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Transition between slope positions (e.g., ridge, shoulder slope, back slope, foot slope, and valley) is often
gradual. Quantification of spatial transitions or spatial gradations between slope positions can increase the
accuracy of terrain parameterization for geographical or ecological modeling, especially for digital soil
mapping at a fine scale. Current models for characterizing the spatial gradation of slope positions based on a
gridded DEM either focus solely on the parameter space or depend on too many rules defined by topographic
attributes, which makes such approaches impractical. The typical locations of a slope position contain the
characteristics of the slope position in both parameter space and spatial context. Thus, the spatial gradation
of slope positions can be quantified by comparing terrain characteristics (spatial and parametrical) of given
locations to those at typical locations. Based on this idea, this paper proposes an approach to quantifying the
spatial gradation of slope positions by using typical locations as prototypes. This approach includes two
parts: the first is to extract the typical locations of each slope position and treat them as the prototypes of this
position; and the second is to compute the similarity between a given location and the prototypes based on
both local topographic attributes and spatial context. The new approach characterizes slope position
gradation in both the attribute domain (i.e., parameter space) and the spatial domain (i.e., geographic space)
in an easy and practicable way. Applications show that the new approach can quantitatively describe spatial
gradations among a set of slope positions. Comparison of spatial gradation of A-horizon sand percentages
with the quantified spatial gradation of slope positions indicates that the latter reflects slope processes,
confirming the effectiveness of the approach. The comparison of a soil subgroup map of the study area with
the maximum similarity map derived from the approach also suggests that the quantified spatial gradation of
slope position can be used to aid geographical modeling such as digital soil mapping.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There is a relationship between slope positions (ridge tops, shoulder
slopes, back slopes, etc.) and topographic attributes. Slope positions are
geographic objects, and as such can capture geographic meanings and
spatial processes. On the other hand, topographic attributes cannot fully
capture these because topographic attributes contain only local
information about geometric properties. A slope position, as a kind of
area with a fuzzy boundary, reflects the regional terrain context as well
as local geometry. Locationswith the same topographic attributesmight
belong to different slope positions and be associated with different
geomorphic processes. For example, a location on a ridge and a location
in a valley might have the same slope gradient or curvature, but their

geographic (spatial) context and operating geomorphic processes are
completely different. Unlike topographic attributes, slope positions
convey qualitative and spatial contextual information which is some-
times essential for modeling geomorphic processes.

Transitions between slope positions over space, such as from a
shoulder slope to a back slope, are often gradual. Quantification of these
transitions (or spatial gradations) is useful for many applications
because it captures the transition of geomorphic processes over space.
This is very important for example in the modeling and analysis of soil
erosion at finer scale and digital soil mapping (MacMillan et al., 2000;
Schmidt andHewitt, 2004). Although therehavebeennumerous studies
of crisp classification of slope positions (e.g., Young,1972; Conacher and
Dalrymple,1977; Speight, 1990), the spatial gradation of slope positions
has not been quantified and explored until very recently.

Locations of transition between slope positions do not qualify for
full membership in any of the slope position classes, and fuzzy logic is
designed to express partial memberships in different classes (Zadeh,
1965; Zimmermann, 1985; Burrough, 1989; Zhu, 1997). Also, schemes
which address the occurrence issue using probability, such as Bayesian
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network, cannot address the similarity issue about the transition between
slope positions. Therefore the quantification of spatial gradation of slope
positions suggests using a fuzzy representation scheme to express the
degree towhich one location belongs to prescribed slope position classes.
Such fuzzy representation can be achieved first by assigning member-
ships of a location to a set of slope position classes, and then collecting
fuzzy membership values at every location to describe the spatial gra-
dation of slope position across a landscape.

There are two types of approaches for deriving fuzzymembership
values (Deng, 2007): fuzzy clustering and semantic import (SI). The
fuzzy clustering approach (e.g., Irvin et al., 1997; de Bruin and Stein,
1998; Burrough et al., 2000; Arrell et al., 2007) is based on the fuzzy
k-means algorithm (Bezdek et al., 1984). The approach works only in
the attribute domain (parameter space), and does not include spatial
information or context (Burrough et al., 2001). Thus, the result from
these methods sometimes lacks physical meaning (Schmidt and
Hewitt, 2004).

