
Data Min Knowl Disc
DOI 10.1007/s10618-008-0120-3

DECODE: a new method for discovering clusters
of different densities in spatial data

Tao Pei · Ajay Jasra · David J. Hand ·
A.-Xing Zhu · Chenghu Zhou

Received: 5 November 2007 / Accepted: 21 October 2008
Springer Science+Business Media, LLC 2008

Abstract When clusters with different densities and noise lie in a spatial point set,
the major obstacle to classifying these data is the determination of the thresholds for
classification, which may form a series of bins for allocating each point to differ-
ent clusters. Much of the previous work has adopted a model-based approach, but is
either incapable of estimating the thresholds in an automatic way, or limited to only
two point processes, i.e. noise and clusters with the same density. In this paper, we
present a new density-based cluster method (DECODE), in which a spatial data set is
presumed to consist of different point processes and clusters with different densities
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belong to different point processes. DECODE is based upon a reversible jump Markov
Chain Monte Carlo (MCMC) strategy and divided into three steps. The first step is
to map each point in the data to its mth nearest distance, which is referred to as the
distance between a point and its mth nearest neighbor. In the second step, classifi-
cation thresholds are determined via a reversible jump MCMC strategy. In the third
step, clusters are formed by spatially connecting the points whose mth nearest dis-
tances fall into a particular bin defined by the thresholds. Four experiments, including
two simulated data sets and two seismic data sets, are used to evaluate the algorithm.
Results on simulated data show that our approach is capable of discovering the clusters
automatically. Results on seismic data suggest that the clustered earthquakes, identi-
fied by DECODE, either imply the epicenters of forthcoming strong earthquakes or
indicate the areas with the most intensive seismicity, this is consistent with the tec-
tonic states and estimated stress distribution in the associated areas. The comparison
between DECODE and other state-of-the-art methods, such as DBSCAN, OPTICS
and Wavelet Cluster, illustrates the contribution of our approach: although DECODE
can be computationally expensive, it is capable of identifying the number of point
processes and simultaneously estimating the classification thresholds with little prior
knowledge.

Keywords Data mining · MCMC · Point process · Reversible jump ·
Nearest neighbor · Earthquake

1 Introduction

Discovering clusters in complex spatial data, in which clusters of different densities
are superposed, severely challenges existing data mining methods. For instance, in
seismic research, clustered earthquakes attract much attention because they can either
be foreshocks (which indicate forthcoming strong earthquakes) or aftershocks (which
may help to elucidate the mechanism of major earthquakes). However, foreshocks and
aftershocks are often superposed by background earthquakes, and the imposed inter-
ference makes it difficult to identify them. Similar situations may arise in many fields
of study, such as landslide evaluation, minefield detection, tracing violent crime and
mapping traffic accidents. Therefore, although difficult, it is extremely important to
discover clusters from spatial point sets in which clusters of different densities coexist
with noise.

In this context, data are presumed to consist of various spatial point processes in
each of which points are distributed at a constant, but different intensity. Across each
process, there are, potentially many, clusters, which are mutually exclusive. Clusters of
different densities then belong to different processes. As a result, to discover clusters
in a point set, containing different point processes, a cluster method must not only be
capable of detecting the number of point processes (cluster types), but also be capable
of assigning points to different clusters; this requires the determination of thresholds
for each cluster. For clarification, we use intensity when discussing a point process and
density for a cluster. Recall that intensity is defined as the ratio between the number
of points and the area of their support domain (Cressie 1991; Allard and Fraley 1997).
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Density-based cluster methods are characterized by aggregating mechanisms based
on density (Han et al. 2001). It is believed that density-based cluster methods have
the potential to reveal the structure of a spatial data set in which different point pro-
cesses overlap. Ester et al. (1996) and Sander et al. (1998) introduced the approaches
of DBSCAN and GDBSCAN to address the detection of clusters in a spatial data-
base according to a difference in density. Since then, many modifications have been
published. However, such methods have some drawbacks. In DBSCAN and its modi-
fications it is required to define their parameters (for example, Eps, the distance used
to separate clusters of different densities) in an interactive way. The parameters, esti-
mated in this fashion, may lead to classification errors in terms of class type number
and membership of each point, especially in complex scenarios.

In this paper, we present a density-based cluster method for DiscovEring Clusters
Of Different dEnsities (DECODE). The novelties of DECODE are 2-fold: (1) it can
identify the number of point processes with little prior knowledge; (2) it can estimate
the thresholds for separating point processes and clusters automatically. In developing
this method, we first assume that a point set is composed of an unknown number of
point processes, and each point process may be composed of different clusters. Then,
we transform the multi-dimensional point set into a probability mixture using nearest
neighbor theory with each probability component representing a point process. Next,
we construct a Bayesian mixture model and use an MCMC algorithm to produce real-
izations of parameters of individual point process. Finally, the number of processes
and their parameters are estimated by averaging the realizations and the points are
connected to form clusters according to their spatial density-connectivity. The overall
process consists of two phases (Fig. 1). The first phase is to determine the thresholds
of intensity, and the second phase is to establish the mechanism to form clusters.

The rest of the paper is structured as follows. Section 2 reviews recent approaches to
density-based cluster methods. In Sect. 3, we present some notions of nearest neigh-
bor theory and derive the probability density function of the mth nearest neighbor
distance, which is referred to as a distance between a point and its mth nearest neigh-
bor. In Sect. 4, the reversible jump MCMC algorithm of the mth nearest distance is
described in detail; this allows us to estimate the number of processes and their param-
eters. The details of the DECODE algorithm are presented in Sect. 5. Discussions of

Spatial Database 

Point Processes 

Clusters

Phase 1: determine 
thresholds  
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clusters

Fig. 1 Flowchart of the method for discovering clusters of different densities in spatial data
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the parameters and the complexity of DECODE are given in Sect. 6. Four experiments
are presented in Sect. 7 for the evaluation of DECODE. Section 8 provides a summary
of this paper as well as directions for future research.

2 Related work on density-based cluster methods

The aim of clustering is to group data into meaningful subclasses (clusters) (Jain and
Dubes 1988; Kaufman and Rousseeuw 1990). Clustering methods can be broadly
classified into two categories: the partitional and the hierarchical. The partitional clus-
tering methods obtain a partition of objects into clusters such that the objects in a
cluster are more similar to each other than to objects in other clusters. The hierarchical
cluster method is a nested sequence of partitions, it starts by placing each object in
its own cluster and then merges these atomic clusters into larger clusters until some
termination condition is satisfied (Kaufman and Rousseeuw 1990; Han et al. 2001).
However, in recent years, density-based methods, differing from the partitional and
hierarchical methods, have been proposed to classify dense objects into homogenous
clusters with arbitrary shape and size and remove noise using a density criterion. Two
strategies, i.e. the grid-based and the distance-based, have been adopted for finding
density homogeneous clusters in density-based methods.

2.1 Grid-based clustering method

The main idea of grid-based clustering methods is to map data into a mesh grid and
identify dense regions according to the density in cells. The main advantage of grid-
based clustering methods is their detection capability for finding arbitrary shaped
clusters and their high efficiency in dealing with complex data sets which are charac-
terized by large amounts of data, high dimensionality and multiple densities (Agrawal
et al. 1998; Han et al. 2001).

