrubland/savanna (SH and SV) closed shrubland 0.37 4

open shrublands 13.99
woody savanna 7.74
savanna 1.65

Grassland (GL) grassland 26.92 7
Cropland (CL) cropland 20.13 5

cropland/natural vegetation mosaic 7.02
aExcluding water, urban/built up, snow or ice, barren or sparsely vegetated, and unclassified.
bPermanent wetlands (0.05%) not shown.
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was about 2–5�C higher than the coterminous United
States during spring and winter (Figure 3). The confidence
interval (CI) of ENF also supported this observation where
the CI was mostly above the baseline (i.e., with no
difference in the means). In addition, the CI was generally
wider in spring and winter than in summer and fall for all
land covers except shrublands/savanna.
[28] The seasonal variations of AmeriFlux SWR general-

ly followed the pattern of coterminous U.S. SWR (Figure 4).
Furthermore, no significant trend/bias was observed in the
CI distributions. We suspect that the 0.5 � SWR from
GOES-SRB was too coarse to capture the subtlety between
AmeriFlux and the coterminous United States.
[29] The seasonal variations in EVI showed that Ameri-

Flux EVI was 0.05–0.1 higher than the United States for
ENF (Figure 5). The summer AmeriFlux EVI of GL was
also �0.1 higher than the coterminous U.S. EVI. Overall,
MF was the most well-represented land cover and DBF is
the second in terms of means and CI. Significant bias was
observed for ENF and grassland, and great uncertainties
were observed for shrublands/savanna and croplands.
[30] Similarity analysis between the flux sites and the

coterminous United States revealed distinct patterns be-
tween the 8-day and seasonal similarity distributions
(Figure 6). The 8-day similarity analysis indicated that
New England, the Rocky Mountain ENF, the Sierra Nevada
Mountains, the Sonoran Desert, and the coastlines of the
Great Lakes were under-represented while the seasonal
similarity analysis suggested that the Great Plains (North

Dakota and Montana), the Rocky Mountain ENF, and the
Great Basin Desert were under-represented. Furthermore,
the under-represented regions in the 8-day similarity mea-
sure were more clustered toward the western United States
while the under-represented regions in the seasonal similar-
ity measure were less regular with sporadic highly under-
represented patches spread over the entire coterminous
United States.
[31] Examination of the representativeness extents by

sites indicates slightly different results using 8-day and
seasonal similarity measures (Tables 6–7). When measured
with 8-day average similarity, Indiana Morgan Monroe
State Forest (MMSF), Indiana (3.97%), Niwot Ridge, Col-
orado (3.83%), and Walker Branch, Tennessee (3.34%),
were among the forest sites with high representativeness
extents; while Audubon Research Ranch, Arizona (8.69%),
Fort Peck, Montana (6.61%), Bondville, Illinois (6.02%),
and Sky Oaks Young Chaparral, California (6.00%), were
among the nonforest sites with high representativeness
extents. When the seasonal similarity measure was used,
the forest sites that had the highest representativeness
extents were Harvard Forest, Massachusetts (8.67%),
Blodgett, California (6.67%), and Indiana MMSF, Indiana
(4.21), while the nonforest sites that had the highest
representativeness extents were Sky Oaks young chaparral,
California (8.87%),Walnut River, Kansas (8.55%), Goodwin
Creek, Mississippi (7.81%), and Fort Peck, Montana
(7.68%). Although many sites (e.g., Indiana MMSF, Indiana,
Harvard Forest, Massachusetts, Fort Peck, Montana, and

Figure 2. Sample spaces of AmeriFlux sites over the coterminous United States for land surface
temperature (LST), shortwave radiation (SWR), and enhanced vegetation index (EVI) overlaid on the
two-dimensional histograms of LST–SWR, LST–EVI, and SWR–EVI from the coterminous United
States. LST and SWR are 8-day averages, and EVI is 16-day composite duplicated for each
corresponding 8-day LST and SWR average. The cell sizes for LST–SWR, LST–EVI, and SWR–EVI
are (2, 0.5), (2, 0.02), and (0.5, 0.02), respectively. The unit for LST is �C, and the unit for SWR is
MJ m�2 d�1.