The fuzzy clustering approach cannot extract slope positions
which only exist over a very small proportion of the application area,
orwhose definition is based on spatial context only. In contrast, the SI
approach (e.g., MacMillan et al., 2000; Schmidt and Hewitt, 2004;
Dragut and Blaschke, 2006) first defines the central concept of slope
positions using topographic attributes and their typical ranges; then
the membership functions of topographic attributes are built and
used to infer the fuzzy membership in slope positions for various
locations. The key point of this approach is to establish quantitative
and exact classification rules for the slope positions in terms of
topographic attributes. Incomplete definition of slope positions in
topographic attributes can lead to incorrect inferences (Wood,1996).
Therefore, the SI approach has limited practicability because it
requires extensive user knowledge of local landforms as well as a
large number of topographic attributes, thresholds, and intensive
operations (Burrough, 1989). Moreover, in the SI approach, the con-
sideration of spatial information in computing fuzzy slope positions
is indirect (e.g., MacMillan et al., 2000).

We believe that typical locations of slope positions can be iden-
tified with less difficulty and higher certainty, because the locations
reflect the most typical conditions (combination) of terrain
attributes and unique spatial context. Using a similarity-based
model (Zhu, 1997), we can compute the similarity between the
typical locations of a given slope position and any other locations
(i.e., cells in grid digital elevation models: DEMs) based on char-
acteristics of both attribute and spatial domains. Shi et al. (2005)
initially implemented this idea to derive fuzzy representation of
some special terrain features such as broad and narrow ridges. This
paper first extends this idea by proposing a prototype-based ap-
proach to quantify the spatial graduation of slope positions, and then
illustrates the approach using two case studies.

2. Regional settings

2.1. Study area in Wisconsin, USA

The study area of the first application in this paper is a small
watershed called Pleasant Valley in southwesternWisconsin, USA. The
elevation of the area ranges from 233 to 352 m and the average slope
is 9.7°. The DEM used consists of 355 rows and 427 columns with a
spatial grid resolution of 9.14 m (30 ft) (Fig. 1). The DEM was pre-
processed to remove small pits, which were mostly noise created
during the DEM generation process.

In this area, most ridges and valleys have been under cultivation
since the late 19th century. Side-slopes are generally forested while
some have been cleared for pasturing. The soil is formed frommultiple
layers of eolian loess of recent origin (Pleistocene era). The soils on
ridges and side-slopes are relatively thin. Valleys have thick alluvial
and colluvial deposits (Shi et al., 2004).

2.2. Study area in Northeastern China

In the second case study we examine how the quantification of
spatial gradation of slope positions contributes to digital soil map-
ping. The study area is a small (about 60 km2) low-relief part of the
Nenjiang watershed in Northeastern China (Fig. 2). The relief of the
area is about 100 m and the average slope gradient is 2°. The grid size
of the DEM used is 10 m.

Current land use in this area is mainly corn andwheat farming. The
soils are formed on silty loam loess deposits, and the parentmaterial is
almost the same in the whole area. The soil subgroup in the Chinese
soil taxonomy (Gong, 2003) was chosen as the basic unit for digital
soil mapping. There are six soil subgroups in the study area (Zhu
et al., in press): Mollic Bori-Udic Cambosols, Typic Hapli-Udic
Isohumpsols, Typic Bori-Udic Cambosols, Lithic Udi-Orthic Primosoils,
Pachic Stagni-Udic Isohumpsols, and Typic Haplic-Fibric Histic Stagnic
Gleyosols. The Soil Land Inference Model (SoLIM) (Zhu et al., 1996,
2001; Zhu, 1997) was employed to map the soils in the area (Fig. 3).
The required knowledge of soil–environment relationships was de-
rived using the purposive sampling approach (Zhu et al., in press).
The accuracy of the soil map determined through field validation at
64 sites is roughly 72% (Zhu et al., in press).