Recent approaches to grid-based clustering methods have focused on techniques
for identifying dense regions which are made up of connected cells. Due to its power
in estimating local densities, a kernel function is used within grid-based clustering
methods to determine statistically significant clustering (Diggle 1985; Hinneburg and
Keim 1998; Tran et al. 2006). However, kernel clustering methods rely upon the choice
of kernel function and its parameters, and this requires extra prior knowledge about
data. For this reason, techniques from “spatial scan statistics”, with which a given set
of predefined regions is searched over to find those containing the clusters, has been
proposed to provide an efficient alternative for the scanning of clusters (Neill and
Moore 2005; Neill 2006). Nevertheless, the method based on spatial scan statistics
is restricted to the detection of either axis-aligned or rectangular-likewise clusters.
Therefore, more work is needed to extend the method to the detection of irregularly
shaped clusters.

In order to avoid computing statistics to determine whether a clustering is signif-
icant, Sheikholeslami et al. (1998) proposed WaveCluster, which applies a wavelet
transform to the grid. The method is able to reveal arbitrarily shaped clusters from
the wavelet approximation of the original image at different scales. Nevertheless, the
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patterns become coarser and thereby distort the shape of clusters as the wavelet trans-
form is processed. To overcome these limitations, Murtagh and Starck (1998) proposed
a cluster method which expresses the structure of data through a redundant wavelet
transform and identifies significant clusters according to a noise model constructed
on the simulation of wavelet coefficients. The noise-model-based Wavecluster (call
this method N-Wavecluster hereafter) may not only reveal the shapes and locations
of clusters in different scales, without reducing the resolution, but may also eliminate
the influence of noise.

Despite the computational speed, the grid-based methods suffer from a major draw-
back: the clustering results are sensitive to the grid partition scheme, i.e. the cell size
in a grid. Choice of cell size may significantly affect the outcome of the analysis in
terms of size, shape and significance of clusters.

2.2 Distance-based clustering methods

Distance-based cluster methods are able to identify dense subclasses based on the dis-
tance between a point and its neighbor, which reflects the density of the local area. As
a result, the methods can avoid the computation of local density which depends on the
partition scheme of the research area. Due to this advantage, many approaches have
been proposed, often based on the mth nearest neighbor distance (Ester et al. 1996;
Markus et al. 2000; Tran et al. 2006). Among those methods, DBSCAN is perhaps the
most important and has attracted much attention in the community of spatial data min-
ing and knowledge discovery as it is both easy to implement and can identify clusters
with arbitrary shapes (Ester et al. 1996; Sander et al. 1998). Before we continue, the
concept of density-connected and the significance of parameters in DBSCAN should
be introduced first.

2.2.1 Concepts relating to DBSCAN

Given a point p, let p ∈ D, D ⊆ Rd , d ≥ 1. There are two elements to the definition of
density-connected, the Eps-neighborhood (NEps(p) = {q ∈ D|dist (p, q) ≤ Eps},
Eps > 0) and MinPts, which is the minimum number of points in the Eps-neighbor-
hood. A point p is said to be density-connected to point q with respect to (wrt) Eps
and MinPts if there is a collection of points p1, p2,…, pn (with p1 = q and pn = p)
so that pi−1 ∈ NEps(pi ) (i = 2, 3, . . ., n) and NEps(pi ) (i = 2, 3, . . ., n−1) must
contain at least MinPts points. Based on these ideas, a cluster is defined to be a point
subset M where any point pi ∈ M is density-connected to point p j ∈ M (pi �= p j ).
In a cluster, point pi ∈ M is denoted as a core point if the number of points included
in NEps(pi ) is not less than Min Pts. Otherwise, it is denoted as a border point, which
is density-connected with at least one core point but with less than MinPts points in its
Eps-neighborhood. The cluster can be formed by extending a point into a collection of
points which are all density-connected with each other. Before identifying the clusters,
one has to define the parameters (MinPts, Eps) from a sorted m-dist graph in which
the mth nearest distance of each point is sorted in a descending order and lined up to
form a dotted curve (Ester et al. 1996).
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2.2.2 Determination of process number and estimation of parameters

As discussed, when using DBSCAN to discover clusters in a complex data set, the
number of processes and their parameters (MinPts, Eps) might be overestimated or
underestimated by the visual and interactive way. This may result in the misclassifi-
cation of points or even the misidentification of clusters or processes. Regarding the
drawbacks, subsequent approaches enhance DBSCAN in two ways (although they are
related to each other): one is to improve the estimation of the parameters (MinPts,
Eps), another is to promote the capability of the determination of the number of
processes.

To try to reduce the subjectivity in the parameter estimation, Ankerst et al. (1999)
proposed an enhanced density-connected algorithm, referred to as: Ordering Points
To Identify the Clustering Structure (OPTICS). OPTICS provides a graphical and
interactive tool to help find the cluster structure by constructing an augmented cluster-
ordering of database objects and its reachability-plot wrt Eps′(the generating distance
for defining the reachability between points) and MinPts. Although the reachability-
plot reduces the sensitivity to the input parameters to some extent, the classification
is still dependent upon the manual determination of Eps (the clustering distance) and
MinPts. Furthermore, it is also difficult for OPTICS to determine how many Epses
will be needed to determine the clusters of different densities in a complex data set.
Daszykowski et al. (2001) proposed a DBSCAN-based modification to look for natu-
ral patterns of arbitrary shape. They detected noise in a subjective way, by separating a
prescribed percentage of data points, which is found at the tail of the frequency curve.
To make the estimation objective, Pei et al. (2006) proposed a nearest-neighbor cluster
method, in which the threshold of density (equivalent to Eps of DBSCAN) is com-
puted via the Expectation-Maximization (EM) algorithm and the optimum value of k
(equivalent to MinPts of DBSCAN or m of DECODE) can be decided by the lifetime
of individual k. As a result, the clustered points and noise were separated accord-
ing to the threshold of density and the optimum value of k. Although the method
can estimate the parameters in an automatic way, it is limited to two-process data
sets.

In order to adapt DBSCAN to data consisting of multiple processes, an improve-
ment should be made to find the difference in the mth nearest distances of processes.
Roy and Bhattacharyya (2005) developed a modified DBSCAN method, which may
help to find different density clusters which overlap. However, the parameters in this
method, both the core-distance and the predefined variance factor α, which are used to
expand a cluster and to find clusters of different densities respectively, are still defined
by users interactively. Lin and Chang (2005) introduced an interactive approach called
GADAC. This method adopts the diverse radii which are adjusted by a genetic algo-
rithm and used to expand clusters of varied densities in contrast to DBSCAN’s only one
fixed radius. GADAC may produce more precise classification results than DBSCAN
does. Nevertheless, in GADAC, the estimation of the radii is greatly dependent upon
another parameter, the density threshold δ, which can only be determined in an
interactive way. Pascual et al. (2006) present a density-based cluster method for
finding clusters of different sizes, shapes and densities. Their method is capable of
separating clusters of different densities and revealing overlapping clusters. However,
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the parameters in the method, such as the neighborhood radius R, which is used to
estimate the density of each point, have to be defined using prior knowledge. More-
over, their method is designed for finding Gaussian-shaped clusters and is not always
appropriate for clusters with arbitrary shapes. In addition, Liu et al. (2007) proposed
a method, called VDBSCAN, to identify clusters in a varied-density data set. How-
ever, the method is unable to avoid interactive and visual estimation of the parameters.
Although most algorithms above can deal with data containing clusters with different
densities and noise, the estimation of parameters (MinPts and Eps) is still a subjective
process which is dependent upon prior knowledge.

