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In a spatial point set, clustering patterns (features) are difficult to locate due to the presence of noise. Pre-
vious methods, either using grid-based method or distance-based method to separate feature from noise,
suffer from the parameter choice problem, which may produce different point patterns in terms of shape
and area. This paper presents the Collective Nearest Neighbor method (CLNN) to identify features. CLNN
assumes that in spatial data clustered points and noise can be viewed as two homogenous point pro-
cesses. The one with the higher intensity is considered as a feature and the one with the lower intensity
is treated as noise. As a result, they can be separated according to the difference in intensity between
them. With CLNN, points are first classified into feature and noise based on the kth nearest distance
(the distance between a point and its kth nearest neighbor) at various values of k. Then, CLNN selects
those classifications in which the separated classes (i.e. features and noise) are homogenous Poisson pro-
cesses and cannot be further divided. Finally, CLNN identifies clustered points by averaging the selected
classifications. Evaluation of CLNN using simulated data shows that CLNN reduces the number of false
points significantly. The comparison between CLNN, the shared nearest neighbor, the spatial scan and
the classification entropy method shows that CLNN produced the fewest false points. A case study using
seismic data in southwestern China showed that CLNN is able to identify foreshocks of the Songpan

earthquake (M = 7.2), which may help to locate the epicenter of the Songpan earthquake.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Clustered point patterns are referred to as subgroups of points
which are distributed at the higher density in constrained areas
compared with those outside the areas (Ripley, 1987; Cressie,
1991 (Chapter 8)). Clustered points usually represent meaningful
point patterns (i.e. features), especially in many different natural
and social areas, such as epidemic diseases, foreshocks, or after-
shocks of strong earthquakes, criminal behaviors, and vehicle
crashes (Openshaw, 1996; Lawson, 2001 (chapter 1); Hodge &
Austin, 2004; Chainey & Ratcliffe, 2005 (chapter 1); Pei, Zhu, Zhou,
Li, & Qin, 2006; Yang & Lee, 2007; Yamada & Thill, 2007). The
detection of clustered point patterns may help to predict the forth-
coming natural or social events and to develop respective plans.
Thus, the research on the detection of clustered point patterns
has been recognized as an important area in the spatial data min-
ing and knowledge discovery community.

Due to its importance, numerous methods have been proposed
to enhance the analysis of clustered point patterns (i.e. feature).
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The core issue in the detection of feature is how to separate dense
clusters from noise, which relies on the computation of local den-
sity. Most previous approaches estimated local density either with
window-based methods or distance-based methods (Boots & Getis,
1988; Cressie, 1991). The window-based methods are applied in
three different ways. The first is dependent on the subdivision of
study area. The local density is estimated according to counts of
points in cells. Many approaches, such as STING (Wang, Yang, &
Muntz, 1997), CLIQUE (Agrawal, Gehrke, Gunopulos, & Raghavan,
1998), and MAFIA (Nagesh, Goil, & Choudhary, 1999), achieve this
by connected dense cells. Nevertheless, the features identified by
those methods may be significantly affected by issues related to
cells, such as size and shape. The second way for estimating local
density is to utilize kernel functions, usually a predefined spatial
probability density function (PDF) (for example, the Gaussian func-
tion), to model the distribution of density of points (Dasgupta &
Raftery, 1998; Rogerson, 2001; Fraley & Raftery, 2003). Though
kernel methods are not restricted within predefined cells, they
may fail to locate features with complex shapes due to the influ-
ence imposed by the shapes of kernel functions. The third is based
on the spatial scan statistics. Openshaw, Charlton, Wymer, and
Craft (1987), Openshaw, Charlton, Craft, and Birth (1988) proposed
an automatic cluster detector, i.e. the geographical analysis ma-
chine (GAM), to identify clusters via excluding the “false clusters”

and Urban Systems (2009), doi:10.1016/j.compenvurbsys.2009.08.001

Please cite this article in press as: Pei, T., et al. Detecting feature from spatial point processes using Collective Nearest Neighbor. Computers, Environment



http://dx.doi.org/10.1016/j.compenvurbsys.2009.08.001
mailto:peit@lreis.ac.cn
mailto:axing@lreis.ac.cn
mailto:azhu@wisc.edu
mailto:zhouch@lreis.ac.cn
mailto:Libl@lreis.ac.cn
mailto:qincz@lreis.ac.cn
http://www.sciencedirect.com/science/journal/01989715
http://www.elsevier.com/locate/compenvurbsys
http://dx.doi.org/10.1016/j.compenvurbsys.2009.08.001

2 T. Pei et al./ Computers, Environment and Urban Systems xxx (2009) Xxx—xxx

which occur by chance. Nevertheless, GAM lacks a clear statistical
standard for evaluating the number of significant circles. In addi-
tion, many identified significant circles, which overlap, often con-
tain the same cluster of cases. As a result, the GAM maps may
give the appearance of excess clustering, with a high percentage
of “false positive” circles. To reduce the false positives, more
sophisticated statistic indices were proposed to identify locations
where there are more events than expected. In the spatial scan
method, the scan window, defined as a circular (with a space ra-
dius) or cylinder (with a circular geographic base and the height
corresponding to time), moved in space (and time) to detect re-
gions of significant clustering (Kulldorff & Nagarwalla, 1995; Kull-
dorff, 1997). Although the spatial scan statistics have been widely
used in disease surveillance (Kulldorff, Heffernan, Hartman, Assun-
cao, & Mostashari, 2005; Yan & Clayton, 2006; Gaudart et al., 2008),
the embedded defect in the method is that the detected features
may be significantly influenced by the shape of window. Inappro-
priate choice of window shape may split one feature into many
small ones or merge different features into one.