3. Materials and methods

3.1. System of slope positions

In this paper, we adopt a two-tier hierarchical system of slope
positions (Fig. 4). The first tier in this system mainly considers the
spatial context along a downslope profile and consists of five slope

Fig. 1. Map of the Pleasant Valley study area, Wisconsin, USA.
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Fig. 3. Map of soil subgroups in the Nenjiang study area (after Zhu et al., in press).

Fig. 4. System of slope positions.

Fig. 2. Map of the Nenjiang study area, Northeastern China.
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positions: ridge (or summit), shoulder slope, back slope, foot slope,
and valley. This taxonomy is similar to the system of landform units
proposed by Ruhe (1969). These positions generally form a sequence
from the top to the bottom of a slope.

The second tier in the system is a subdivision of the first tier by
considering the convexity and concavity of surface shape along a
contour. It is similar to the system of slope positions proposed by
Pennock et al. (1987), Dikau (1989) and Schmidt and Hewitt (2004).
Three of the five first-tier slope positions (shoulder slope, back
slope, and foot slope) are further divided into convex (or divergent),
planar, or concave (or convergent) in terms of contour curvature.
Therefore, the second tier contains a total of eleven slope positions
(Fig. 4): ridge, divergent shoulder slope, planar shoulder slope, con-
vergent shoulder slope, divergent back slope, planar back slope, con-
vergent back slope, divergent foot slope, planar foot slope, convergent
foot slope, and valley.

The slope positions in the proposed system can be seen as a basic
component of a landform. A combination of these slope positions can
be used to describe any kinds of geomorphologic objects such as
terraces and catchments.

3.2. Generation of prototypes of slope positions

According to the prototype theory, a prototype represents a
category which reflects the central tendency of features or properties
of real instances (Rosch, 1973; Minda and Smith, 2001). A prototype
can be either a real example of a category or a specific definition. For
example, the prototype of the category “furniture” can be instantiated
with a chair, a table, etc. The prototype “furniture” can also be des-
criptively defined with its components, function, difference from
other things, etc. The prototype “shoulder slope” is an example in
geomorphology. It can be described as locations with maximum
change of slope gradient adjacent to both a ridge and a back slope. The
prototype can also be assigned to real locations in a study area. A
category may have more than one prototype; therefore, prototypes
of the same category could be different. For example, the prototypes
of the shoulder slope could be located in different sides of a hill with
different values of profile curvature.

By creating a category prototype and defining membership
gradations based on the difference between a new instance and the
prototype, the spatial gradation of slope positions can be inferred. As
Qi et al. (2006) discussed, prototypes are suited to represent spatial
features with the following four characteristics: 1) internal hetero-
geneity, 2) indeterminate boundaries, 3) relative definition of cate-
gories, and 4) changeable criteria. By nature slope positions exist as a
continuum both in spatial and attribute domains, and have internal
heterogeneity (e.g., locations with different topographic attribute
values in a back slope) and indeterminate boundaries. The definition
of slope positions is always relative, and both the prototype of a
slope position and the criteria for determining membership in a
slope position class may change depending on the amount of regional
knowledge. Consequently, the prototype-based approach can be a
potential solution to fuzzy quantification of slope positions and their
spatial gradation.

The prototype-based approach consists of two parts. The first part
is to generate prototypes of a slope position that define the central
concept of the position. The second part is to determine membership
gradation and derive the similarity of every cell to prototypes of each
slope position.

In this study, we take typical locations of a slope position as its
prototype, because the typical locations reflect the most typical
conditions (combination) of terrain attributes and the unique spa-
tial context under which the given slope position appears. The
typical locations can be identified without difficulty, so the model
and approach represented in the latter part of this paper are easily
realizable.

