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1. Introduction

Forest maps are required for a variety of ecological applications,
such as forest management and wildlife habitat prediction
(Skidmore et al., 1996; Osborne et al., 2001; Wulder et al., 2003;
Zhu and Waller, 2003). Forest mapping based on Landsat imagery
is a cost-efficient means over large areas (> 10,000 km2) (Homer
et al., 1997; Cihlar, 2000; Reese et al., 2002; Olthof and Fraser,
2007). However, it is still difficult to map forest in the steep
mountainous terrain based on Landsat imagery due to the impact

of high relief (Tokola et al., 2001; Dorren et al., 2003; Blesius and
Weirich, 2005).

There remain three challenges for forest mapping over large
mountainous terrains, especially in developing countries. First,
there are many shadows in the remote sensing imagery due to high
relief (Saha et al., 2005). These shadows are hard to be interpreted
automatically. Furthermore, the strong topographic variations in
mountainous terrain may cause pixels of the same forest cover
type to be spectral heterogeneous and pixels of different types to
have similar spectral characters (Fahsi et al., 2000). Consequently,
the accuracy of forest map produced from an automatic mapping
procedure over steep mountainous terrain is often low (Dorren
et al., 2003). Visual interpretation of remote sensing images
became a possible alternative for mapping forests over areas with
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A B S T R A C T

Forest mapping over mountainous terrains is difficult because of high relief. Although digital elevation

models (DEMs) are often useful to improve mapping accuracy, high quality DEMs are seldom available

over large areas, especially in developing countries. In this study, a hierarchical approach coupled with

topographic information derived from coarse DEM was developed to improve the efficiency and

accuracy of forest mapping over mountainous areas. The overall idea of increasing mapping accuracy

over large mountainous areas is to reduce spectral variety over areas to be mapped. The approach

consists of three major steps. The first step is to partition a large mountainous area into several small

mapping zones. Forest mapping is then conducted in each zone independently. At the second step, forest

areas are separated from non-forest areas through a semi-automatic binary classification procedure. At

the third step, forested areas are then further classified into detailed forest types by coupling Landsat

ETM+ imagery and two topographic variables derived from a coarse DEM (extracted from 1:250,000

digital elevation contour layer, which are readily available). This hierarchical approach was illustrated

and evaluated through a case study in Northwest Yunnan, China, a very rugged terrain in the world.

Forests and non-forests were separated accurately and efficiently (the overall accuracy is 0.97 and Khat

value is 0.94 of whole area). It was found that the inclusion of the coarse topographic data improved the

mapping accuracy significantly (overall accuracy from 0.74 to 0.84, from 0.76 to 0.89, from 0.78 to 0.84 in

three test areas, respectively), and that the difference in accuracy between the use of coarse DEM data

and the use of fine DEM data for the study area is not significant (overall accuracy from 0.84 to 0.86). The

results indicate that the hierarchical approach, coupled with coarse DEM information, is effective in

increasing the accuracy of forest mapping over very rugged terrains when high quality digital elevation

models are not available.

� 2009 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +86 871 519 0776; fax: +86 871 519 0776.

E-mail address: zhu@mail.kiz.ac.cn (J. Zhu).

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsev ier .com/ locate / foreco

0378-1127/$ – see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.foreco.2009.03.043



Author's personal copy

high relief (Xiao et al., 2003; Jiang et al., 2004; Kushwaha and
Hazarika, 2004; Zemek et al., 2005; Liu et al., 2006). But visual
interpretation is very tedious and time-consuming. Second, it is
difficult to collect ground truth data through field survey in the
mountainous areas due to the poor transportation condition over
these areas. Some sites are even inaccessible (Reese et al., 2002).
Third, high quality digital elevation models (DEMs), such as these
derived from contour maps with a minimum scale of 1:50,000 and
these with a resolution of 50 m or better, are seldom available over
mountainous areas in developing countries (Richter, 1998;
Wechsler, 2003; Paul et al., 2004), although they are proved
useful to improve the accuracy of forest mapping based on Landsat
images (Frank, 1988; Franklin and Wilson, 1992; Richter, 1998;
Fahsi et al., 2000; Dorren et al., 2003).