Differing from the window-based methods, the distance-based
methods use the distance between a point and its neighbor as an
alternative to estimate local densities. The idea of the Shared Nearest
Neighbor (SNN) (Jarvis & Patrick, 1973), in which the link between
point p and q is created if and only if p and g have each other in their
closest k nearest neighbor lists, was employed to distinguish clusters
from noise. Because the SNN method links in uniform regions and
break the ones in the transition regions, it can deal with clusters of
varying tightness, which is referred to as “density independent”.
However, the threshold for separating clusters should be tuned
interactively, for two distinct sets of points may be merged into
one cluster if the threshold is small; or a natural cluster may be split
into many small clusters due to natural variations within the cluster
if the threshold is too high (Ertoz, Steinbach, & Kumar, 2002). To
make clustering process more robust, Ester, Kriegel, Sander, and
Xu (1996) used the kth nearest distance (the distance between the
point and its kth nearest neighbor) as a measure of local density
and proposed the DBSCAN method. Although DBSCAN is easily
implemented and capable of identifying clusters with arbitrary
shapes (Ester et al., 1996), the key parameters, i.e. Eps (the distance
for defining the neighborhood of a given point) and Minpts (the min-
imum number of points in the neighborhood), in DBSCAN and its
variants can only be determined visually and inappropriate choice
of the parameters may lead to wrong results (Ankerst, Breunig,
Kriegel, & Sander, 1999; Roy & Bhattacharyya, 2005; Lin & Chang,
2005). In order to reduce the subjectivity, Byers and Raftery (1998)
proposed a classification model based on the Nearest Neighbor
(NN) method (for simplicity, we refer to their method by NN
hereafter), in which feature and noise are viewed as two homoge-
nous Poisson processes with different intensities (in the following
text, we use intensity when discussing a point process and density
for a cluster). The feature process, with the higher intensity, is
viewed as a group of clustered points in a restricted area while the
noise process, with the lower intensity, is randomly distributed over
the entire region. Features and noise may be separated according to
the difference in their kth nearest distance. Pei et al. (2006 ) extended
the method to a clustering model to group points into different
clusters. The approaches to the distanced-based method have
reduced the parameters to the only one (i.e. k). Nevertheless, the
classifications produced by these methods are still sensitive to k. A
poor choice of the parameter may lead to a high error rate of classi-
fication. Although the classification entropy (CE) is employed to
determine k (Byers & Raftery, 1998) and later used to identify spatial
patterns ininhomogeneous spatial processes (Yang & Lee, 2007), it is
a subjective process and the derived value of k may fail to produce
correct results. Therefore, identifying an optimum value for k is still
a difficult problem.

In this paper, we present a new method, the Collective Nearest
Neighbor (CLNN) approach which separates features from noise
and bypasses the problem of determining the optimum value of
k. The CLNN method is divided into three steps. The first is to clas-
sify points using the NN method at various values of k. The second
is to select acceptable classification layers, in which both feature
and noise are homogenous Poisson processes, from the classifica-
tion results. The third is to classify points by averaging the accept-
able layers.

The rest of the paper is arranged as follows. In Section 2, we re-
view the NN method which is the base of the CLNN method. The
CLNN algorithm is described in detail in Section 3. In Section 4,
we illustrate the algorithm through simulated data sets and dis-
cuss the important issues when applying the CLNN algorithm. In
Section 5, we provide a case study of earthquakes in southwestern
China to evaluate the CLNN method. Conclusions are given in Sec-
tion 6.

2. Framework of nearest neighbor method
2.1. Probability density function of kth nearest distance

The number of points k in any planar region S with area |S|
might be assumed to be generated by a homogeneous Poisson pro-
cess if it follows the distribution below:

-S| k
fusi(k) = % (1)

where the expected constant intensity is 4 and the mean is 2]
(Lucio & Brito, 2004). Thus, for a given point p in the Poisson
process, the probability distribution of its kth nearest distance Dy
(the distance between p and its kth nearest neighbor) can be
derived by computing the probability of including O, 1, 2,...,
k — 1 points within the circle of A(p, x), in which p is the center
and x is the radius.

k-1

e~ (fx2)™
P(Dy = x) =) ——=1-F,® )
m=0 :

where Fp, (x) is the cumulative distribution function of Dy, Z is the
intensity of the Poisson process. If Dy is larger than x, there must
be O or 1 or 2...k — 1 points within the circle A(p, x). The pdf of
Dy (fp, (x; k, 2)) has proved to be the derivative of Fp, (x):
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Fig. 1. The simulated data consisting of a rectangle feature and noise.
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where 1 is the same as that in Eq. (2) (Byers & Raftery, 1998).

In this context, the noise and the feature can be thought of as
two superimposed homogeneous Poisson processes with different
intensities, say, 4; and A,. The bimodal pdf of D, can be expressed
as:

Dk ~ Wka (X; k7 A]) + (1 — W)ka (X; k, )»2) (4)

where w € [0 1] is the mixing coefficient, and 4; and 2, are the
intensities for the feature process and the noise, respectively (Byers
& Raftery, 1998).

Because points are in one-to-one correspondence with their kth
nearest distances D;s, the points can be classified as feature or
noise according to the difference in their Dys.

Table 1
Classification results generated by NN.

2.2. Estimation of A1, 2, and w

The Expectation-Maximization (EM) algorithm can be used to
estimate the parameters 4, /, and w, which characterize the mix-
ture distribution of Dy. The EM algorithm is usually employed to
solve the missing data problem (Celeux & Govaert, 1992; Moon,
1996). The missing data in this context are the classification into
the two processes (the feature and noise), with the probability
(membership) value ¢;€[0,1] (i=1,2,...,n) for point g;
(i=1,2,...,n), where n is the number of data points. If §; > 0.5,
point g; is classified as feature, otherwise, g; is classified as noise.
For more details about the estimation of /;, i, and w, see
Appendix A.