The prototypes of slope positions can be found in two ways (Shi
et al., 2005). One is definition-based, using typical location identifica-
tion algorithms or a set of simple rules based on both geomorphologic
definitions and topographic attributes. The other is knowledge-based,
in which local experts manually delineate the typical locations.
Methods for identifying typical terrain positions such as ridge lines
and valleys have been developed for many applications (e.g., Peucker
and Douglas, 1975; O'Callaghan and Mark, 1984). The generation of
prototypes does not affect the method of calculating the membership
(similarity) between the prototypes and other locations. The proto-
types extracted should be as representative as possible and yet not so
numerous as to make the calculation of membership too time-
consuming. Therefore, some rules based on terrain attributes and
domain knowledge could be further applied to filtrate the prototypes
extracted. For example, an automatic algorithm of drainage network
extraction could be used to prepare candidates for the prototypes of
valley. Then the prototypes could be obtained by filtrating these
candidates by a rule that the slope gradient of a valley should be less
than 1°. Interested readers are referred to Shi et al. (2005) for a detailed
description of the process and procedures for selecting prototypes.

3.3. Quantification of similarity to prototypes

The typical locations of a slope position, used as prototypes, have
the highest membership value in the slope position class among all
locations under consideration (i.e., 1 if the range of membership is the
interval [0, 1]). The membership value in each slope position class can
be derived for any cell based on its similarity to the prototypes. The
similarity is measured in both terrain attribute and spatial domains.

There are three steps to calculate the similarity of a cell (i, j)
(location Pij) to a given slope position (C) based on terrain attributes
(Fig. 5). Here m represents the number of prototypes for C and n
represents the number of terrain attributes.

3.3.1. Step 1
In this step, a fuzzy membership function is used to evaluate the

similarity between location Pij and a prototype based on a single
terrain attribute (Shi et al., 2005):
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where Sijv,t is the similarity between the cell Pij and a prototype t (t2 [1…
m]) based on the v-th terrain attribute (v2 [1…n]) whose value at point

Fig. 5. Framework of the approach to the quantification of the spatial gradation of slope
positions.
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Pij is Aijv andAv,t is the value of the v-th terrain attribute for the prototype
t. The two sets of w and k are shape-controlling parameters which can
be used to adjust the shape of themembership function.Whenw1=w2

and k1=k2≠1, this model produces a so-called bell-shaped symmetric
curve (Fig. 6a). When k1=1 and k2≠1, this model approaches a z-
shaped function (Fig. 6b), and when k1≠1 and k2=1, it approaches an
s-shaped function (Fig. 6c). k1 is often set to 0.5 when an s- or bell-
shaped function is used. This means that the membership value
decreases to 0.5 when the terrain attribute value is less than the
corresponding value for the prototype by the value ofw1. k2 is also often
set to 0.5 when a z- or bell-shaped function is used, which means that
themembership value decreases to 0.5when the terrain attribute value
exceeds the corresponding value for the prototype by the value of w2.

A real application using a membership function depends on
domain and regional knowledge about the slope positions in the study
area. For example, the shape of a typical back slope is considered to be
steep and nearly straight along a profile. So an s-shaped function for
slope gradient can be used to compute the similarity between a
location and the prototype of back slopes based on gradient. In
contrast, a bell-shaped function for profile curvature will be used to
compute the similarity between a location and the prototype of back
slopes based on curvature.

3.3.2. Step 2
This step integrates the individual similarities based on individual

terrain attributes to obtain an overall similarity between Pij and the
prototype t. In this paper, a minimum operator based on the limiting-
factor principle in ecology is used to compute the similarity (Zhu and
Band, 1994):

St
ij = min S1;tij ; S2;tij ; N ; Sv;tij ; N ; Sn;t

ij

� �
ð2Þ

where Sij
t is the overall similarity of Pij to prototype t; and n is the

number of terrain attributes.

3.3.3. Step 3
This step computes the similarity of Pij to slope position C. For each

slope position, each of the m prototypes has different importance in
deriving fuzzymembership for Pij. For example, the prototypes of back
slope could be with different values of slope gradient for different
sides of a hill in the study area. During the computation of fuzzy
membership for a location in a north-facing slope, a prototype of
north-facing slopes should play a more important role than a

prototype of south-facing slopes. It is reasonable to assume that the
importance of a prototype to the computation of fuzzy membership
for Pij decreases as the distance from the prototype to Pij increases.
Therefore we used an inverse distance weighted function to calculate
the membership value of Pij in C:

Sij =
Xm
t=1

dtij
� �− r

S t
ij =

Xm
t=1

dtij
� �− r ð3Þ

where Sij is the fuzzy membership of Pij in C based on terrain
attributes; dijt is the Euclidean distance between Pij and prototype t;
and r is the distance decay factor. Based on trials, r is set to 8.