To overcome these challenges, we present a top–down
hierarchical approach coupled with coarse DEM information to
map forest over large steep mountainous regions. We will evaluate
the effect of a coarse DEM derived from 1:250,000 topographic
maps on the accuracy improvement through a case study. In the
next section, we will present the method which is followed by a
detailed case study in Northwest Yunnan, China. The results of this
case study are presented in Section 4. Discussion and summary are
presented in Section 5.

2. Methods

The top–down hierarchical classification is a multiple stages
process in which broad categories are first separated and finer
categories within broad categories are further classified (Townsend
and Walsh, 2001). Some classical land cover (including vegetation)
classification schemes, such as Anderson system (Anderson et al.,
1976), Chinese vegetation schemes (Wu, 1980), and CORINE Land
Cover 2000 (Bossard et al., 2000), employ a hierarchical framework
to describe variation of vegetation. Thus, it is natural to map land
cover using a hierarchical approach to guide classification (Avcı and
Akyürek, 2000; Townsend and Walsh, 2001).

A top–down hierarchical classification approach was developed
in this study to map forest over large mountainous terrains. The
overall idea of this approach is to reduce spectral variety over areas
to be mapped and to improve mapping accuracy over large
mountainous areas. The approach consists of three major steps.
The first step is to partition a large area into several small mapping
zones (Bauer et al., 1994; Homer et al., 1997; Manis et al., 2000;
Reese et al., 2002). Forest mapping is then conducted in each zone
independently. At the second step, forest areas are separated from
non-forest areas through a binary classification. At the third step,
forested areas are then further classified into forest types by
coupling Landsat imagery and two topographic variables extracted
from a coarse DEM (such as DEMs derived from 1:250,000
topographic maps) which are readily available.

2.1. Spatial partitioning

The general process to partition mapping zones, which often
involves analyzing some biophysical factors (such as climate, soil
and vegetation) and visually interpretation of existing imagery
(Albert, 1995; Manis et al., 2000), is often complex. In this study,
two simple guidelines are suggested for stratifying a large
mountainous region into smaller mapping zones.

First, each mapping zone should be completely contained in one
scene Landsat image. Due to the temporal difference, the spectral
characters of images may differ from scene to scene (Chen and
Zhao, 2003). So it would be better to mapping forest within each
scene.

Second, the division of each scene into different mapping zones
should increase the homogeneity of solar illumination to increase

the separation power of spectral signatures. This can be achieved
by dividing each scene along large rivers or major mountain ridges
because solar illumination between slopes on different sides of
large rivers and mountain ridges varies dramatically.

2.2. Separation of forest and non-forest areas

At this step of forest mapping, our objective was to separate
forest areas from non-forest areas accurately and semi-automa-
tically without field survey information. A hierarchical process is
employed to accomplish this objective (Fig. 1). First, training data
(forest/non-forest) were ‘‘sampled’’ based on a Gradsect sampling
protocol (Austin and Heyligers, 1989) through visual interpreta-
tion of the color composite Landsat image. Second, a large number
of spectral clusters were produced using an ISODATA algorithm
based on five spectral indices of Landsat image: the first two
principal components, the brightness index and greenness index of
Tasseled-cap transformation, and a stretched normalized differ-
ence vegetation index layer (NDVI, ranged from 0 to 255). The first
two principle components can carry most information of the
Landsat image. The first two components (the ‘‘brightness’’ and
‘‘greenness’’ layers) of Tasseled-cap transformation can enhance
the difference between forest and non-forest (Schowengerdt,
1997). The NDVI is related to the vegetation amount and it could
partly remove the topographic effect (Saha et al., 2005). So the
combination of these five spectral layers can not only hold the
principal information of the Landsat image, but also enhance the
difference between forests and non-forests. Third, each cluster was
labeled as forest, non-forest or mixed cluster based on training
data. And fourth, the mixed clusters, which contain both forest and
non-forest pixels, were reclassified using supervised classification
and/or through visually interpretation based on Landsat ETM+
image and reliable historical forest maps. Finally, forested areas
were merged to form a forest mask which will limit the areas of
detailed forest mapping in the next step.