In fact, we need to know the optimum value of k before estimat-
ing these parameters (11, 42, and w). As discussed in Introduction,
k is very difficult to determine. To overcome this obstacle, we de-

k Parameters Number of false points Indices for CSR
w J1 (1073) 7o (107%) Fr F, Feature Noise
1 0.5131 1.3026 2.2486 75 7 0 0
2 0.6543 1.8623 2.4876 14 23 0 0
3 0.5903 1.4788 2.2825 22 9 0 0
4 0.5647 1.3159 2.2063 21 3 0 1
5 0.5794 1.3373 2.3034 13 3 0 1
6 0.5634 1.2655 2.2299 15 2 0 1
7 0.5659 1.2672 2.2345 15 2 0 1
8 0.5709 1.2649 2.2488 14 2 0 1
9 0.5670 1.2438 2.2583 14 2 1 1
10 0.5699 1.2338 2.2605 12 1 1 1
11 0.5680 1.2380 2.2511 13 0 1 1
12 0.5599 1.2002 2.2126 15 0 1 1
13 0.5522 1.1770 2.1714 18 0 1 1
14 0.5538 1.1695 2.1808 18 0 1 1
15 0.5487 1.1502 21711 20 0 1 1
16 0.5425 1.1222 2.1667 20 0 1 1
17 0.5378 1.1073 2.1621 25 0 1 1
18 0.5371 1.1052 2.1502 25 0 1 1
19 0.5324 1.0845 2.1550 26 0 1 1
20 0.5310 1.0766 2.1409 25 0 1 1
21 0.5269 1.0563 2.1279 27 0 1 1
22 0.5260 1.0528 2.1345 27 0 1 1
23 0.5239 1.0444 2.1408 29 0 1 1
24 0.5189 1.0293 2.1311 30 0 1 1
25 0.5185 1.0173 2.1146 31 0 1 1
26 0.514 1.0098 2.0946 33 0 1 1
27 0.5178 1.0207 2.1096 31 0 1 1
28 0.5231 1.0242 2.1290 29 0 1 1
29 0.5206 1.0137 2.1291 29 0 1 1
30 0.5198 1.0107 2.1172 31 0 1 1
31 0.5222 1.0101 2.1306 29 0 1 1
32 0.5209 1.0026 2.1256 30 0 1 1
33 0.5161 0.9858 2.1063 31 0 1 1
34 0.5123 0.9742 2.0947 34 0 1 1
35 0.5088 0.9586 2.0816 35 0 1 1
36 0.5066 0.9489 2.0731 36 0 1 1
37 0.5057 0.9384 2.0612 36 0 1 1
38 0.5066 0.9322 2.0611 36 0 1 1
39 0.5024 0.9201 2.0487 38 0 1 1
40 0.4997 09111 2.0413 38 0 1 1
41 0.498 0.9012 2.0258 39 0 1 1
42 0.4962 0.8914 2.0164 39 0 1 1
43 0.4966 0.8832 2.0166 41 0 1 1
44 0.4955 0.8779 2.0017 40 0 1 1
45 0.4931 0.8673 1.9763 40 0 1 1
46 0.4926 0.8638 1.9724 41 0 1 1
47 0.4860 0.8467 1.9581 44 0 0 1
48 0.4816 0.8338 1.9434 44 0 0 0
49 0.4754 0.8183 1.9304 47 0 1 0
50 0.4649 0.8006 1.9046 51 0 1 0

Note: /1 is the intensity of feature, /, is the intensity of noise, Fy is the number of false feature points, F, is the number of false noise points, “1” symbolizes homogeneity and

“0" symbolizes inhomogeneity in the column of “indices for CSR”.
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velop the CLNN method for classifying the data without determin-
ing the optimum value of k.

3. CLNN method

The idea of CLNN is to identify features by overlaying the se-
lected classification layers, in which both feature and noise are
tested to be homogenous. The CLNN method consists of three
steps. In the first step, points are classified into clustered points
and noise at all values of k by using the NN method. In the second
step, CLNN selects classified layers, where subsets (i.e. feature and
noise which are generated at different values of k) are tested to be
homogenous Poisson processes (we call these layers acceptable
layers), and save membership indicator I;; for each point p; (that
is, for an acceptable layer, if point p; belongs to a feature at k then
Iix = 1; otherwise, [;; = 0). Note that [; is set to O for all points if
the layer generated at k is not acceptable. In the third step, point
p; is finally classified as feature if ", [;x > T, where T is the thresh-
old for separating features from noise. Essentially, the CLNN meth-
od can be seen as an overlaying operator and the final result is
acquired by overlaying the acceptable layers. For this reason, CLNN
may reduce the number of false points. Here, false points (or mis-
classified points) include two types of points, i.e. feature points
that are misclassified as noise and noise that is misclassified as fea-
ture. Below is a detailed description of the CLNN algorithm.

Main(Input: DataA, layer_threshold, Kyax)
Begin
nitialize Final_Membership;
Let Accepted_LayerNumber = 0;
For k =1: Kpnax
| Feature_Set,
ByNN(DataA, k);
Membership = Harden(fuzzy_Membership);
If IsHomogenous(Noise_set) and IsHomogenous(Feature_
set)

Noise_Set, Fuzzy_Membership] = Classify-

Final_Membership = Final_Membership + Membership;
Accepted_LayerNumber = Accepted_LayerNumber + 1;
Else
Continue;
End
End
Feature_points = (Final_Membership>=layer_threshold);
Noise_points = (Final_Membership<layer_threshold);
Return Feature_points, Noise_points;
End

where DataA is the point set, Knax is the total number of layers,
Accepted_LayerNumber is the number of accepted layers,
Final_Membership is the matrix for saving the summation of the
membership values of each point, Feature_Set and Noise_Set are
the feature and noise generated by the NN at k, respectively,
Fuzzy_Membership is a matrix for saving the fuzzy membership
value of each point which is classified at k, Membership is a matrix
for saving the membership of each point in DataA, layer_threshold
is the threshold for separating features from noise, Feature_Points
and Noise_Points are the features and noise, respectively, which
are eventually separated by the CLNN algorithm.