These three steps were repeated for each slope position at every
cell in the gridded DEM to derive the similarity map of each slope
position across the study area. Collection of these membership maps
represents the spatial gradation of slope positions over the area, as
discussed earlier. For every cell, there is an array ofmembership values
with each value representing the similarity of this cell to a slope
position class.

4. Results and discussion

4.1. Wisconsin case study

4.1.1. Characterization of spatial gradation of slope positions
In this application, we quantified the spatial gradation of first-tier

slope positions as defined in Section 3.1. These slope positions consist
of five components: ridge, shoulder slope, back slope, foot slope, and
valley.

The identification of typical locations, extraction by either rules or
expert identification, is independent of the computation of the sim-
ilarity between other locations and prototypes. In this study, we used
topographic attributes and a set of rules to identify the typical loca-
tions. The definitions of slope positions by Pennock et al. (1987),
MacMillan et al. (2000), and Schmidt and Hewitt (2004) as well as
Skidmore (1990)'s relative position index (RPI) were combined to

Fig. 6. Three types of similarity curves: a) bell-shaped function; b) z-shaped function; c) s-shaped function.

Table 1
Parameter values for selecting the prototypes of slope positions in the Pleasant Valley
study area.

Ridge Shoulder slope Back slope Foot slope Valley

RPI ≥0.99 [0.9, 0.95] [0.5, 0.6] [0.15,0.2] ≤0.1
Profile curvature
(×10−3 m−1)

≥0 ≥5 [−0.1, 0.1] ≤−5 [−0.1, 0.1]

Slope (°) ≤1 ≥10 ≤1
Elevation (m) ≥285

Fig. 7. Relative Position Index (RPI) of the Pleasant Valley study area.
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extract the prototypes of slope positions (Table 1). The local
topographic attributes used in this study include elevation, slope,
and profile curvature. For profile curvature, negative value represents
concave and positive value represents convex. Skidmore (1990)'s RPI,

as a regional terrain index, gives an approximate estimate of how far a
location is from a ridge or a valley. The RPI value of a location is
calculated using the Euclidean distance to the nearest ridge divided by
the sum of Euclidean distances to the nearest streamline and ridge.

Table 2
Parameter values for the membership function in the Pleasant Valley study area.

Ridge Shoulder slope Back slope Foot slope Valley

RPI ‘S’; w1=0.1 ‘Bell’; w1=w2=0.05 ‘Bell’; w1=w2=0.3 ‘Bell’; w1=w2=0.05 ‘Z’; w2=0.1
Profile curvature (×10−3 m−1) ‘S’; w1=5 ‘S’; w1=5 ‘Bell’; w1=w2=5 ‘Z’; w2=5 ‘Bell’; w1=w2=5
Slope (°) ‘Z’; w2=5 ‘Bell’; w1=w2=5 ‘S’; w1=5 ‘Bell’; w1=w2=5 ‘Z’; w2=5
Elevation (m) ‘S’; w1=5

‘Bell’: bell-shaped function in Fig. 3; ‘Z’: z-shaped function; ‘S’: s-shaped function.

Fig. 8. Similarity maps of the Pleasant Valley study area: a) ridge; b) shoulder slope; c) back slope; d) foot slope; e) valley.
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The value range of RPI is [0, 1]; 1 for a ridge and 0 for a valley. Ridges
and valleys need to be defined before calculating RPI. In this study, the
algorithm by Peucker and Douglas (1975) was applied to extract
ridges (shown in yellow in Fig. 7), and that by O'Callaghan and Mark
(1984) was used to extract valleys (blue in Fig. 7). The threshold of
upslope contributing area for O'Callaghan and Mark (1984)'s
algorithm was 0.2 km2. Although ridges and valleys for computing
RPI can also be used directly as the prototypes for ridges and valleys,
we used the rules in Table 1 instead, to be consistent with the gene-
ration of prototypes for other slope position classes.