The Penalised likelihood criterion, such as BIC (Bayesian Information Criterion),
may provide a solution to estimating the number of processes and their parameters in
a data set. However, the limitations of this strategy are two-fold, one is that the initial
set of models can be very large, and many of those models are not of interest, so that
computing resources are wasted (Andrieu et al. 2003); the other is that the number of
point processes could be overestimated by BIC (Jasra et al. 2006).

In summary, when clusters with different densities and noise coexist in a data set,
few existing methods can determine the number of processes and precisely estimate the
parameters in an automatic way. In this article, we attempt to provide such a solution
via DECODE.

3 Concepts relating to nearest neighbor cluster method

3.1 mth Nearest neighbor distance and its probability density function

Suppose that the support domain (territory) of a point process A ⊆ Rd and points in
the point process are denoted as {si : si ∈ A, i = 1, . . ., n}. The mth nearest distance,
Xm , of a point si is defined as the distance between si and its mth nearest neighbor.
We use the terminology of distance order in the following context, which is referred
to as the ordinance of nearest neighbor from si . For a homogeneous Poisson process
of constant intensity (λ), points {si } in the process have the equivalent likelihood to
distribute in A (Cressie 1991). The cumulative distribution function (cdf) of the mth
nearest distance Xm from a randomly chosen point in the process is as follows (Byers
and Raftery 1998):

G Xm (x) = P(Xm ≥ x) = 1 −
m−1∑

l=0

e−λπx2
(λπx2)l

l! . (1)

The equation is obtained by conceiving a circle of radius x centered at a point. In
detail, if Xm is greater than x , there must be one of 0,1,2, …, m −1 points in this circle
(i.e. the 2-dimensional unit, whose area is πx2). The probability density function (pdf)
of the mth nearest distance, fXm (x; m, λ), is the derivative of G Xm (x) (cdf):

fXm (x; m, λ) = e−λπx2
2(λπ)m x2m−1

(m − 1)! , (2)
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where x is the random variable, m is the distance order, λ is the intensity of the
point process. To extend Eq. 1 to d-dimensions (d > 2), we only need to look at a
d-dimensional unit hyper-sphere (whose volume is αd xd , whereαd =2πd/2/d�(d/2))

instead of a circle. The pdf of Xm can be derived from the d-dimensional cdf (for details,
see Byers and Raftery 1998).

3.2 Probability mixture distribution of mth nearest distance

If multiple point processes with different intensities overlap in a region, the mth near-
est distances of these points can be modeled via a mixture distribution. For example,
in Fig. 2, the simulated data contain three point processes distributed at different inten-
sities, which are displayed as five clusters in addition to the background noise. Each
point process except the noise contains more than one cluster, moreover, the one with
the highest intensity includes an embedded cluster. The histogram of their mth nearest
distances is shown in Fig. 3. Note that edge effects should be considered before cal-
culating the mth nearest distance because points near the edges of the entire research
domain have larger mean of the mth nearest distance than those in the inner area.
In this paper, we reduced the edge effect by transforming the data into the toroidal
edge-corrected data.

The mth nearest distances, in which k point processes are assumed to exist, can be
expressed as the mixture density:

0 200 400 600 800 1000
0

200

400

600

800

1000

Fig. 2 Simulated data (The data are composed of three different point processes: five clusters and noise.
Noise (symbolized by dots) is distributed at the lowest intensity over the whole area. Cluster 1 (symbolized
by crosses), Cluster 2 (symbolized by circles) and Cluster 3 (symbolized by rotated crosses) belong to the
same point process with the highest intensity while Cluster 3 is an embedded cluster. Cluster 4 (symbolized
by squares) and Cluster 5 (symbolized by triangles) belong to the same point process with the medium
intensity)
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Fig. 3 The histogram of the mth nearest distance of the simulated data and the fitted mixture probability
density function (β fixed with fb = 20, 000 (the dashed line, 2 components), β fixed with fb = 1, 000
(the solid line, 3 components), β fixed with fb = 10 (the dotted line, 4 components), β updated (the
dashed-dotted line, 9 components), where fb is the parameter defining the expectation of λi which is
simulated)

Xm ∼
k∑

i=1

wi f (x; m, λi ) =
k∑

i=1

wi
e−λi πx2

2(λiπ)m x2m−1

(m − 1)! , (3)

where wi > 0 is the proportion of the i th process with
∑

wi = 1, m is the distance
order and λi is the intensity of the i th process.

Since a given point si in the point set provides a one-to-one correspondence with
its mth nearest distance Xm , points can be classified by decomposing the mixture, i.e.
determining both the number (k) of point processes and their parameters (wi , λi ). We
use a reversible jump MCMC method to accomplish these.

4 Reversible jump MCMC strategy for decomposing of mth nearest distance
mixture

4.1 Metropolis–Hastings algorithm

MCMC is a strategy for generating samples from virtually any probability distribution,
p(x), which is known, is point-wise up to constant; see Robert and Casella (2004) for an
introduction. The method generates a Markov chain with a stationary distribution p(x).

The Metropolis–Hasting kernel is the building block of most MCMC algorithms and
is simulated as follows. Assume that the current state of the Markov chain is x (n); then
sample x∗ ∼ q(x∗|x (n)), where q(x∗|x (n)) is a (essentially, up to some mathematical
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requirements, arbitrary) proposal density; accept x∗ as the new state with proba-
bility min{1, A(x (n), x∗)}, where A(x (n), x∗) = p(x∗)q(x (n)|x∗)/p(x (n))q(x∗|x (n))

(Andrieu et al. 2003).
In this paper, we use random walk proposal methods: the additive and multiplica-

tive random walk. The additive random walk is expressed as: x∗ = x + σu and the
multiplicative random walk is expressed as: x∗ = xσu, where σ is the scale of the
random walk and u is a random variable used to perturb the current value x . Generally
the parameter σ is tuned (although it can be adaptively set—see Robert and Casella
(2004) and the references therein) so that the acceptance rate is approximately 0.25.

The Metropolis–Hastings kernel described above cannot be easily constructed to
deal with problems where the parameter space is of varying dimension. In particular,
in our context, we are interested in sampling from a mixture (posterior) distribution
with an unknown number of point processes, so that the number of intensities is not
known.

4.2 Bayesian model determination by reversible jump MCMC

Green (1995) introduced reversible jump MCMC, which is essentially an adaptation
of the Metropolis–Hastings algorithm. The method is designed to generate samples
from probability distributions of varying dimension. More precisely, it is constructed
so that it is possible to construct Markov transitions between states of different dimen-
sions. The term ‘reversible’ is used because such moves are constructed in reversible
pairs, for example birth and death moves, which proceed as follows.