Function ClassifiedByNN(DataA, k) is to classify DataA into fea-
ture and noise at k using the NN method, in which the parameters
(41, A2, w), used to construct the discrimination function (Eq. (4)),
are estimated by the EM algorithm (see Appendix A for details).
Function Harden is to harden the fuzzy membership values of
points. If the fuzzy membership value of a point is less than 0.5,
then the point belongs to noise; if that of a point is equal to or

greater than 0.5, then the point belongs to a feature; feature points
are indicated as 1 and noise as 0. IsHomogenous is a function used
to determine if a process is homogeneous. If both Noise_set and
Feature_set in a layer are deemed as homogenous Poisson pro-
cesses, the layer is deemed as acceptable and Membership is added
to Final_Membership; otherwise, the layer is deemed as unaccept-
able and excluded. A point is eventually classified as feature if
the point is labeled as 1 at least layer_threshold times in the whole
process; otherwise, it is classified as noise.

In the algorithm of the CLNN, the determination of Complete
Spatial Randomness (CSR) is the key to the selection of acceptable
layers. There are two types of indices, i.e. quadrat methods and dis-
tance methods, for the determination of CSR (Cressie, 1991). The
quadrat methods need to partition the study area into subsets
and collect counts of events in subsets whereas the distance meth-
ods only need to calculate the kth nearest distance of a point. As
the distance methods make full use of the precise information on
the locations of points and have the advantage of not depending
on arbitrary choices of quadrat size and shape, we use a dis-
tance-based index (243" W?) for the determination of CSR (Skel-
lam, 1952), where W; is the nearest distance of a point, n is the
number of points, / is the intensity of the process. If the index fol-
lows the distribution y%,, the CSR is accepted; otherwise, the CSR is
rejected. In this paper, CSR is synonymous with a homogenous
Poisson process.

The CLNN algorithm has two parameters, i.e. Kpa.x and
layer_threshold. K.« should be set to be large enough to ensure
that all potential acceptable layers are selected and testified for
CSR. As a result, we let K;.x =num/8 to num/3 when running
the CLNN, where num is the number of points in the data. Nev-
ertheless, one can increase K.y if the layer generated at K. is
acceptable. layer_threshold is used to determine the final mem-
bership of a point. In detail, if Final Membership of a point is
not less than layer_threshold, the point belongs to a feature;
otherwise, it belongs to noise. Pei, Zhu, Zhou, Li, and Qin
(2007) also found that a feature process, which is generated by
the NN method, will be overestimated as k increases. Interested
reader may refer to Pei et al. (2007) for the explanation. As a re-
sult, layer_threshold should be larger than Accepted_LayerNumber/
2 in order to produce fewer false points. In this paper, we let
layer_threshold = Accepted_LayerNumber, which means that only
those classified as feature in all acceptable layers are eventually
deemed as feature points.
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Fig. 2. Classification generated by CLNN: the number of false points is 13 (F; =9
and F, = 4) (Symbols enclosed with a circle represent the false points).
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4. Identification of clustered point patterns
4.1. Classification result of simulated data

In order to evaluate the CLNN method, we used a simulated
data. The simulated data, shown in Fig. 1, contain noise and a fea-
ture which is constrained in a rectangle. The x coordinates of fea-
ture were generated by simulating real numbers which follow
the uniform distribution in [100 800]. The y coordinates of feature
were uniformly distributed in [150 300]. The feature points were
generated in a similar way, that is, x coordinates of feature points
were generated form a uniform distribution in [0 1000] and y coor-
dinates were generated in the same way. Note that noise points
that fell into the area of feature were excluded. The data then were
classified by the NN method as k increased from 1 to Kyax = 50. The
results are listed in Table 1. The ratios (w) of the number of feature
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points to that of noise points are listed in the second column. The
intensities (1;) of the feature are listed in the third column. The
intensities (1) of the noise are listed in the fourth column. The
number of false feature points (Fy) listed in the fifth column indi-
cate the numbers of noise points, which are classified as feature.
The numbers of false noise points (F,) listed in the sixth column re-
fer to the numbers of feature points, which are classified as noise.
The indices for CSR, listed in the seventh column and eighth col-
umn, indicate homogeneous Poisson processes (symbolized by
“1”) or inhomogeneous Poisson processes (symbolized by “0”).
The actual values of w,/;, and /1, of the data in Fig. 1 are
0.5674, 0.001193, and 0.000219, respectively. Among those param-
eters (w, 44, 1) estimated in Table 1, the values which best approx-
imate the actual values are acquired when k=9, k=12, and k = 14.
According to the number of false points at various values of k, the
minimum number of false points are acquired at k=10 (Fy =12,
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Fig. 3. The histograms of the kth nearest distances of points in Fig. 1 and the results of classification generated by NN at k =3, 11, and 47 (symbols enclosed with a circle
represent false points). (a) histogram at k = 3, (b) classification at k = 3 (31 false points), (c) histogram at k = 11, (d) classification at k=11 (13 false points), (e) histogram at

k=47, and (f) classification at k = 47 (44 false points).
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F,=1),and 11 (Ff = 13, F, = 0). According to the indices for CSR, 38
layers are identified as acceptable layers. We also note that the fea-
ture process shifts from inhomogeneity to homogeneity as k in-
creases from 8 to 9, and shifts back to inhomogeneity when k
increases to 47.