To characterize the spatial gradation of each slope position, the
values of parameters w1 and w2, defining the membership function,
were set by referring to the criteria for selecting the prototypes of the
slope position (Table 2).

4.1.2. Results and discussion based on soil samples
The similarity maps of each slope position in the study area

(Fig. 8a–e) show the spatial patterns of gradation. From the top to the
bottom of the slope, the maximum similarity shows a realistic spatial
sequence of slope positions, i.e., ridge (a) → shoulder slope (b) →
back slope (c) → foot slope (d) → valley (e).

To examine the validity of the quantified spatial gradation, we
evaluated the results in relation to soil property variation. We col-
lected 12 soil samples along two transects (six samples on each
transect; Fig. 9). The sand percentages in the A-horizon at these sites
were determined in the laboratory. These percentages are shown in
Fig. 10 along with the fuzzy membership values of five slope positions
at the sample locations. Both Fig. 10a (transect A) and b (transect B)
show a similar pattern of relationship between change of sand per-
centage and change of similarity in slope position: the sand per-
centages in the A-horizon increase when there is spatial gradation
from a ridge to shoulder and back slopes. When a shoulder slope
gradually transitions to the typical location of a back slope, the sand
percentages in the A-horizon increase correspondingly along the
transects. The sand percentage in the A-horizon decreases when a
back slope gradually transitions to a foot slope. The sand percentage
gradually decreases further as a foot slope gradually transitions to a
valley. The soil samples with the low sand percentages in the A-
horizon are on ridges and in valleys. The soil samples with the highest
sand percentages in the A-horizon of both transects are always on
the back slope.

The correlation between the transition pattern of similarity in
slope positions and the spatial variation of soil attributes along the
transects (Fig. 10) can be explained by the effect of terrain conditions
on soil-forming processes. Usually, fine materials are easily preserved
on a broad ridge where the surface is relatively flat, but are more
susceptible to erosion in steep areas such as shoulder and back slopes.

Fig. 10. Sand percentages in the A-horizon of two transects vs. similarity to slope positions in the Pleasant Valley study area: a) Transect A; b) Transect B.

Fig. 9. Positions of 12 soil samples along the two transects in Pleasant Valley study area.
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In foot slope and valley areas, erosion of fine materials decreases and
their deposition increases. Thus, when the slope position changes
from ridge to shoulder and back slopes, the sand percentages of A-
horizon are expected to increase. However, when the slope position
changes finally into the foot slope and valley, the sand percentages of
A-horizon are expected to decrease.

4.2. Northeastern China case study

For this second case study we used the proposed approach to
derive the fuzzy representation of all 11 slope positions in the second
tier of our slope position taxonomy described in Section 3.1. We also
examined the potential role of quantification of spatial gradation of
slope positions in digital soil mapping.

4.2.1. Deriving fuzzy representation of slope positions
The procedure for selecting prototypes and deriving the fuzzy

quantification of the spatial gradation of slope positions was similar to
that used in the Wisconsin case study. Table 3 lists the parameters
used for this case study. We used four terrain attributes: slope, profile
curvature, horizontal curvature, and RPI. Unlike in theWisconsin case,
elevationwas not selected as one of the terrain attributes, because the
relief of the study area is so gentle that elevation has little impact on
soil formation and the identification of slope positions. We used
horizontal curvature instead of the often-used contour (planform)
curvature because the former can avoid unrealistic extremes which
often occur in the latter (Shary et al., 2002). For both profile and

horizontal curvatures, negative values represent concave and positive
values represent convex. Some parameter values of terrain attributes
used for deriving fuzzy quantificationwere adjusted to reflect the low-
relief landscape (Table 3).