Suppose the current state of our Markov chain is (x1, . . ., xk) ∈ Rd (x1:k for short)
and we have the choice of either ‘birth’ or ‘death’, selected with probabilities b(x1:k)
and d(x1:k) = 1−b(x1:k), respectively. Suppose that we select the birth, and it consists
of increasing dimension by 1, such a move is completed as follows. Sample u ∈ R from
a probability density q and set the proposed state of the chain as x∗

1:k+1 = f (x1:k, u)

with f : Rk × R → Rk+1, which is an invertible and differential mapping. This state
is accepted as the new state of the chain with probability of min{1, A(x1:k, x∗

1:k+1)},
where

A(x1:k, x∗
1:k+1) = p(x∗

1:k+1)

p(x1:k)
1

q(u)

d(x∗
1:k+1)

b(x1:k)

∣∣∣∣
∂ f

∂(x1:k, u)

∣∣∣∣ .

The Jacobian is present to take into account the change of variables (see Green 1995).
The reverse death in state x∗

1:k+1 is performed by inverting f (to determine u) and
inverting the formula for A above (to compute the acceptance probability).

4.3 Bayesian statistical model and reversible jump algorithm

4.3.1 Priors

We will use a Bayesian statistical model. This requires us to specify prior probability
distributions for the unknown parameters. We assume that the priors on the intensities
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are taken to be i.i.d (independently and identically distributed) for each point process
with λi |β ∼ ga(α, β) and wi ∼ dirichlet (δ), where ga(.) and dirichlet (.) denote
the Gamma and Dirichlet distributions, respectively. β is taken to be either random
(ga(g, h)) or fixed. The prior parameters (α, g, h) can be set as in (Richardson and
Green 1997). The prior distribution on k is uniform on the range {1, . . . , kmax}, with
kmax a pre-specified value.

4.3.2 Reversible jump algorithm

The reversible jump MCMC strategy is as follows.

(1) Initialize the parameters (k, λ1:k, w1:k, β).
(2) Specify the sweep times, i.e. the number of simulations that the algorithm will

generate.
(3) Perform the following moves.

Update λi with a log-normal random walk

λ
(n+1)
i = λ

(n)
i eui σ (ui ∼ N (0, 1), i = 1, . . . , k);

Accept λ
(n+1)
1:k according toA(λ

(n)
1:k , λ∗

1:k);
where
A(λ

(n)
1:k , λ∗

1:k)

= min

⎧
⎨

⎩1,

∏M
j=1

∑k
i=1

[
w(n)

i
f
(

x j |λ(n+1)
j

)]
· ∏k

i=1

(
λ

(n+1)
i

)α · e
−β

(∑k
i=1 λ

(n+1)
i

)

∏M
j=1

∑k
i=1

[
w

(n)
i f

(
x j |λ(n)

j

)]
· ∏k

i=1

(
λ

(n)
i

)α · e
−β

(∑k
i=1 λ

(n)
i

)

⎫
⎬

⎭.

Update wi with an additive normal random walk on the logit scale.

w
(n+1)
i

=
⎡

⎣ w
(n)
i

1 − ∑k−1
j=1 w

(n)
j

⎛

⎝1 −
k−1∑

j=1

w
(n+1)
j

⎞

⎠

⎤

⎦ eσui (ui ∼ N (0, 1), i = 1, . . . , k);

Accept w
(n+1)
1:k according to A(w

(n)
1:k , w∗

1:k);

where A(w
(n)
1:k , w∗

1:k) = min

⎧
⎨

⎩1,

∏M
j=1

∑k
i=1

[
w(n+1)

i
f
(

x j |λ(n+1)
j

)]
· |•|

q
(
w

(n)
1:k |w(n+1)

1:k
)

∏M
j=1

∑k
i=1

[
w

(n)
i f

(
x j |λ(n)

j

)]
· |•|

q
(
w

(n+1)
1:k |w(n)

1:k
)

⎫
⎬

⎭,

|•|
q
(
w

(n)
1:k |w(n+1)

1:k
) is the Jacobian matrix for q(w

(n)
1:k |w(n+1)

1:k ), and |•|
q(w

(n+1)
1:k |w(n)

1:k )

is the Jacobian matrix for q(w
(n+1)
1:k |w(n)

1:k ).
Update β (β is taken to be either random or constant)
Sample β from its full conditional probability function, β ∼ ga(g + kα, h +∑k

i=1 λi )( random).
(4) Update k with the birth-and-death step

Make a random choice between birth and death at the probability bk and dk ,
respectively.
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For a birth move:
Sample ν ∼ U (0, 1);
λk+1|β ∼ ga(α, β), w∗

k+1 ∼ be(1, k) and set w
(n+1)
i = w

(n)
i (1 − w∗

k+1)

(i = 1, 2, . . . , k);
if ν < Abirth and k < kmax

accept the proposed state and let k = k + 1;
else

reject the proposal;
end

For a death move:
Choose a point process, with uniform probability, to die. Assume that the j th point

process is chosen, then remove its λ
(n)
j , w

(n)
j and make w

(n+1)
i = w

(n)
i /(1 − w

(n)
j )

(i �= j);
Sample ν ∼ U (0, 1);
if ν < Adeath and k > 1

accept the proposal and let k = k − 1;
else

reject the proposal;
end

Here Abirth is min
{

1,
p(k+1,θ(k+1)|x) · j (k+1|θ(k+1))

p(k,θ(k)|x) · j (k|θ(k))q1(u(1))

∣∣∣ ∂(θ(k+1))

∂(θ(k),u(1))

∣∣∣
}

, that is, Abirth =

min

{
1,

p
(

x |λ(n+1)
1:k+1,w

(n+1)
1:k+1 ,k+1

)
1
k

p(x |λ(n)
1:k ,w

(n)
1:k ,k) 1

k

·B(kδ, δ)−1wδ−1(1−w)k(δ−1)(k+1)
dk+1

(k+1)bk
· (1−w)k−1

Be(w;1,k)

}

(Green 1995). k is the number of point processes at the current step, p(x |λ(n)
1:k+1,

w
(n)
1:k+1, k +1) = ∏M

j=1
∑k+1

i=1

[
w(n+1)

i
f
(

x j |λ(n+1)
j

)]
(M is the number of the points

in the data set) is the likelihood function of the mixture conditioned on (λ
(n+1)
1:k+1, w

(n+1)
1:k+1,

k + 1), so is p(x |λ(n)
1:k , w

(n)
1:k , k) = ∏M

j=1
∑k

i=1 [w(n)
i

f (x j |λ(n)
j

)], w is the weight of
newly born point process, bk is the probability of proposing a birth move at state k, dk+1
is the probability of proposing a death move at state k+1, B(.,.) is the beta function.
The birth move is performed for k = 1, 2, . . . kmax − 1, where kmax is the maximal
number of point processes that could be existed in the mixture. Adeath = 1/Abirth

with k being replaced by k − 1, and the parameters in Adeathare the same as those in
the Abirth . The death move is performed for k = 2, 3, . . . kmax .

5 DECODE: DiscovEring clusters of different dEnsities

Based upon the ideas of the mth nearest distance reversible jump MCMC, we propose
the algorithm DECODE for discovering the clusters of different densities in a spatial
data as follows.