Table 3. Statistics for Land Surface Temperature Versus Shortwave

Radiation

Frequency (�103)

0 � 5 5 � 10 10 � 15 15+

Percentage of pixels fall
in frequency ranges

33.4 27.3 23.7 15.6

Percentage of cells covered
by AmeriFlux data

42.3 98.4 100.0 100.0

Table 4. Statistics for Land Surface Temperature Versus Enhanced

Vegetation Index

Frequency (�103)

0 � 4 4 � 8 8 � 12 12+

Percentage of pixels fall
in frequency ranges

12.8 17.4 28.7 41.0

Percentage of cells covered
by AmeriFlux data

19.3 87.3 93.0 99.3
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Sky Oaks Young Chaparral, California) were shown having
great representativeness extents in both 8-day and seasonal
similarity analysis, other sites (e.g., Blodgett, California,
and Bondville, Illinois) had changes in the representative-
ness extents, likely caused by the different temporal struc-
tures used in the 8-day and seasonal similarity analysis
resulting in a similar shift in patterns as for Figure 6.

5. Discussions

[32] Sampling space analysis of LST, SWR and EVI
revealed that the core regions (i.e., with high occurrence
frequency) of the coterminous United States were well
represented by the AmeriFlux network (Figure 2 and
Tables 3–5). The under-represented regions were mostly
located over the margins of the sampling space with low
occurrence frequency. These observations support the find-
ings of Hargrove et al. [2003] that overall the coterminous
United States is well-represented by the AmeriFlux network.

[33] Analysis of the seasonal variations of LST, SWR and
EVI showed that EVI had the widest CI, indicating great
uncertainties in EVI measurements and potentially an un-
der-representation of flux sites in terms of vegetation
structures (Figures 3–5). No significant trend/bias was
observed for SWR, likely because of the 0.5� SWR from
GOES-SRB SWR being too coarse to capture the subtlety
between flux sites and the coterminous United States.
AmeriFlux network had a good representation of mean
LST for the coterminous United States except for ENF
where the AmeriFlux LST was higher than the coterminous
United States for most of the year. AmeriFlux EVI for ENF
was also higher than the coterminous United States, indi-
cating the difficulties associated with ENF studies despite a
large number of flux sites being deployed for ENF (12 out
of 41) (Table 2).
[34] The similarity analysis between the flux sites and the

coterminous United States revealed distinct patterns
between the 8-day and seasonal similarity distributions
(Figure 6). The discrepancy can be explained as follows.
First, the 8-day similarity is an optimistic estimation. For
example, even if two locations have very distinct seasonal
variations, it is still possible that one 8-day (LST, SWR, and
EVI) in the first location will have a small distance to a
temporally disjointed 8-day (LST, SWR, and EVI) in the
second location because of time lags. On the basis of this
measure, the vast majority of the eastern United States was
well represented by the AmeriFlux network. On the other
hand, the seasonal similarity is a more realistic measure that
considers two locations as most similar if the distance of the

Table 5. Statistics for Shortwave Radiation Versus Enhanced

Vegetation Index

Frequency (�103)

0 � 2 2 � 4 4 � 6 6 � 8 8+

Percentage of pixels fall
in frequency ranges

11.2 26.3 32.1 17.8 12.6

Percentage of cells covered
by AmeriFlux data

28.7 84.6 92.5 96.9 95.8

Figure 3. Comparison of the seasonal variations of 8-day average LST across the coterminous United
States and the AmeriFlux sites by land cover. The coterminous U.S. data were for 2004 and were
averaged by land cover. The AmeriFlux data were for 2000–2004 and were averaged by land cover and
year of day. The vertical bars indicate the confidence interval for the true difference in means between
AmeriFlux sites and the coterminous United States. The dashed line indicates the baseline of no
difference.
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Figure 4. Comparison of the seasonal variations of 8-day average SWR across the coterminous United
States and the AmeriFlux sites by land cover. The coterminous U.S. data were for 2004 and were
averaged by land cover. The AmeriFlux data were for 2000–2004 and were averaged by land cover and
year of day. The vertical bars indicate the confidence interval for the true difference in means between
AmeriFlux sites and the coterminous United States. An arbitrary number of 10 MJ m�2 d�1 was added to
the confidence interval as a baseline for display purpose. The dashed line indicates the baseline of no
difference.