2.3. Detailed forest mapping of forested areas

At this step, forested areas are further classified into detailed
forest types by coupling ETM+ images with topographic informa-
tion (scaled elevation and sunniness) derived from a coarse DEM
under the maximum likelihood classification. Below we describe
the derivation topographic information from a coarse DEM and the
classification procedure.

2.3.1. Topographic data from coarse DEM

Elevation could reflect the altitudinal gradient of vegetation and
slope aspect could be used to approximate differences in exposure
to solar radiation, which make these two topographic variables
widely used in combination with remote sensing imagery for
vegetation mapping (Frank, 1988). In the absence of high quality
DEM over large mountainous areas, coarse DEMs could be derived
from 1:250,000 scale digital elevation contour layer. At first, a
250 m resolution DEM could be derived from the 1:250,000 scale
digital elevation contour layer. Then, using the cubic convolution
interpolation algorithm, the 250 m resolution DEM is interpolated
to a 90 m resolution DEM, and the 90 m relation to a 30 m
resolution DEM. Normally, it is not advisable to create a high
resolution DEM in this fashion. However, in this case, our objective
was to capture the major pattern of topographic relief and reduce
the impact caused by the subtle topographic differences. We
compared the coarse DEM with a high quality DEM (derived from
1:50,000 topographic maps) in Tacheng town, Weixi, the mean
absolute difference is about 30 m. To decrease the effect of height
error on forest mapping, a scaled elevation layer values ranging
from 0 to 255, was linearly stretched from the coarse DEM. The
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above process not only allows us to achieve this objective but also
eliminated the need of a high quality DEM which is often difficult
to obtain over areas with high relief and limited access for
developing countries.

The slope aspect (measured in degree), derived from the coarse
DEM, was further transformed into another variable referred to as
sunniness through Eq. (1). It is subjective to make the value of
sunniness ranges from 1 to 51.

sunniness ¼ 25� b cosð135� aspectÞ c þ 26 (1)

In Eq. (1), b x c is a function which makes the variable x an
integer.

A total of eight variables (Landsat ETM+ bands 1–5 and 7, the
scaled elevation, and the sunniness, are used for further
classification of forested areas.

2.3.2. Maximum likelihood classification

Under the assumption of multi-dimensional normal distribu-
tion, a discriminant function for the forest i, was given by Eq. (2).
Each pixel with the attribute vector X in the forested area would be

assigned to forest k, if Dk(X) was the greatest among all the forest
types.

DiðXÞ ¼ �lnðjCovijÞ � ðX �MiÞT Covi
�1ðX �MiÞ (2)

where X is the attribute vector of the candidate pixel; T means to
transpose the vector. Mi is the mean vector of the training data of
forest i; Covi is the covariance matrix of the training data of forest i

and Covi
�1 is the inverse matrix of Covi.

3. Case study

3.1. Study area

Owning to its rich biodiversity, the mountains in Southwest
China is identified as a global biodiversity hotspot (Myers, 1988;
Myers et al., 2000; Conservation International, 2004). As a part of
this hotspot, the northwest part of Yunnan province (NW-Yunnan),
also harbors at least 165 mammal species, 455 bird species and 750
endemic spermatophyte species in 15 counties covering an area of
69,000 km2. Illegal hunting, overgrazing and firewood collection

Fig. 1. Process of forest mask formation.
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are some of the primary threats to biodiversity in this region (Jiao
et al., 2002; Xiao et al., 2003; Yang et al., 2004). Inventory of forest
cover changes is one of the important tasks to identify areas
seriously impacted by these threats. Forest mapping is an
important part of this inventory task.