(1) Compute the mth nearest distance of each point (Xm)

(2) Run the mth nearest distance reversible jump MCMC for analyzing the mixture
of the mth nearest distances.
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(3) Check if the algorithm converges. If yes, then go to the next step; otherwise, go
back to step (2).

(4) Pick out the number of point processes with the highest posterior probability and
compute the parameters of each point processes.

(5) Estimate the thresholds for classifying clusters using the formula of Eps∗
i =√

ln
wi

wi+1
+m ln

λi
λi+1

π(λi −λi+1)
(i = 1, 2, . . . , k − 1), where Eps∗

i is the threshold between

the i th point process and the (i + 1)th, and can be determined by computing the
intersection between the pdf of the i th point process and that of the (i + 1)th.

(6) Extend the clusters of different densities from the data set with Eps∗
i (i =

1, 2, . . . , k − 1) and m according to their density-connectivity. Each pair of
parameters (Eps∗

i , m) will lead to a set of clusters with the same density.

Some points should be noted before running the algorithm above. In DECODE, Step (2)
is the key step in which the number of point processes and the thresholds (parameters)
for classifying point processes and clusters are determined. The details of this step
have been described in Sect. 4. Step (3) is used to check if the algorithm has converged.
The algorithm is considered to have converged if the plot of cumulative occupancy
fractions becomes stable as the sweep time increases. The curve of the cumulative
occupancy fractions of j indicate the ratio between the times of simulations in which
the point process number generated by the algorithm is no more than j and the total
times having been processed. In Step (4), the posterior probability of k is obtained by
computing the ratio between the number of simulations which contains k point pro-
cesses and the total sweep times. The parameters of each process with the maximum
posterior probability of k are estimated by averaging the parameters of simulations
which contain k processes.

The mechanism of extending clusters is same as that in (Ester et al. 1996;
Sander et al. 1998). The only difference between DECODE and DBSCAN is that
in DECODE border points are not considered as members of clusters whereas in
DBSCAN they are.

6 Some aspects of the model

6.1 Analysis of sensitivity to prior specification

Among the parameters in DECODE, β should be highlighted because it has a sig-
nificant impact on the results (Richardson and Green 1997). As has been seen in the
algorithm (Sect. 4.3.2), two strategies can be applied to the selection of β in Step 3.
One is to update β constantly during the process, the other one is to fix β. For fixing β

we set β = fbλmax, where λmax =
(

m(2m!)
2m (m!)2 min(Xm )

)2
(Thompson 1956) and λmax is

the intensity corresponding to min(Xm), so that in the birth move λi is sampled from a
constant density function ga(α, β). In this context, fb and λmax define the expectation
(that is fbλmax if α = 1, this is because the expectation of ga(α, β) is αβ) of λi which
is sampled. Therefore, fb is independent of input data (i.e. the data of the mth nearest
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distance). That is to say, once appropriate values of fb are determined, they could
apply to other problems.

To determine an appropriate range of values for fb, we compared results generated
using various values of fb. Taking the simulated data in Fig. 2 as an example, we ran
the MCMC algorithm for 100,000 sweeps at various values of fb, and also ran the
algorithm for updated β. As shown in Fig. 4, all of the plots of the cumulative occu-
pancy fractions at different fb become stable along with the increase of sweep time.
Therefore, we may say that the algorithm (appears) to converge in all cases. We took
the burn-in to be 50,000 sweeps. The corresponding posterior probabilities of k are
shown in Table 1.

As shown in Table 1, we find that updating β produces the highest posterior proba-
bility at k = 9, thereby it leads to a model with more point processes. In contrast, fixing
β indicates mixtures with fewer point processes from 5 ( fb = 2) to 1 ( fb = 250,000).
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Fig. 4 The cumulative occupancy fractions of j at different fb: a fb = 2; b fb = 10; c fb = 50; d
fb = 200; e fb = 1,000; f fb = 5,000; g fb = 20,000; h fb = 250,000; i updating β (with δ = 1, α = 1,
h = 10/(max(Xm ) − min(Xm )), g = 0.2)

Table 1 The point process number (k) with the maximum posterior probability at different fb

fb 2 10 50 200 1,000 5,000 20,000 250,000 β Updated

k with the maximum 5 4 3 3 3 2 2 1 9

posterior probability
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This is due to Lindley’s paradox (For details, see Richardson and Green 1997). It was
also found that models with 3 point processes are acquired when fb = 50, 200 and
1,000 and these are in accordance with the truth.

From the results, we find that: (1) updating β tends to produce a model with more
point processes while fixing β suggests mixtures with fewer point processes; (2) fb is
the parameter which significantly influences the results when fixing β. The sensitivity
of the results to the prior parameters has been addressed in many papers. Interested
readers may refer to Richardson and Green (1997) for details. Based on these facts,
we decide to fix β. From the relationship between fb and k with the maximum Pos-
terior probability, shown in Table 1, we can infer that the appropriate value of fb

can be selected from [50 1000] for this specific probability mixture problem. m is
another parameter that should be chosen before running DECODE. The appropri-
ate value of m can be chosen according to the size of clusters which users intend to
discover.

The MCMC step in DECODE has several parameters, such as δ, α, σ , but the
method is insensitive to those parameters. Usually, we let σ = 0.1, δ = 1 and α = 1. A
similar observation has been made by other researchers (Richardson and Green 1997;
Jasra et al. 2006). Therefore, DECODE is a robust and automatic cluster method which
needs less prior knowledge of the target data set compared with other density based
clusters methods.

6.2 The evaluation of the complexity of DECODE

For each sweep, time is mostly spent on the computation of A(λ
(n)
1:k , λ∗

1:k), A(w
(n)
1:k , w∗

1:k)
and Abirth(Adeath). The complexity of A(λ

(n)
1:k , λ∗

1:k) is O(M ·k), that of A(w
(n)
1:k , w∗

1:k)
is O(M ·k +(k −1)k!) and that of Abirth is O(M ·k), where M is the number of points
of the data set, k is the number of point processes that the algorithm determines. So
the total complexity of the algorithm is O(T (Mk + (k − 1)k!)), where T is the sweep
times. Usually, T is more than 50,000 to ensure the convergence of the algorithm.
Therefore, the running time of the algorithm is largely dependent upon the sweep
times.

To evaluate the efficiency of the algorithm we tested the program (which is coded
in Matlab) on the platform Windows XP, with several simulated data sets, which have
varying numbers of processes and points. Table 2 lists the CPU time spent on the
classification of these data. We found that the run time of DECODE could be roughly
approximated byO(T (Mk + (k − 1)k!)). According to the analysis above, the algo-
rithm is a time-consuming process when the number of sweep times is expected to be
large.

Table 2 The CPU time of DECODE spent on different data

Number of points 250 500 1,000 1,500 1,500 500 500
Number of components 2 2 3 3 3 4 5
Sweep time 100,000 100,000 100,000 100,000 50,000 100,000 100,000
CPU time (s) 309 625 1,875 2,843 1,406 1,320 1,898
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7 Experiments and analysis

7.1 Experiment 1

To evaluate our algorithm, four experiments have been conducted, two on simulated
data, one using a regional seismic catalog of Southwestern China and one using a
strong earthquake catalog of China and its adjacent areas.