We then identify features by averaging the acceptable layers, in
which both feature process and noise are labeled as “1”. The clas-
sification is shown in Fig. 2. The number of false points is 13
(Ff =13, F, =0), which is the same as the optimum result among
those generated by the NN method as k increases from 1 to 50.

4.2. Shift between homogeneity and inhomogeneity in classified layers

In Table 1, acceptable layers can only be seen when k is between
9 and 46. To explain this phenomenon, we draw histograms of the
simulated data along with the fitted curves and the theoretical
curves generated when k =3, 11, and 47, respectively (Fig. 3a-e).

In Fig. 33, the fitted curve is similar to the theoretical one. Nev-
ertheless, we find that the feature process and the noise process,
generated when k = 3, show inhomogeneous (see Table 1). The his-
togram is not clearly bimodal and there is no strong distinction be-
tween the feature process and the noise process (Fig. 3a).
Obviously, it is the large number of fuzzy points between these
two processes (i.e. two peaks in the histogram) that cause many

T. Pei et al./ Computers, Environment and Urban Systems xxx (2009) Xxx—xxx

false points (Fy = 22, F, = 9) (Fig. 3b). Due to the presence of the
false points, both processes show inhomogeneous (see Table 1).

Compared with the histogram drawn at k = 3, the histogram at
k=11 is clearly bimodal, and the fitted curve derived from the his-
togram do not significantly deviate from the theoretic curve
(Fig. 3c). Therefore, a better classification is acquired at k=11
(Ff =13 and F, = 0) (Fig. 3d). As fewer false points are generated,
both feature and noise are deemed as homogeneous Poisson pro-
cesses (see Table 1).

In Fig. 3e, the histogram of feature (left component) shows sig-
nificant right-bias compared with the theoretic curve, whereas the
histogram of noise (right component) shows significant left-bias.
As a result, the fitted curve derived from the histogram signifi-
cantly deviates from the theoretic model when k = 47. We call this
phenomenon the inner edge effect. That is, as k increases, the kth
nearest distances of feature points near the border between feature
and noise become longer on average compared with those in the
center of feature process. This is because more noise points become
the kth nearest neighbors of feature. On the contrary, the kth near-
est distances of noise points near the border become shorter on
average compared with those far away from the border. Due to
the inner edge effect, the experimental mixture histograms may
increasingly deviate from the theoretical curve as k increases. As
a result, more false points were added to the processes which were
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classified (Fig. 3f). This will make the feature process or the noise
process shift from homogeneity to inhomogeneity, that is, the
feature process deviates from the CSR as k increases from 46 to
47 (Table 1).

4.3. Discussion on assumption

As discussed, CLNN is based on the assumption that the data
under consideration are composed of two different homogenous
point processes. However, in practice, real data may contain more
than two point processes (i.e. multi-modal) or non-Poisson pro-

generated at any value of k may be testified to be inhomogeneous.
This could result in Accepted_layerNumber = 0.

To solve the multi-modal problem, we can treat the inhomoge-
neous subgroup as a new data set and run the CLNN algorithm on
the subgroup again until the result cannot be further divided. Here
we use a simulated data set to illustrate the idea. Fig. 4a displays a
data set which contains a rectangle feature with high density, a
square feature with medium density and noise with low density.
The generation of the data is same as that of the data in Fig. 1.
We first applied NN to the data by setting k from 1 to 50. The result
shows that the data were divided into two subgroups. The one with
low density was testified to be homogeneous as k=5 to 42

cesses (for example, the Gaussian process). As a result, subgroups
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Fig. 5. Detection of features with different shapes using CLNN (symbols enclosed with a circle represent false points). (a) Sinusoid feature, (b) square feature, (c) ring feature,

and (d) two-rectangle feature.
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Comparison between CLNN, ICLNN, CE, SaTScan and the optimum result among those generated by NN at various values of k.

Sinusoid Square Ring Two-rectangle
CLNN Number of false points 13 (F; =8, Fp = 5) 16 (Fy = 8, Fn = 8) 4 (Fy =4, F, =0) 25 (Ff =21,F, = 4)
Clustering or random Random Random Random Random
CE Number of false points 21 (Ff=17,F, =4, 21 (F;=13,F, =38, 17 (Ff =13, F, = 4, 29 (F; =20,F, =9,
k=5) k=10), k=5) k=6)
Clustering or random Clustering Clustering Random Random
SaTScan (p Number of false points 38 24 49 70
value = 0.001) (circular)
Clustering or random Clustering Random Random Clustering
Number of false points 57 33 42 42
(Elliptic)
Clustering or random Clustering Clustering Random Random

Number of false feature points by the ICLNN (Ak = 3)

Minimum number of false points among those at various

values of k

15 (F; = 9, Fy = 6)
12(Ff =8,Fa=4,k=7)

17 (F; = 10, F, = 7)
17 (F; = 13, Fy = 4,
k=18)

5 (F; =5, Fy = 0)

9 (Ff=8,Fy=1(k=7)

25 (Fy =17, F, = 8)
24 (F; = 15, Fy =9,
k=9)

Note: Fy and F, are the same as those in Table 1. The “circular” option and the “elliptic” option (for “spatial window shape”) were used when detecting features in all data sets

with SaTScan.
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whereas the one with high density was testified to be inhomoge-
neous as k=1 to 50. In this context, we selected the subgroups
of low density, which were generated as k=5 to 42 and homoge-
neous, and averaged the membership values of points in these sub-
groups. The noise was detected according to the overlaid result. We
then took out the detected noise from the original data and kept
the subgroup of high density for the next-round of classification.
Result of the first stage is shown in Fig. 4b. In the second stage,
we treated the subgroup of high density as a new data set and
ran CLNN again. The separated features are displayed in Fig. 4c. If
a data set contains more processes, we can separate features from
noise by running CLNN repeatedly via the process above.