Four counties (Shangri-La, Deqin, Weixi and Lijiang1) in NW-
Yunnan were selected as core area for a joint research project on
biodiversity conservation and sustainable development between
Chinese Academy of Sciences and University of Wisconsin-Madison.
These four counties are located between 268340–298160N and
988350–1008320E, and compromising a total area of 31,400 km2.
The elevation in this region ranges from about 1200 m to 6740 m
above sea level. The average slope is 238, calculated from a 30 m
resolution DEM derived from 1:250,000 topographic maps. Patterns
of climate and vegetation vary from subtropical to warm temperate
and cold temperate (Wu and Jin, 1987). The major vegetation types
include dark conifers forests, pine forests, hard leaf evergreen
broadleaved forests, evergreen/deciduous broadleaved forests,
mixed broadleaved and conifers forests, alpine and subalpine scrubs
and meadows, and dry valley vegetation (Wu and Jin, 1987).

The whole area was partitioned into four scenes with respect to
the World Referencing System-2 (http://landsat.gsfc.nasa.gov/
about/wrs.html). Each scene was further divided into mapping
zones by using the Yangtze River and the Mekong River as
boundaries (Fig. 2). A total of eight mapping zones were created for
this study area.

3.2. Forest classification scheme

The vegetation classification scheme used in this study was
revised from the Chinese vegetation schemes (Wu, 1980). The
Chinese vegetation scheme is widely used in China (Ren and Beug,
2002; Pan et al., 2003; Yu et al., 2005). Basically, we classified the
whole area into forest and non-forest. Forest was further classified
into conifer forest, hard leaf evergreen broadleaved forests (forest-
oak), and broadleaved forest. The dark conifer forest (forest-fir) and
pine forest (forest-pine) are the two dominated conifer forests in
this region (Table 1).

3.3. Datasets

Four scenes of Landsat ETM+ images (Table 2) for the whole area
were downloaded from the Global Land Cover Facility website
(http://glcf.umiacs.umd.edu/). These images had been orthorecti-
fied with a root mean square error less than 50 m by NASA (Tucker
et al., 2004).

A 250 m resolution DEM was derived from the 1:250,000 scale
digital elevation contour layer (created by the State Bureau of

Surveying and Mapping, Beijing, China). Using the cubic convolu-
tion interpolation algorithm, the 250 m resolution DEM was
interpolated to 90 m resolution DEM, and then to a 30 m resolution
DEM (we called it the coarse DEM). In order to examine the
usefulness of coarse topographic data in improving mapping
accuracy, we also created a high quality DEM at 30 m resolution
from 1:50,000 scale topographic maps (created by the State Bureau
of Surveying and Mapping, Beijing, China) in Tacheng town, Weixi
County, with a total area of 770 km2 for comparison. The mean
absolute difference between the coarse DEM and the high quality
DEM is 29.4 m (n = 853,634, Fig. 3).

The sunniness layers were produced from these two DEMs by
Eq. (1), respectively. Both DEMs were stretched to scaled elevation
layers to obtain values ranging from 0 to 255.

Historical forest cover maps were digitized from the topo-
graphic maps (the scale = 1:50,000 or 1:100,000) which were
produced based on aerial photos taken in 1960s and field surveys
conducted by the Headquarters of the General Staff, Chinese
People’s Liberation Army in 1960s.

All these data were georeferenced to the Beijing 1954 coordinates
system (Projection: Gauss–Kruger, Spheroid: Krasovsky 1940,
Datum: Pulkovo 1942, Central Median: 99, False Easting: 500,000).

3.4. Training and validation data collection

We used 70% canopy closure as a threshold to define typical
forests. This criterion is also used by other researchers (Mickelson
et al., 1998; Reese et al., 2002). For typical non-forest area, we
defined the canopy closure to be less than 10%. Validation data for
forests and non-forests were collected under such criteria.

The sampling design for collecting training and validation data
was of a two-level partition approach. At the first level, the whole
study area was partitioned into 19 grids with the size of 20 min in
latitude by 30 min in longitude. At the second level each grid was
further divided into 16 primary sampling units (PSUs) of 5 min in
latitude by 7.5 min in longitude. Within each grid, one PSU was
selected randomly as a sampling site. Thus, our field data for
detailed forest mapping satisfied the criterion of spatial distribu-
tion for sampling design (Stehman and Czaplewski, 1998).