The data of Experiment 1, displayed in Fig. 2, are distributed at different intensities
in a 1, 000×1, 000 rectangle. In the data, three Poisson processes were simulated, the
one with high density includes 3 clusters (i.e. Cluster 1 (200 points), Cluster 2 (200
points) and Cluster 3 (377 points)), the one with medium density includes two clusters
(i.e. Cluster 4 (220 points) and Cluster 5 (220 points)) and the one with low density is
noise (527 points) distributed over the whole region. We first applied DECODE to the
data and then compared it with three state-of-the-art density-based cluster methods,
i.e. DBSCAN, OPTICS and N-Wavecluster.

We took σ = 0.1, δ = 1 for the updating of λi and wi , α = 1 for the prior prob-
abilities of λi , and let fb = 500 and m = 10 for running DECODE. The thresholds,
estimated by DECODE, are indicated by crosses in Fig. 5a (Eps∗

1 = 19.65, Eps∗
2 =

46.58) and very close to the true values (Eps1 = 19.28, Eps2 = 47.90). The clas-
sification under the thresholds, shown in Fig. 6a, indicates 3 processes and 5 clusters,
and also clearly reveals the structures of clusters, including the embedded ones. The
validation shows that 98 mismatches are produced by DECODE. These results dem-
onstrate that DECODE is capable of dealing with the clusters with various topological
relationship with each other.

The thresholds for classifying data were estimated to be Eps∗
1 = 25.28, Eps∗

2 =
45.21 and Eps∗

1 = 15.0, Eps∗
2 = 40.0 by the m-dist plot of DBSCAN (Fig. 5a) and

the reachability-plot of OPTICS (Fig. 5b), respectively. The difference between the
estimations and the true values is obvious. We then applied the thresholds estimated
by the m-dist plot to the data. From the classification result (Fig. 6b) we find that the
data are divided into 8 clusters by DBSCAN and the false clusters are hidden in the
cluster symbolized by squares. The number of misclassified points is 150. DBSCAN
increases the error rate by more than 1/2. Similar to that of DBSCAN, classification
under the thresholds estimated by OPTICS indicates 9 clusters and even more mis-
classified points (Fig. 6c). The results imply that DBSCAN and OPTICS would not
only overestimate the number of clusters but also increase the number of misclassified
points due to the error in estimating thresholds, which is done in a subjective and
visual way. As a result, determining thresholds through visual estimation could be
unrealistic especially when multiple point processes exist in a point set.

The N-Wavecluster was then applied to the data. The wavelet representations at
different scales are shown in Fig. 5c. We find that the representation at Scale 6 could
reflect the structure of clusters. The classification is enlarged in Fig. 6d. It is found that:
(1) N-Wavecluster only identifies four clusters and neglects Cluster 3, the embedded
cluster; (2) it overestimates Cluster 1 and 2 and underestimates Cluster 4 and 5. The
number of total misclassified points is 302.
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Fig. 5 Determination of thresholds for classifying points: a the sorted m-dist graph (MinPts = 10) with
the thresholds determined by DECODE and a visual trial (the rotated crosses represent the true values of
thresholds (Eps1 = 19.28, Eps2 = 47.90), the crosses represent the thresholds (Eps∗

1 = 19.65, Eps∗
2 =

46.58) determined by the reversible jump MCMC at fb = 500 and the asterisks represent the thresholds
(Eps∗

1 = 25.28, Eps∗
2 = 45.21) from an interactive estimation); b The reachability-plot (MinPts = 10,

Eps′ = 50) with the thresholds (Eps∗
1 = 15, Eps∗

2 = 40 indicated by two dashed lines) determined by a
visual trail; c The multi-resolution wavelet representation of the cluster space

The comparison shows that DECODE outperforms the other three cluster methods
for this data set in terms of cluster number, misclassified point number and removal
of noise.
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Fig. 5 continued

7.2 Experiment 2

In this experiment, we used a data set, which contains Gaussian clusters and noise, to
test DECODE, DBSCAN, OPTICS and N-Wavecluster and to compare their efficien-
cies on the identification of clusters. The data of Experiment 2, shown in Fig. 7, lie
within a 1, 000 × 1, 000 rectangle. There are two Gaussian clusters and Poisson noise
in the point set. One of the Gaussian clusters (320 points), with high density, is distrib-
uted in a circle centered at (200, 300) with a diameter of 100 and the other Gaussian
cluster (130 points), with low density, is distributed in a circle centered at (500, 600)
with a diameter of 360. The Poisson noise points (262 points) are distributed over the
whole area.

After setting σ , δ, λi , wi and α to the same values as those set in Experiment 1
and m = 18, we ran DECODE on the point set. The performance of DECODE,
shown in Fig. 8, indicates that the algorithm has converged (Fig. 8a) and the point set
is composed of three processes (Fig. 8b). Figure 9a displays the histogram of the mth
distances and the fitted curve, from which thresholds for classifying data are derived
(Eps∗

1 = 23.2, Eps∗
2 = 92.7). The derived thresholds are very close to the true

thresholds (Eps1 = 22.6, Eps2 = 91.3). The classification of DECODE, shown in
Fig. 10a, reveals that DECODE automatically detects the number of point processes as
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Fig. 6 The comparison between DECODE, DBSCAN, OPTICS and N-Wavecluster: a DECODE;
b DBSCAN; c OPTICS; d N-Wavecluster
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Fig. 7 The simulated data of Experiment 2 (Cluster 1, with high density, are symbolized by crosses;
Cluster 2, with medium density, are symbolized by circles; noise, with low density, is symbolized by dot)
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Fig. 8 Performance of DECODE on Gaussian clusters: a the cumulative occupancy probability; b the
posterior probability of k

well as that of clusters. In addition, it classifies the points into two distinctive clusters
and noise very successfully with only 19 misclassified points.

We then ran the other three methods, i.e. DBSCAN, OPTICS, N-Wavecluster, to
estimate the thresholds for classifying points. The m-dist graph of DBSCAN (with
MinPts = 18) is displayed in Fig. 9b. We find that it is not easy to determine the number
of thresholds and whether there is any threshold between cluster of low density and
noise. As a result, only one threshold (Eps∗

1 = 27) could be detected and estimated.
The classification result (Fig. 10b) shows that only the cluster with high density is
identified and the number of misclassified points is 132.