If the points are distributed as Gaussian processes, which can-
not be seen as homogenous, the Gaussian-like cluster can be trea-
ted as a mixture of homogeneous point processes and further
divided into finer homogeneous clusters by using the method
above. The finer homogeneous clusters are then merged into natu-
ral clusters through post-processing. The reason that a Gaussian
cluster can be seen as a mixture of homogeneous point processes
is described as follows. In most practical applications, the intensity
function of a given point process A(x) is a continuous function. Be-
cause of its continuity, the function can be divided into definite (or
indefinite) distinctive intervals in each of which the intensity can
be viewed as a constant (Illian, Penttinen, Stoyan, & Stoyan,
2008). According to the definition of homogeneous point process,
portions in each of interval can be considered as a homogeneous
point process. Another way of dealing with Gaussian-like cluster
is to apply the model-based cluster method (for example, using
Gaussian function as a kernel) (Fraley & Raftery, 1998; Fraley &
Raftery, 2003).

4.4. Evaluation on power for identifying arbitrary-shape features

To see if the CLNN method could handle data of any arbitrary
shape, we apply it to four other simulated data sets containing dif-
ferent shapes of features, i.e. sinusoid, square, ring, and two-rect-
angles (Fig. 5). The features of sinusoid and ring were generated
as follow. First, the regions of sinusoid and ring were drawn. Sec-
ond, the points were generated by simulating points which are uni-
formly distributed within the whole study area and only those that
fell into the specific regions were selected. The classification re-
sults show that CLNN clearly reveals the features in different point
sets. The number of false points generated by CLNN are 13, 16, 4,
and 25 while the minimum numbers of false points indicated by
the NN method as k increases from 1 to 50 are 12, 17, 9, and 24,
respectively (see Table 2). Interestingly, the number of false points
for the square feature and that for the ring, generated by CLNN, are
even smaller than the corresponding minimum numbers of false
points. The classifications on the four data sets display that the
CLNN method may have the ability of identifying features with
arbitrary shapes.

4.5. Comparison between CLNN, SNN, Spatial Scan method, and CE

In order to evaluate the efficiency of CLNN, we make a compar-
ison between the CLNN, the classification entropy (CE) method, the
SNN method, and the spatial scan method using the data in Fig. 1.
CE is an index that can measure the improvement of the classifica-
tion as k increases. The classification entropies up to Kpax =50,
which are calculated from the data in Fig. 1, are sequentially plot-
ted in Fig. 6. The change-point of the curve in Fig. 6 is estimated to
be 5 with the CE method, which is very different from the optimum
value (k =10, 11). We find that when k = 5 the number of false fea-
ture points and that of noise are 13 and 3, respectively (Table 1 and
Fig. 7a). Of the SNN, k is the only one parameter, we tested k with
different values and found SNN produced the minimum number of

false points when k = 3. The classification is displayed in Fig. 7b. To
evaluate the spatial scan method, we used SaTScan (Version 7.0.3)
which was downloaded from www.satscan.org. Because the simu-
lated data have no temporal attribute, we chose the “Bernoulli
model” with “pure spatial scan” (for details, see the help in the
software). Three parameters need to be set before running the pro-
gram, namely, the “gridding scheme”, “percentage of the popula-
tion at risk” and “spatial window shape”. Here, we scan the data
by fixing percentage of the population at risk (10%) and varying
the gridding scheme (25 * 25, 50 * 50, and 100 % 100) and setting
“elliptic” option. Results generated by the spatial scan method
are shown in Fig. 7c-e.

To judge which result is the best, we consider two aspects. One
is the number of false points and the other is the spatial distribu-
tion of the false points. If the distribution of false points demon-
strates clustering patterns, the method may leave some clusters
or a portion of a cluster out or produce false clusters. To assess this,
we treat the false points as a new data set and use the statistics
2123 'W? (Skellam, 1952) to determine if the data set is CSR.
The comparison showed that the CLNN produces the minimum
number of false points while other methods produced more false
points. Among the competitors, the SNN produce not only the larg-
est number of false points but also more false features (Fig. 7b). In
addition, we have proved that false points generated by the SNN
and SaTScan (25x25, 50+50, and 100+ 100) demonstrate
clustering.

Because SNN does not adapt to the data in which the density
transit from feature to noise smoothly (Ertoz et al., 2002), we did
not use the method for further comparison. As to the spatial scan
method, since the middle size of grid (i.e. the size when the area
is divided into 50 % 50 cells) may produce better result, we use
the 50 x50 cells for the following computation. We then apply
the spatial scan method, the CE method to the point sets in
Fig. 5. Note that both “elliptic” and “circular” options were tried
in SaTScan when detecting features in all data sets. Results can
be found in Table 2. The comparison shows that: (1) CLNN generate
the minimum number of false points and (2) only do false points
generated by CLNN show random. Both show that the results gen-
erated by CLNN are the best.

According to the comparison above, we find that the CLNN
method produced more precise results and needs little prior
knowledge in the estimation of parameters.

L
o
LTI

entropies
------- change-point model

Entropy

K

Fig. 6. Plot of classification entropies of the simulated data in Fig. 1 over k
(Kmax = 50)
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Fig. 7. Results generated by CE, SaTScan (Bernoulli model with pure spatial scan), and SNN. (a) CE (k=5); (b) SNN (k =3, 56 false positives); (c) SaTScan (25 * 25 cells,
percentage of the population at risk = 10%, one most-likely cluster (p value =0.001) and 32 false positives); (d) SaTScan (50 * 50 cells, percentage of the population at

risk = 10%, one most-likely cluster (p value = 0.001) and 24 false positives); and (e) SaTScan (100 * 100 cells, percentage of the population at risk = 10%, one most-likely cluster
(p value = 0.001) and 26 false positives).