The field data were collected along transects in each PSU to be
sampled. These transects were designed to pass through a lower
position in the PSU to the upper brim of forest. In addition, these
transects passed both sunlit and shaded slopes. Because of the
limitation of location accuracy, we identified some homogenous
plots of about 3 � 3 pixels as secondary sampling units in the field
as well as in the Landsat ETM+ color composite image (bands 7, 4, 2
in RGB). The distance between any two plots was greater than
three pixels.

A field survey was performed throughout the whole area with
an aid of a Global Position System (GPS) receiver (Garmin eTrex) for
location in 2002 November (dry season) and 2004 May (wet
season). We obtained 990 plots which were labeled as forests or
non-forests. These plots were used as validating data to assess the
accuracy of the forest mask.

Another field survey was carried out between the upper
Yangtze and Mekong River from June to July in 2006. Eight PSUs
were sampled in the mapping zone 13240-1 and 13241-2. We
obtained 829 plots as ground-truth data in mapping zone 13240-1
and 1024 plots in 13241-2. These plots were labeled as certain

Table 1
Classification scheme used for forest mapping in NW-Yunnan.

Land cover type Description

1. Forest Woody perennial plants covered area

1.1 Forest-fir Forest dominated by fir (Abies sp.)

and/or spruce (Picea sp.)

1.2 Forest-pine Forest dominated by pine (Pinus sp.)

1.3 Forest-oak Forest/shrub dominated by oak (Quercus sp.)

1.4 Broadleaved forests Dominated by broadleaved trees such

as Lithocarpus sp., Machilus sp., Betula

sp., and Quercus acutissim Lithocarpus

2. Non-forest Developed area (farmland, town, village),

water body, talus, bare soil/sand/rock,

grassland, perennial snow or ice, et al.

Table 2
Landsat ETM+ images used in this study.

Scene-id (path-row) 132-040 132-041 131-041 131-042

Acquiring date 2000,

December 25

2000,

December 25

2000,

December 2

2001,

January 3

1 The Lijiang County was partitioned into Gucheng district and Yulong County in

2003.

G. Ren et al. / Forest Ecology and Management 258 (2009) 26–34 29
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forest types. About half of these plots were selected randomly as
validating data to assess the accuracy of the forest maps we
produced in the second stage, while the remainder used as training
data in maximum likelihood classification, just as previous studies
did (Bardossy and Samaniego, 2002; Reese et al., 2002).

3.5. Forest mapping

Forest mapping was conducted in each mapping zone
separately. At the first level, a forest mask was extracted in all
eight mapping zones without using field survey data. At the second

level, in order to evaluate the effectiveness of the coarse DEM in
improving accuracy, detailed forest maps were produced using
maximum likelihood classification based on different datasets. The
whole mapping procedure was conducted under Erdas Imagine
(Leica Geosystems Geospatial Imaging, LLC, Norcross, GA, US).

3.5.1. Creation of a forest mask

An ISODATA clustering was performed based on five spectral
indices: the first two principle components (carrying 96 � 1.4%
information of the six bands, n = 8), the brightness and greenness
indices of Tasseled-cap transformation (Landsat 5 TM coeffients were

Fig. 2. Mapping zone partition and sampling design for forest mapping in NW-Yunnan.
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used), and the stretched NDVI layer (values ranged from 0 to 255). The
maximum number of clusters is a critical parameter of ISODATA
algorithm. Generally, in an ISODATA classification, the more the
spectral clusters, the less the dispersion within a cluster. So a large
number (typically 100–400) is often given to this parameter recently
(Cihlar, 2000; Ozesmi and Bauer, 2002). However, with a larger
number of clusters, more time and training data are needed to label
the clusters. A trade off is needed. The relationship between the
within cluster dispersion and the maximum cluster number was
investigated by a series of ISODATA classification in the mapping zone
13240-1, 13241-2 and 13241-3 (Fig. 4). The within group dispersion
value, defined by Wilks (1962), did not change dramatically when the
cluster number ranged from 30 to 100. So we chose 60 as the
maximum cluster number for all mapping zones arbitrarily.