According to the reachability-plot (with MinPts = 18 and Eps′ = 100) constructed
by OPTICS, shown in Fig. 9c, we may identify two “valleys” from the plot and estimate
the threshold between clusters and noise, nevertheless, it is still difficult to determine
if there is any threshold between clusters. When the threshold between clusters and
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Fig. 9 Determination of thresholds for classifying Gaussian clusters and noise: a the histogram of the mth
nearest distance (m = 18) and the fitted curve (the thresholds (Eps∗

1 = 23.2, Eps∗
2 = 92.7), estimated

by DECODE, are indicated by vertically dashed lines while the true thresholds are Eps1 = 22.6, Eps2 =
91.3); b the m-dist graph (MinPts = 18) with the threshold (indicated by a cross); c the reachability-plot
(MinPts = 18, Eps′=100) with the threshold (Eps∗

1 = 60 indicated by a horizontally dashed line); d The
multi-resolution wavelet representation of the cluster space

noise was set to 60 (Eps∗
1 = 60), which we think is the optimum one, from the

classification result of OPTICS (Fig. 10c) we found that the Cluster 1 is overestimated
while Cluster 2 is underestimated. The number of misclassified points is 46.
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Fig. 9 continued

The wavelet representations at different scales, produced by N-Wavecluster, are
shown in Fig. 9d. It appears that the representation at Scale 6 might reflect the struc-
ture of clusters. The enlarged classification result, shown in Fig. 10d, clearly delineates
the cluster space. However, N-WaveCluster produced three clusters, among which
the one at the right-bottom (symbolized by squares) is obviously a false positive.
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Fig. 10 The comparison between DEOCODE, DBSCAN, OPTICS and N-Wavecluster on classification of
Gaussian clusters: a DECODE (m = 18); b DBSCAN (MinPts = 18, Eps∗

1 = 27); c OPTICS (MinPts = 18,
Eps∗

1 = 60); d N-Wavecluster

Moreover, similar to OPTICS, Cluster 1 is overestimated and Cluster 2 is underesti-
mated. The number of misclassified points is 53.

The comparison on Experiment 2 implies that the DECODE is capable of dealing
with Gaussian clusters and present superior performance on parameter estimation and
point classification.

7.3 Experiment 3

In the two following experiments, DECODE was applied to two seismic data sets to
evaluate its efficiency on real data. In Experiment 3, we will use DECODE to identify
the clustered earthquakes (seismic anomaly) in a seismic catalog. Clustered earth-
quakes are a swarm of earthquakes that are generated at a higher rate (time) and are
distributed in a higher intensity (space) (Matsu’ura and Karakama 2005). As opposed
to clustered earthquakes, background earthquakes are a number of small earthquakes
that occur at a stable rate and are randomly located in a certain area (Wyss and Toya
2000 ; Pei et al. 2003). As a result, clustered earthquakes and background earthquakes
can be seen as two point processes with different rates and intensities (Kagan and
Houston 2005; Zhuang et al. 2005). Clustered earthquakes could be either precursors
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that induce strong earthquakes or offspring that are triggered by strong earthquakes.
The former are referred to as foreshocks and the latter as aftershocks. Foreshocks can
indicate locations of strong earthquakes while aftershocks may help to understand the
mechanism of the strong earthquakes (Reasenberg 1999; Umino et al. 2002). In this
context, the key task is to identify clusters from the locations of earthquakes. Note that
objects here are earthquakes and the attributes are the coordinates of the epicenter of
each earthquake. However, the clustered earthquakes are difficult to extract because
of the interference of background earthquakes. In this regard, the density-based clus-
ter methods can be employed to separate the clustered earthquakes and background
earthquakes. In the seismic case and hereafter, we only make the comparison between
DECODE and OPTICS. The reason why we only choose OPTICS for the compari-
son is that: (1) this paper mainly discusses the parameter estimation problem of the
distance-based method while N-Wavecluster is a grid-based method; (2) OPTICS pro-
vides a more efficient tool, the reachability-plot, for the estimation of the thresholds.

Our research area is located from 100◦ to 107◦ E and from 27◦ to 34◦ N. We selected
the seismic records from two sources: Earthquake Catalogue in West China (1970–
1975, M ≥ 1) (Feng and Huang 1980) and Earthquake Catalogue in West China (1976–
1979, M ≥ 1) (Feng and Huang 1989). Note: M is the unit of the seismic record and
represents the magnitude on the Richter scale. From these two sources, we selected the
records between 15 February 1975 and 15 August 1976, with the magnitudes greater
than 2.

Before running DECODE, we set σ, δ, α to the same values as those in Experiment
1 and also set fb = 500. We chose m = 12 for calculating the mth nearest distance for
two reasons. The first is because the value of m decides the minimum number of points
in a cluster, and a value of m between 10 and 15 is large enough to help find an appro-
priate size of an anomaly. The second is to compare the result with that we achieved in
Pei et al. (2006). We ran DECODE for 100,000 sweeps with 50,000 sweeps taken as
the burn in. After the algorithm had converged, we displayed the posterior probabili-
ties of k in Fig. 11a, which implies that the maximal posterior probability is acquired
at k = 2. The histogram of the mth nearest distance and its fitted pdf are displayed in
Fig. 11b. The classification result is shown in Fig. 12a. The clustered seismic data are
divided into three groups, as A, B and C.

We then estimated the threshold for classification with the reachability-plot of seis-
mic data (Fig. 13). Classification under the threshold (Eps∗

1 = 3.5×104(m)) produces
four clusters (Fig. 12b). There are two discrepancies between the result produced by
OPTICS and that by DECODE: one is that OPTICS produces one more cluster (Clus-
ter D), the other is that Cluster A, B and C contain more earthquakes compared with
those identified by DECODE.

Next, we evaluated these two classification results by the seismic records thereaf-
ter. The seismic catalog, recorded after 15 August 1976, was selected from the same
sources as that of the data in the experiment. It shows that the anomalies identified by
DECODE are more accurate indicators of the location of forthcoming strong earth-
quakes and offspring of strong earthquakes than those identified by OPTICS. From
Fig. 12a, three seismic anomalies are detected by DECODE. Anomaly A are the fore-
shocks of the Songpan earthquake, which hit Songpan county at (32◦42′ Nm 104◦06′ E)
on 16 August 1976 and was measured as 7.2M. Anomaly B are the aftershocks of the
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Fig. 11 Results of DECODE on the regional seismic catalog: a the posterior probability of k;
b the histogram of the mth nearest distance (m = 12) and the fitted curve

Kangding–Jiulong event (M = 6.2), which occurred at (29◦26′ N, 101◦48′ E) on 15
January 1975. Anomaly C are the aftershocks of the Daguan event (M = 7.1), which
struck at (28◦06′ N 104◦00′ E) on 11 May 1974. The detected anomalies are also
similar to those in (Pei et al. 2006) both in terms of location and size. The only dif-
ference is that the numbers of earthquakes in the anomalies in Fig. 12a are slightly
underestimated. This is because DECODE does not treat border points as members
of the clusters while the approach in Pei et al. (2006) did. We also confirmed that
earthquakes, which are classified as background earthquakes in Fig. 12a and appeared
as clustered earthquakes in Pei et al. (2006), are border points. We then analyzed
the result produced by OPTICS (Fig. 12b). The seismic records show that Cluster D
is a false positive and other seismic anomalies are overestimated by OPTICS (some
earthquakes in Cluster B and C have been confirmed as background earthquakes).