4.2.2. Results and discussion based on soil map
The membership values for the 11 slope positions were

transformed based on the “hardening” operation to produce a map
showing the distribution of the slope positions (hereafter referred to
as the hardened map) (Fig. 11a). The hardening is done by assigning
a cell to the slope position to which the similarity at that cell is the
maximum. In addition to determining the slope position for each
cell, the hardening process also records the membership in the slope
position to which the local cell is assigned, referred to as the
maximum similarity. It quantitatively characterizes how typical the
local cell is of the assigned slope position and can be used to quantify
the fuzziness in the hardening process. The smaller the maximum
similarity is at one cell, the more ambiguous is the hardening, and
the more transitional is the cell among different types of slope
positions. The map of this maximum membership value (Fig. 11b)
quantitatively shows the gradation of slope positions across the
landscape. For example, areas where slope positions change from
one to another are often where the value of maximum similarity is
low, reflecting high uncertainty in assigning slope position classes to
these areas.

Based on the soil map (Fig. 3) and the hardened slope positionmap
(Fig. 11a), we calculated the proportion of soil type distributed among

Table 3
Parameter settings for extracting and deriving the fuzzy membership in the Nenjiang study area (abbreviations of slope positions are referred to Fig. 4).

RPI Profile curvature (×10−3 m−1) Horizontal curvature (×10−3 m−1) Slope gradient (°)

Prototype Fuzzy inference Prototype Fuzzy inference Prototype Fuzzy inference Prototype Fuzzy inference

SMT ≥0.99 ‘S’; w1=0.05 [−0.5, 0.5] ‘Bell’; w1=w2=1
DSHD [0.8, 0.9] ‘Bell’; w1=w2=0.1 ≥0.5 ‘S’; w1=1 ≥0.5 ‘S’; w1=1
PSHD [−0.01, 0.01] ‘Bell’; w1=w2=1
CSHD ≤−0.5 ‘Z’; w2=1
DBKS [0.4, 0.6] ‘Bell’; w1=w2=0.2 [−0.5, 0.5] ‘Bell’; w1=w2=1 ≥0.5 ‘S’; w1=1
PBKS [−0.01, 0.01] [−0.01, 0.01] ‘Bell’; w1=w2=1
CBKS [−0.5, 0.5] ≤−0.5 ‘Z’; w2=1
DFTS [0.1, 0.2] ‘Bell’; w1=w2=0.1 ≤−0.5 ‘Z’; w2=1 ≥0.5 ‘S’; w1=1
PFTS [−0.01, 0.01] ‘Bell’; w1=w2=1
CFTS ≤−0.5 ‘Z’; w2=1
VLY ≤0.01 ‘Z’; w2=0.1 [−0.5, 0.5] ‘Bell’; w1=w2=1 ≤0.5 ‘Z’; w2=2

Fig. 11. Hardened map from similarity maps of slope positions in the Nenjiang study area: a) Hardened slope position map; b) Map of maximum similarity among slope positions.
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slope positions with different ranges of maximum similarity (i.e.,
[0.8, 1] and [0, 0.5]) (Fig. 12). The range [0.8, 1] of maximum similarity
refers to areas where the hardening results have the lowest ambiguity
(least fuzziness). The range [0, 0.5] refers to where the hardening
results have the highest ambiguity (great fuzziness).

As shown in Fig. 12a, there is an apparent relationship between the
spatial distribution of slope positions and the spatial distribution of
soil subgroups in areas where the hardened slope positions have little
fuzziness. Mollic Bori-Udic Cambosols (i.e., soil 1 in Fig. 12) are mainly
located on ridges and planar shoulder slope and planar back slopes.
Typic Hapli-Udic Isohumpsols and Typic Bori-Udic Cambosols (soils 2
and 3 in Fig. 12, respectively) are mainly found on planar back slopes.
Lithic Udi-Orthic Primosoils (soil 4 in Fig. 12) are distributed mainly
on planar foot and planar back slopes. Pachic Stagni-Udic Isohumpsols
and Typic Haplic-Fibric Histic Stagnic Gleyosols (soils 5 and 6 in
Fig. 12, respectively) almost always exist in valleys. A small proportion
of Pachic Stagni-Udic Isohumpsols was found on planar foot slopes.
These results match the field observations of catena in the study area
(Zhu et al., in press) and will be helpful to soil-landscape modeling in
the area.