In order to label the clusters produced from the ISODATA
classification, some training data (forest and non-forest) were
obtained by visual interpretation of the Landsat ETM+ color
composite image (bands 7,4,2 or 4,3,2 or 4,5,3 in RGB) through a
Gradsect sampling protocol(Austin and Heyligers, 1989). Eight
elevation intervals were defined (elevation less than 2000 m,
2000–2500 m, 2500–3000 m, . . ., 4500–5000 m, and greater than
5000 m). With the aid of digital elevation contour layer (the
scale = 1:250,000), at least 40 plots of 3 � 3 pixels were selected as
training data at each elevation interval on both sunlit and shaded
slopes in each mapping zone.

Based on the training data, 95% (n = 8) of spectral clusters from
ISODATA classification could be labeled as forest or non-forest.
Only few clusters which contained both forest and non-forest
pixels were classified again using maximum likelihood classifier
based on the Landsat ETM+ images. For some areas that were
totally dark in the color composite images, we labeled these areas
as forest only if they were forests in historical forest map and they
were adjacent to forests. The whole process of creating a forest
mask was showed in Fig. 1.

3.5.2. Detailed forest mapping

In the absence of high quality DEMs over large area, a primary
objective of this study is to evaluate the effectiveness of coarse
digital topographic data in improving accuracy of detailed forest
mapping. To fulfill this objective, detailed forest maps were
produced using maximum likelihood classification method based
on different datasets. The method was tested in three areas:
Tacheng Town, mapping zones 13240-1 and 13241-2. For the
Tacheng Town, we used the four datasets: (a) Landsat ETM+ image
data alone (bands 1–5 plus band 7); (b) the combination of the first
two principle components, the first two components of Tasseled-
cap transformation, and the stretched NDVI layer of the Landsat
ETM+ image; (c) Landsat ETM+ images coupled with the two
topographic data layers derived from the coarse DEM; (d) Landsat
ETM+ images coupled with the two topographic data layers
derived from the high quality DEM. This will allow us to evaluate
the effectiveness of the use of topographic information derived
from the coarser DEM. For the two mapping zones, we only used
datasets (a–c). This will allow us to assess the stability of our
overall approach when applying to other areas.

3.5.3. Accuracy assessment and statistic test

An error matrix could be used to calculate the overall accuracy,
Khat value, producer’s accuracy, and user’s accuracy (Stehman,
1997; Congalton and Green, 1999; Lillesand et al., 2007). A
binomial test (applying normal approximation with test statistic Z)
was used to examine the differences of accuracies between any
two detailed forest maps produced above. Suppose the overall
accuracies of two maps were P1 and P2, which were calculated
based on the same reference data of size N, a test of H0, P1 � P2, is
obtained from Eq. (3).

Z ¼ P1 � P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1ð1� P1Þ þ P2ð1� P2ÞÞ=N

p (3)

In Eq. (3), Z is distributed as a standard normal random variable.

4. Results

4.1. Accuracy of forest versus non-forest map

The 990 plots, which were labeled as forest or non-forest, were
used as ground truth data for assessing the accuracy of the forest
versus non-forest map (Fig. 5). The overall accuracy is 0.97 and
Khat value is 0.94 of whole area (n = 10,776, Table 3). This suggests
that the forest mask is of high accuracy.

4.2. Accuracy of detailed forest maps

Table 4 shows the overall accuracies and Khat values of detailed
forest maps produced based on different datasets. Tables 5 and 6
are the error matrices of detailed forest maps produced based on
Landsat ETM+ images and coarse topographic data in mapping
zone 13240-1 and13241-2.

Compared with mapping based on Landsat ETM+ images alone,
using topographic data derived from coarse DEMs could increase

Fig. 3. The accumulated histogram of the absolute differences between the coarse

DEM and the high quality DEM in Tacheng town, Weixi.

Fig. 4. Relationship between within group dispersion and maximum cluster

number in ISODATA classification.

G. Ren et al. / Forest Ecology and Management 258 (2009) 26–34 31
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the overall accuracies (from 0.76 to 0.89 in mapping zone 13241-2,
Z = 9.877, p = 0.000, n = 1618; and from 0.78 to 0.84 in mapping
zone 13240-1, Z = 3.740, p = 0.000, n = 1189). The producer’s
accuracies for all the forest types in both mapping zones were
also increased significantly. These results suggest that our
approach is effective in increasing the accuracy of forest mapping
over rugged terrains.