7.4 Experiment 4

In order to evaluate their efficiencies with multi-process real data, in this experiment
we used DECODE and OPTICS to identify clusters in the strong earthquake data. As
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Fig. 12 Comparison on seismic anomaly detection between DECODE and OPTICS: a DECODE;
b OPTICS

the distribution of strong earthquakes are, to a large extent, decided by global tectonics
(Zhuang et al. 2005; Zhou et al. 2006), the strong earthquakes on a large scale, which
is similar to small earthquakes on a small scale (in Experiment 3), is not completely
randomly distributed. As a result, strong earthquakes can be seen as a mixture in which
different point processes overlap. The identification of clustered strong earthquakes
may help to understand the tectonic activities and to make a quakeproof plan.
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Fig. 13 The reachability-plot of the regional seismic data (Eps∗
1 = 3.5 × 104(m), indicated by a horizon-

tally dashed line)

The research area is located from 65◦ to 125◦ E and from 20◦ to 55◦ N. The area
covers most of the land area of China and adjacent areas except for the eastern part
of Northeastern China. The seismic data were selected from Chinese Seismic Catalog
(1831BC–1969AD) (Gu 1983) and the China Seismograph Network (CSN) Catalog
(China Seismograph Network 2008) and include records between 1 January 1900 and
31 December 2000. All included earthquakes were measured on the Richter Scale
with the magnitudes greater than 6.5M.

We first set all parameters at the same values as those in Experiment 3 and ran
DECODE for 100,000 sweeps taking 50,000 sweeps to be the burn in. We showed
the result of DECODE on the strong earthquake data in Fig. 14 after DECODE had
converged. The posterior probabilities of k shown in Fig. 14a indicate that the strong
earthquakes are composed of five different point processes. The fitted mixture pdf
of the mth nearest distance can be seen in Fig. 14b. Figure 15a shows the classifica-
tion result, revealing five earthquake clusters with different densities and background
earthquakes. It was also found that the clusters of strong earthquakes are concentrated
in three areas. The first is in the northwestern part of the Uigur Autonomous Region (in
northwest China) and the adjacent area outside China and consists of Cluster 1 and 2.
The second is in southwestern China and the adjacent area in Southeast Asia and con-
sists of Cluster 3 only. The third is in the island of Taiwan and the sea around it and
consists of Cluster 4 and 5. These three areas are the most intensive seismic regions
in China (Fu and Jiang 1997).

Next, we used OPTICS to classify the seismic data. The threshold (Eps∗
1 = 2.4 ×

105 (m)) was estimated from the reachability-plot (MinPts = 12, Eps′ = 6×105 (m)),
which appears to be the optimum value (see Fig. 16). Within the similar places in
Fig. 15a, OPTICS produces three clustering areas, each of which contains only one
cluster (see Fig. 15b). The difference between classifications generated by the two
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Fig. 14 Results of DECODE on the strong earthquake data: a the posterior probability of k; b the histogram
of the mth nearest distance (m = 12) and the fitted curve

algorithms lies in two aspects: the first is the sizes of clustering areas and clusters;
the second is the number of clusters (3 clusters are produced by OPTICS and 5 by
DECODE). Regarding the first aspect, for instance, Cluster 2 in Fig. 15b, which is
generated by OPTICS, is significantly smaller than Cluster 3 in the corresponding
area of Fig. 15a, which is generated by DECODE.

As the distribution of the clustered strong earthquakes is in accordance with the
pattern of tectonics and tectonic stress in East and Southeast Asia (Jiao et al. 1999),
DECODE and OPTICS can be compared by analyzing the consistency between the
tectonics and clusters detected by them. We first discuss the classification generated by
DECODE. Earthquakes are concentrated in the first area and the second area because
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(a)

(b)

Fig. 15 Comparison on strong earthquake classification between DECODE and OPTICS: a DECODE
(Strong clustered earthquakes in China and the adjacent areas, where Cluster 1 are symbolized by squares,
Cluster 2 are symbolized by circles, Cluster 3 are symbolized by asterisks, Cluster 4 are symbolized by
triangles, Cluster 5 are symbolized by rotated crosses, background earthquakes are symbolized by dots.); b
OPTICS (Cluster 1 are symbolized by circles, Cluster 2 are symbolized by asterisks, Cluster 3 are symbol-
ized by triangles, background earthquakes are symbolized by dots) (The Wenchuan earthquake is indicated
by an arrow in both figures)

the Indian Plate is moving to the north and colliding with the Sino-Eurasian Plate
(Ghosh 2002).1 Research has shown that stress caused by the collision is concentrated
on the first area and the second area in Fig. 15a and the maximum value of the stress is

1 The updated seismic records of China also support our result since the Wenchuan earthquake (indicated
by an arrow in Fig. 15), which occurred at 103.4◦E, 31.0◦N on 12 May, 2008, with the magnitude measured
as 8.0 (China Seismograph Network (CSN) Catalog), is caused by the collision and located at the edge of
Cluster 3 in Fig. 15a.
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Fig. 16 The reachability-plot of the global strong earthquake data (Eps∗
1 = 2.4 × 105(m), indicated by a

horizontally dashed line)

found around the center of Cluster 1 in Fig. 15a (Jiao et al. 1999). The same situation
also occurs in the island of Taiwan and the adjacent sea (the third area). This area is
a stress concentrated region caused by the collision between the Philippine Sea Plate
and the Sino-Eurasian Plate. It was also found that the denser cluster (Cluster 5 in
Fig. 15a) is located in the eastern part of the island of Taiwan and the sea along its east
coast. This is also consistent with the stress convergence point of the collision (Jiao
et al. 1999), which is believed to form the Central Mountains extended northeasterly
in the central east part of the island of Taiwan (Cheng 2002; Zhuang et al. 2005).

We then analyzed the result produced by OPTICS and found that it is inconsis-
tent with the regional tectonics. In other words, OPTICS significantly underestimated
Cluster 2 in Fig. 15b within the stress concentrated area (the second area in Fig. 15a)
and failed to discern the inhomogeneity in clustering areas (Cluster 1 and 3 in Fig. 15b,
which correspond to the first and the third area in Fig. 15a). This may be due to the
estimation error caused by OPTICS in terms of the number of thresholds and values
of thresholds.

Experiments on seismic data also show that DECODE is capable of identifying
seismic clusters in real data sets of varied densities.

8 Conclusion and future work

Clusters and noise are regarded as arising from different spatial point processes, with
different intensities. Present density-based cluster methods have made substantial pro-
gress in distinguishing clustered points from noise and grouping them into clusters.
However, when several point processes overlap in a restricted area, few cluster methods
can detect the number of point processes and group points into clusters in an accurate
and objective way. In this paper, we have presented a new cluster method (DECODE),
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which is based upon a reversible jump MCMC strategy, to discover clusters of different
densities. The contribution of DECODE is that it is capable of determining the number
of cluster types and the thresholds for identifying clusters of different densities with
little prior knowledge. In fact, the method has only two parameters, i.e. fb and m, left
for a user to define. The experiments show that the appropriate value of fb is between
50 and 1,000 and that the cluster result has low sensitivity to the values of fb over this
range. m can be decided according to the minimum cluster size which one intends to
discover. The comparison studies on four experiments appear to show that DECODE
outperforms DBSCAN OPTICS and N-Wavecluster in terms of the estimation of the
number of point processes and their thresholds.

Although only seismic data have been used in the applications, we believe other
spatial data, such as landslides, criminal venues and traffic accidents, may easily be
analyzed with our method due to their resemblance in the data formation and the
spatial distribution.

One limitation of the method is that the complexity of the algorithm is largely
dependent on the sweep times, which are usually taken to be more than 50,000 times
to ensure the convergence of the MCMC process. Subsequent work will be focused
on finding more efficient algorithm to speed up the convergence.
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