In areas where the hardened slope position has a high degree of
fuzziness, the distribution of soil subgroups is so miscellaneous that
there is no identifiable relationship between the soil distribution and
the distribution of slope positions. For example, Fig. 12b shows that
the Typic Hapli-Udic Isohumpsols (soil 2) are found relatively evenly
in all slope positions. Actually, this soil subgroup is widely found on
back slopes. Another example is Typic Haplic-Fibric Histic Stagnic
Gleyosols (soil 6), which are always distributed in marshes in valleys.
In Fig. 12b, Typic Haplic-Fibric Histic Stagnic Gleyosols do not occur in

valleys which are areas of transition with high fuzziness on the
hardened map. Therefore, if the fuzziness of slope positions is not
considered, the quality of soil-landscape modeling and digital soil
mapping will be degraded.

5. Conclusions

The fuzzy quantification of spatial gradation of slope positions can
provide important additional terrain information to terrain-related
geographical or ecological modeling, especially fine-scale digital soil
mapping. This terrain information cannot be replaced by widely-used
topographic attributes. Previous approaches of deriving fuzzy quanti-
fication of spatial gradation of slope positions ignore spatial informa-
tion and have limited practicability.

This paper presents an approach to the quantification of spatial
gradation of slope positions which first identifies typical locations of
slope positions as prototypes. Then a prototype-based model is used
to compute the similarity of other locations to each slope position over
the landscape, based on both local topographic attributes such as
elevation, slope, profile curvature, and horizontal curvature and re-
gional terrain features such as RPI. The proposed approach examines
the similarity in both the attribute domain (i.e., parameter space) and
the spatial domain (geographic space), and thus takes into account
both local topographic information and terrain context.

The approach was applied to two cases. In the Wisconsin case
study, the classification of slope positions comprises five classes
(ridge, shoulder slope, back slope, foot slope, and valley). This case
shows that the quantified slope gradation is in good correspondence
to the spatial variation of sand percentages in the A-horizon of soil

Fig. 12. Area percentage of soil subgroups distributed among slope positions with different ranges of maximum similarity in the Nenjiang study area: a) [0.8, 1]; b) [0, 0.5]. Soil 1 —

Mollic Bori-Udic Cambosols; soil 2 — Typic Hapli-Udic Isohumpsols; soil 3 — Typic Bori-Udic Cambosols; soil 4 — Lithic Udi-Orthic Primosoils; soil 5 — Pachic Stagni-Udic
Isohumpsols; soil 6 — Typic Haplic-Fibric Histic Stagnic Gleyosols.
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samples along two transects, indicating that the approach can mean-
ingfully quantify slope gradation.

The second application to a part of the Nenjiang watershed in
Northeastern China derived the fuzzy quantification of the spatial
gradation of detailed slope positions. The results were used to produce
a hardened map of slope positions and a map of maximum similarity.
The latter map quantitatively shows the fuzziness of a slope position
assigned to each cell. The analysis combining the twomaps with a soil
subgroup map showed that there is a relationship between fuzzy
quantification of the spatial gradation of slope positions and the
spatial distribution of soil subgroups. Areas with little fuzziness (i.e.,
high value of maximum similarity) correspond well to a few in-
dividual soil subgroups, while areas with high ambiguity correspond
to miscellaneous soil subgroups at the transitional areas of slope
positions. Therefore, the fuzzy quantification of the spatial gradation
of slope positions has potential in soil-landscape modeling.

The approach proposed in this paper also has implications for
other geographical analyses. Slope positions are basic landform units
which compose different kinds of specific geomorphic features from
individual small hills to large plains and mountains (Blaszczynski,
1997). The fuzzy quantification of the spatial gradation of slope posi-
tions can provide more information for identifying and discriminating
specific geomorphic features than can be provided by crisp classifica-
tion of slope positions. Furthermore, the configuration of the spatial
transition of slope positions influences surfacewater flow, transport of
sediment and pollutants, and distribution of habitats for plant and
animal species. Therefore, our approach is useful for a variety of
resource and environmental studies.
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