Figure 5. Comparison of the seasonal variations of 16-day composite EVI across the coterminous
United States and the AmeriFlux sites by land cover. The coterminous U.S. data were for 2004 and were
averaged by land cover. The AmeriFlux data were for 2000–2004 and were averaged by land cover and
year of day. The vertical bars indicate the confidence interval for the true difference in means between
AmeriFlux sites and the coterminous United States. An arbitrary number of 0.03 (unitless) was added to
the confidence interval as a baseline for display purpose. The dashed line indicates the baseline of no
difference.
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entire time series of (LST, SWR, and EVI) is small. Thus,
even if the seasonal signatures of two locations only differ
by a time lag, these two locations are unlikely to be similar
under the seasonal similarity measure; however, they may
then show high similarity under the 8-day similarity mea-
sure. We suspect that this is likely the cause of the sporadic
highly under-represented patches in the seasonal similarity
distribution. The discrepancy between the 8-day and seasonal
similarity distributions implies that more independent studies

on the AmeriFlux network representativeness are necessary.
As such, users are highly recommended to carefully consider
the temporal structure in flux-related model design and data
analysis as the representativeness of the AmeriFlux network
might vary with the temporal structure.
[35] Overall, both the 8-day similarity and the seasonal

similarity indicate that the vast majority of the coterminous
United States is well-represented by the AmeriFlux net-
work. Furthermore, the eastern United States is better

Figure 6. Representativeness of the AmeriFlux network over the conterminous United States measured
with 8-day average (LST, SWR, and EVI) similarity (top) and seasonal (LST, SWR, and EVI) similarity
(bottom). The distances are Euclidean distance measured in the attribute space (LST, SWR, and EVI), and
the smaller the distance, the more similar between the AmeriFlux network and the United States.
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represented than the western United States. These results are
generally consistent with the findings of Hargrove et al.
[2003] but discrepancies exist regarding areas being under-
represented by AmeriFlux: New England, the Pacific North-
west and the Rocky Mountain ENF disagree in the 8-day
similarity analysis; the Pacific Northwest, the Great Plains
(North Dakota and Montana), the Rocky Mountain ENF, the
Sierra Nevada Mountains, the Sonora desert, and the coast-
lines of the Great Lakes disagree in the seasonal similarity
analysis.
[36] We suspect the discrepancies are mainly due to (1)

vegetation structure was not included in the work of
Hargrove et al. [2003]; (2) the variables used by Hargrove
et al. [2003] were either static (elevation, soil nitrogen,
organic matter, water capacity, frost-free days, soil bulk
density and depth, solar aspect and insolation) or smoothed
by time (mean and extremes of annual temperature, and
mean monthly precipitation); therefore similarities in the
time domain was not well captured by Hargrove et al.

[2003]; and (3) our analysis was synoptic during the
growing season. The discrepancies strongly suggest further
studies are necessary in accurately identifying areas under-
represented by the AmeriFlux network. Such studies will
have great operational importance as guidance for future site
expansion.
[37] Our site representativeness analysis (Tables 6–7)

indicated that while many sites (e.g., Indiana MMSF,
Indiana, Harvard Forest, Massachusetts, Fort Peck, Montana,
and Sky Oaks Young Chaparral, California) were shown
having great representativeness extents in both 8-day and
seasonal similarity analysis, other sites (e.g., Blodgett,
California, and Bondville, Illinois) had changes in the
representativeness extents. We suspect that the different
temporal structures used in the 8-day and seasonal similarity
analysis result in a similar shift in patterns as discussed for
Figure 6. Thus, potential users have to be cautious in
drawing conclusions on the spatial representativeness of
different sites because the extent might change because of

Table 6. Name and Representative Extent in Percentage for Each

Flux Site in This Study Using 8-Day Similarity Measure

Name Percent

Forest
Indiana MMSF, Indiana 3.97
Niwot Ridge forest, Colorado 3.83
Walker Branch, Tennessee 3.34
Willow Creek, Wisconsin 2.87
Park Falls, Wisconsin 2.72
Harvard Forest, Massachusetts 2.47
Duke Forest pine, North Carolina 2.43
Mize, Florida 2.29
University of Michigan, Michigan 2.11
KSC scrub oak, Florida 2.10
Donaldson, Florida 1.97
Duke Forest hardwoods, North Carolina 1.86
Sylvania Wilderness Area, Michigan 1.85
Austin Cary, Florida 1.78
Blodgett, California 1.66
Black Hills, South Dakota 1.54
Wind River, Washington 1.46
Metolius intermediate, Oregon 1.33
Metolius old young, Oregon 1.29
Howland Forest west, Maine 1.23
Howland Forest, Maine 1.06
Ozark, Missouri 0.43
KSC slash pine, Florida 0.33
Metolius old, Oregon 0.26
Howland Forest harvest, Maine 0.00
Total 46.20