4.6. Complexity of CLNN and modified version of CLNN

The complexity of CLNN is determined by three factors: the
computation of kth nearest distance, the sorting of k nearest dis-
tances and the total number of layers (Kmax). The complexity of
the computation of kth nearest distance is O(n?), where n is the
number of points. The complexity of sorting k nearest distances

is also O(n?). As a result, the total complexity of CLNN is
O(n? * Kiax), which is same as that of CE. Both CLNN and CE are
time-consuming processes since they need to classify points at var-
ious values of k. In order to reduce the complexity of CLNN, we pro-
pose a simplified algorithm, named the Interval Averaging Nearest
Neighbor (ICLNN) method. The idea of ICLNN is to classify a data
set using NN at an interval of Ak, and then to follow the same steps
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as those of the CLNN algorithm. Thus, the total complexity of the aftershocks can be excluded (Wu et al., 1990 (chapter 1); Chen, Liu,
ICLNN method reduces to 1/Ak of that of CLNN. Setting Ak = 3, & Ge, 1999; Reasenberg, 1999; Ripepe, Piccinini, & Chiaraluce,
we applied the ICLNN method to the data set of Fig. 1. The number 2000).
of false points is 15 (15 false feature points and O false noise Background earthquakes usually appear with a low intensity
points). We then run ICLNN on the data sets in Fig. 5. The numbers while clustered earthquakes usually occur with a higher intensity
of false points of sinusoid feature, square feature, ring feature and (Wyss & Toya, 2000; Pei et al., 2003; Matsu'ura and Karakama,
two-rectangle feature are 15 (9 false feature points and 6 false 2005). In this regard, background earthquakes and clustered earth-
noise points), 17 (10 false feature points and 7 false noise points), quakes can be treated as two superimposed homogenous spatial
5 (5 false feature points and O false noise points), and 25 (8 false Poisson processes with different support domains and different
feature points and 17 false noise points), respectively (see Table intensities (Zhuang, Chang, Ogata, & Chen, 2005). Clustered earth-
2), which are close to those produced by CLNN but are better than quakes are difficult to identify due to the interference from back-
those produced by CE and the spatial scan method. The larger Ak is, ground earthquakes. Therefore, the classification of these two
the less complexity the ICLNN algorithm has. Nevertheless, it will types of earthquakes can be used as a case for evaluating the CLNN
method on identifying features in a spatial point set.

trade off accuracy of the classification for simplicity.
5.2. Study area and seismic data

5. Case study
5.1. Clustered earthquakes and background earthquakes The study area is located from 100° to 107°E and from 28° to
34°N. It contains the eastern part of Tibet, the southern part of
Sichuan and Chonggqing, the northern part of Yunnan and the wes-

Clustered earthquakes are usually considered as foreshocks or
aftershocks of a strong earthquake (Wu, Jiao, Lu, & Wang, 1990; tern part of Guizhou. It is an area in China with very intensive seis-
Wyss & Toya, 2000). They might be perceived to be foreshocks if micity. There have been 27 strong earthquakes (M > 6.0) in this
a strong earthquake occurs after them or to be aftershocks if a area between January 1, 1970 and July 31, 2008 (Feng & Huang,
strong earthquake occurs before them (Umino, Okada, & Hase- 1980; Feng & Huang, 1989; China Seismograph Network Data Man-
gawa, 2002). Thus, clustered earthquakes could serve as a primary agement Center, 2009). The Wenchuan Earthquake, the most dev-
clue to predict a strong earthquake if the possibility of them being astating earthquake in 2008, occurred on May 12, 2008 with
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Fig. 9. The identification of clusters in earthquakes which occurred three months before the main earthquake. (a) SaTScan, (b) CE (k= 18), and (c) CLNN.

M = 8.0 and was also located in this area (China Seismograph Net-
work Data Management Center, 2009).

The seismic data in this case study were selected from the Seis-
mic Catalog of West China (1970-1975, M > 1) (Feng & Huang,
1980) and Seismic Catalog of West China (1976-1979, M > 1)
(Feng & Huang, 1989). In order to identify clustered earthquakes,
which may be helpful to indicate locations of strong earthquakes,
we need to analyze earthquakes that occurred over different tem-
poral intervals. Here, we used two different intervals (i.e. 2-month
and 3-month). One is between June 15th, 1976 and August 15th,
1976 (altogether 128 epicenters were collected), and the other is
between May 15th, 1976 and August 15th, 1976 (altogether 193
epicenters were collected). All earthquakes are larger than 2 (M).
After the occurrence of the Xingtai quake (M =7.2) in 1966, a
nationwide seismographic network was set up and the ability to
monitor seismicity has been greatly improved (Jiao, Wu, & Yang,
1990). According to Jiao et al. (1990), any earthquake at the level
of 2 (M) and above were monitored and measured with good
quality.

5.3. Results of case study

To evaluate the efficiencies of different methods, we used them
to identify clustered earthquakes in the selected seismic data sets
and analyzed the distribution of the identified clustered earth-
quakes as well as the relationship between these earthquakes

and the epicenter of Songpan earthquake (M = 7.2), which occurred
at (32°42'N, 104°06'E) on August 16, 1976 and caused the deaths of
38 people (Zhang, 1990 (chapter 2)). Fig. 8 shows the classification
results of 2-month seismic records which were produced by SaT-
Scan (with elliptic scanning window), CE (k=20) and CLNN
(Kmax = 40). Fig. 8a demonstrates that five clusters have been iden-
tified by SaTScan, which consist of one most-likely cluster and four
secondary clusters. The most-likely cluster is near the epicenter of
Songpan earthquake and other clusters are located in the central,
the south and the southwest of the research area, respectively. Dif-
fered from those identified by SatScan, CE identified only one clus-
ter which is located in the north of the research area and
significantly larger than the most-likely cluster identified by Sat-
Scan (Fig. 8b). Compared with those generated by these two meth-
ods, clustered earthquakes identified by CLNN cover the smallest
area and are more concentrated around the epicenter of the Song-
pan earthquake (Fig. 8c).