From the test of Tacheng town, using high quality topographic
data instead of coarse topographic data in the classification
procedure, the increase in the overall accuracy was not significant
(Z = 0.964, p = 0.168, n = 592), and the increase in the producer’s
accuracy was not significant for each forest type, either. These
results suggest that the coarse topographic information is useful in
increasing the accuracy of forest mapping over rugged terrain
areas in the absence of high quality DEMs.

Although the five spectral indices could enhance the differences
between forests and non-forests, detailed forest mapping based on
the combination of these spectral indices were not better than
mapping based on the Landsat alone.

5. Discussion and summary

5.1. The improvement in both accuracy and efficiency to categorize

forest versus non-forest

Although forest versus non-forest map can be extracted
automatically or semi-automatically from Landsat imagery over
some mountainous terrains, the primary means to do this is stillFig. 5. Forest cover of the four counties in NW-Yunnan in the early 2000s.

Table 3
Mapping accuracy of forest versus non-forest in all the subregions.

Scene-id 13240 13241 13141 13142 WAa

Zone 1 2 1 2 3 1 2

OAb 0.96 0.97 1.00 0.97 0.97 0.98 0.96 0.97 0.97

Khat 0.91 0.94 0.99 0.93 0.93 0.96 0.91 0.94 0.94

nc 1389 867 1581 3177 1213 471 1164 914 10,776

a The Whole Study Area.
b Overall accuracy.
c Pixel number of validation data.

Table 4
The overall accuracies of detailed forest maps over the three test areas, produced

from a maximum likelihood classification, based on different datasets. Better

results appeared when the two topographic variables were used.

Dataseta Tacheng

(n = 592)

13241-2

(n = 1618)

13240-1

(n = 1189)

OAb Khat OA Khat OA Khat

1–5, 7 0.74 0.56 0.76 0.63 0.78 0.58

P1, P2, T1, T2, NDVI 0.68 0.48 0.74 0.59 0.74 0.57

1–5, 7, Ec, Sc 0.84 0.72 0.89 0.83 0.84 0.74

1–5, 7, Eh, Sh 0.86 0.75 – – – –

a 1–5, 7 represent bands 1–5 and band 7 of Landsat ETM+ image; P1, P2, T1, T2, and

NDVI, represent the first two principle components, the first two components of

Tasseled-cap transformation, and the stretched NDVI layer of the Landsat ETM+

image, respectively. Ec, Sc and Eh and Sh represent the scaled elevation and

sunniness layers derived from the coarse DEM and the high quality DEM,

respectively.
b Overall accuracy.

Table 5
Error matrix of detailed forest map in zone 13240-1 produced based on Landsat

ETM+ image combined with coarse topographic layers.

Validating data (n = 1189)

Fir Oak Pine User’s Acc.

Forest-fir 551 4 8 0.98

Forest-oak 50 333 36 0.79

Forest-pine 37 50 120 0.58

Producer’s accuracy 0.86 0.86 0.73

Overall accuracy 0.84

Khat 0.74

Table 6
Error matrix of detailed forest map in zone 13241-2 produced based on Landsat

ETM+ image combined with coarse topographic layers.

Validating data (n = 1618)

Fir Oak Bro. F User’s Acc.

Forest-fir 674 5 5 0.99

Forest-pine 29 632 37 0.91

Broadleaved forest 19 75 142 0.60

Producer’s accuracy 0.93 0.89 0.77

Overall accuracy 0.89

Khat 0.83
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visual interpretation of satellite imagery in the very rugged areas
such as Northwest Yunnan, China (Xiao et al., 2003; Jiang et al.,
2004; Liu et al., 2006). This manual mapping process is very tedious
and time-consuming. Furthermore, the visual interpretation
process is very difficult, if not impossible, to be repeated over a
large area. Using the conventional digital classification methods,
training data from field survey are often needed. However,
collecting ground-truth data is also a tough and cost-consumed
task in mapping forest and non-forest over steep mountainous
terrains. In this study, it only took 10 person-days to map forests
versus non-forests over these four counties (the total area is
31,400 km2).