Nonforest
Audubon Research Ranch, Arizona 8.69
Fort Peck, Montana 6.61
Bondville, Illinois 6.02
Sky Oaks young chaparral, California 6.00
Sky Oaks old chaparral, California 3.97
Walnut River, Kansas 3.27
Mead rainfed, Nebraska 3.22
ARM Oklahoma, Oklahoma 3.18
Lost Creek, Wisconsin 2.68
Mead irrigated, Nebraska 2.47
Mead rotation, Nebraska 1.91
Tonzi Ranch, California 1.90
Vaira Ranch, California 1.72
Goodwin Creek, Mississippi 1.62
Canaan Valley, West Virginia 0.53
Duke Forest openfield, North Carolina 0.00
Total 53.80

Table 7. Name and Representative Extent in Percentage for Each

Flux Site in This Study Using Seasonal Similarity Measure

Name %

Forest
Harvard Forest, Massachusetts 8.67
Blodgett, California 6.67
Indiana MMSF, Indiana 4.21
Sylvania Wilderness Area, Michigan 3.97
Niwot Ridge forest, Colorado 3.17
Mize, Florida 2.64
Wind River, Washington 2.63
Walker Branch, Tennessee 2.09
Willow Creek, Wisconsin 1.54
Duke Forest pine, North Carolina 1.39
Duke Forest hardwoods, North Carolina 1.31
Park Falls, Wisconsin 1.04
Metolius intermediate, Oregon 1.00
Austin Cary, Florida 0.97
KSC scrub oak, Florida 0.79
Howland Forest west, Maine 0.69
Metolius old, Oregon 0.49
Metolius old young, Oregon 0.48
Donaldson, Florida 0.46
Black Hills, South Dakota 0.46
Howland Forest, Maine 0.39
University of Michigan, Michigan 0.07
Howland Forest harvest, Maine 0.00
Ozark, Missouri n/a
KSC slash pine, Florida n/a
Total 45.43

Nonforest
Sky Oaks young chaparral, California 8.87
Walnut River, Kansas 8.55
Goodwin Creek, Mississippi 7.81
Fort Peck, Montana 7.67
Audubon Research Ranch, Arizona 6.12
Sky Oaks old chaparral, California 5.34
Mead rainfed, Nebraska 3.39
Mead irrigated, Nebraska 1.66
Bondville, Illinois 1.52
ARM Oklahoma, Oklahoma 0.93
Vaira Ranch, California 0.79
Lost Creek, Wisconsin 0.80
Mead rotation, Nebraska 0.66
Tonzi Ranch, California 0.44
Duke Forest openfield, North Carolina 0.00
Canaan Valley, West Virginia n/a
Total 54.57
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the temporal structures used for the representativeness
estimation. Furthermore, some flux sites might be estab-
lished exclusively to capture or validate certain ecosystem
behaviors which do not have broad spatial representative-
ness, but are indispensable for understanding ecosystem
behaviors.

6. Conclusions

[38] We examined the representativeness of the Ameri-
Flux network by comparing remotely sensed climate and
vegetation variables of the coterminous United States with
those at the AmeriFlux network. We found that the Ameri-
Flux network was generally representative for the cotermi-
nous United States but that the eastern United States was
better represented than the western United States. Results
are generally consistent with the study of Hargrove et al.
[2003] but discrepancies existed regarding areas being
under-represented by the AmeriFlux network, especially
in the Pacific Northwest, the Great Plains, New England,
the Rocky Mountain evergreen needleleaf forest, and the
Sierra Nevada Mountains, suggesting that further studies are
necessary in pinpointing areas being under-represented by
the AmeriFlux network. Furthermore, our analysis sug-
gested that Indiana MMSF, Indiana, and Harvard Forest,
Massachusetts, were among the forest sites with high
representativeness extents while Audubon Research Ranch,
Arizona, and Sky Oaks Young Chaparral were among the
nonforest sites with high representativeness extents.
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