The overall accuracy of whole area is 0.970 even without using
field survey data as training data. The results indicate our forest
versus non-forest maps in all mapping zones are of high quality, even
compared to some successful practices, such as Tokola et al. (2001),
Dorren et al. (2003), Sivanpillai et al. (2005) and Kozak et al. (2007).

5.2. Efforts to improve detailed forest mapping

Mapping forest from satellite imagery over the steep mountai-
nous terrain remains to be a challenge (Leprieur et al., 1988; Tokola
et al., 2001; Dorren et al., 2003). We attempted to overcome the
challenge by using a hierarchical approach and with the addition of
two topographic variables derived from small scale digital
elevation layer.

As the results indicate, even the topographic data derived from
the coarse DEMs could be used to improve accuracies of detailed
forest mapping. This could be explained by the fact that pixels of
different forest types often occupy different topographic locations
even they might have the same spectral respond (Dorren et al.,
2003; Lillesand et al., 2007). Meanwhile, coupled with coarse
topographic data in the mapping procedure could achieve almost
the similar accuracy as coupled with the high quality topographic
data did in the Tacheng case. One possible reason might be that the
forest scheme used in this study is too broad. Given more detailed
forest types for special purpose to be mapped, using the high
quality DEM as additional input might be better. The study area is
so rugged that the 1:50,000 topographic maps created in 1960s
might not be very precise. The height error of the ‘‘high quality
DEM’’ might be close to that of the coarse DEM, which caused the
similar performance of both DEMs in detailed forest mapping.

In the absence of high quality DEMs, our results suggest that
DEMs derived from 1:250,000 topographic maps could also used to
improve detailed forest mapping accuracy in very rugged areas like
Northwest Yunnan.

5.3. Summary

As it was shown in the case study, using this hierarchical
approach, forest and non-forest could be separated by a semi-
automatic process over steep mountainous terrain without field
survey data as training data. Furthermore, in the absence of high
quality DEM, topographic data derived from 1:250,000 digital
elevation contour layer can be incorporated with Landsat ETM+
imagery to improve accuracy of detailed forest mapping. In
conclusion, the new approach devised in this study is effective in
forest mapping over very rugged terrains, such as Northwest
Yunnan, China.

Acknowledgements

Funding from International Partnership Project ‘‘Human
Activities and Ecosystem Changes’’ of Chinese Academy of Sciences
(No. CXTD-Z2005-1), ‘Hundred Talents’ Program of Chinese
Academy of Sciences, the field forefront program of LREIS and

the NSF IGERT grant awarded to the University of Wisconsin-
Madison is greatly appreciated. This study was also supported by
TNC and the Chinese Academy of Sciences (Grant No. KSCX2-1-09).
We would like to thank Professor Qikun Zhao for his helpful
suggestions for this study. Rongxun Wang, Jian Liu and Feihua Yang
(PHD candidates in University of Wisconsin-Madison) gave very
useful comments on this study. We are also grateful to the local
residents, the local forestry bureaus, local governments in north-
west Yunnan, the forestry department of Yunnan province for their
support in our field work. Special thanks are giving to Mr.
Chunxiang Chen for his selfless help. We also would like to thank
the anonymous reviewer for the very helpful comments and
generous suggestions.

References

Albert, D.A., 1995. Regional Landscape Ecosystems of Michigan, Minnesota, and
Wisconsin: A Working Map and Classification (Fourth revision: July 1994). U.S.
Department of Agriculture, Forest Service, North Central Forest Experiment
Station, General Technical Report, NC-178.

Anderson, J.R., Hardy, E.E., Roach, J.T., Witmer, R.E., 1976. A land use and land cover
classification system for use with remote sensor data, US Geological Survey
Professional Paper 964, 28 pp.

Austin, M.P., Heyligers, P.C., 1989. Vegetation survey design for conservation:
Gradsect sampling of forests in North-eastern New South Wales. Biological
Conservation 50, 13–32.
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