Fig. 9 shows the classification results of 3-month seismic re-
cords which were generated by SatScan (with elliptic scanning
window), CE (k = 18) and CLNN (K.« = 40). In Fig. 9a, six clusters
were identified (two more clusters newly appeared, one is located
to the northwest of Leshan and the other is located to the north-
east of the most-likely cluster), including one most-likely cluster
and five secondary clusters. In Fig. 9b, we find that the cluster
identified by CE is more concentrated around the epicenter of
Songpan earthquake compared with that shown in Fig. 8b.
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Fig. 9c shows that only one dense cluster was identified by CLNN,
which are still focused around the epicenter of Songpan earth-
quake. Fig. 9b and c show that results generated by CE and CLNN
are almost the same.

The analysis of Figs. 8 and 9 shows the difference between these
three methods. SaTScan identified more clustered earthquakes
than the other two methods. Although the most-likely clusters in
both data sets are found to be near the epicenter of Songpan earth-
quake, the earthquakes which cover the epicenter of the Songpan
earthquake were not identified as a cluster in the 3-month data
(see Fig. 9a). This was probably caused by the limitation of the
shape of scanning window. The situation of secondary clusters is
more complicated. Some of the clustered earthquakes might be
“false alarms” because they appear in the 2-month result and dis-
appear in the 3-month result. And the remaining secondary clus-
ters are not seen as the aftershocks or foreshocks of strong
earthquakes because no strong earthquakes (larger than 5(M)) oc-
curred between 1975 and 1977 (Feng & Huang, 1980; Feng &
Huang, 1989). Although the remaining secondary clusters do not
directly indicate strong earthquakes, they might indicate some
geological events. The reason for the emergence of these secondary
clusters needs further research. CE could provide the clustered
earthquakes which are distributed around the main earthquake.
However, the identified clustered earthquakes in the 2-month data
set and the 3-month one show significantly difference in terms of
shape and area. The clustered earthquakes concentrated around
the Songpan earthquake were both identified in Figs. 8c and 9c,
which demonstrates that the clustered earthquakes generated by
CLNN are consistent between the two data sets. The clustered
earthquakes, located in the immediate vicinity of the strong quake,
could provide valuable information for indicating the epicenter of
the Songpan earthquake.

To sum up, SaTScan can provide more clusters with different p
values, among which the most-likely cluster should be paid much
attention to and the secondary clusters may indicate some other
potential anomalies or be “false alarms”. In addition, the most-
likely cluster might be underestimated or overestimated by SaT-
Scan due to the limitation of the shape of scanning window. The
clustered earthquakes generated by CE are concentrated around
the epicenter, but the unstable performance of CE could lead to
the error in the prediction of the epicenter of strong earthquakes.
Differed with SaTScan and CE, the performance of CLNN is most
stable in indicating the clustered earthquakes.

6. Conclusions

Identifying clustered point patterns is one of the major chal-
lenges in spatial data mining. Most methods are unable to achieve
this since they are sensitive to input parameters or need prior
knowledge on the data set under consideration. In this paper, we
present the CLNN method to accomplish this task. The CLNN meth-
od assumes that a given spatial point set is composed of homoge-
nous point processes which are distributed in different intensities.
Features and noise can be differentiated by their difference on the
kth nearest distance in CLNN. Consequently, the method does not
rely on the subdivision of the study area and can identify clusters
with arbitrary shapes. As the CLNN method classifies points by
averaging the layers which are generated at various values of k
and tested to be homogeneous, almost no parameters need to be
adjusted interactively. This makes that CLNN is more objective
and need less prior knowledge about the data set compared with
most previous methods. The results of the simulated data and
the case study show that the CLNN method, compared with SNN,
SaTScan and CE method, could provide more stable foreshocks
which may be used to indicate the epicenter of Songpan earth-

quake. Moreover, it was found that results generated by the CLNN
method sometimes are even superior to the best results among
those generated by NN at all values of k. The analysis of the CLNN
algorithm shows that the algorithm is not limited to two-process
problem and can be extended to multi-process problem.
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Appendix A. The EM Algorithm to evaluate i;, 4> and P

Suppose 0 = {11, 4, w} represent the parameters of the mixture
pdf (Eq. (4)). If we have a random sample {X = x;,X5,...X,} of size n
from the pdf of Eq. (4), then the likelihood is given by:

n

L(OIX) = [ T{wfo, (xilk, 21) + (1 = w)f, (xilk, 22)} ()

i=1

where k, w, 1; and /, share the same meaning as those in Eq. (4).
Define

Vi = [%i, 61, (1 = 01)] (6)
Thus the likelihood of y; conditioning on 0 is:
gi10) = [T {[whou ek, 2] - [(1 - wi el 22)] ) (@)
i=1

Hence we can write

log g(yil0) = > _{6: log[wfp, (xilk, 21)]
i1

+ (1= 0:) log[(1 — w)fp, (xilk, 22)]} (8)

The missing data (6; (i=1, 2, ...n)) and the parameters (6) can
be derived through the EM algorithm, which is divided into two
steps: the Expectation step (the E-step) and the Maximization step
(the M-step).

The E-step in this context is:

~ . ?( )
E<S§M)> - Y\’:)t)fnk (xi; k, AMt ) —
WO, (xi;k, 27 + (1 = WO fp, (i k, 25)

while the M-step is:

S(t+1
e kr e
1

At = Dt
n S(t+1)
Ty X7 0;
B kS (1250 .
and 25" = % with
HZFIXI (]701' )
n
(t+1) _ S(t+1)
wY =% 077 /n

where n is the number of points, t is the number of iterations, and x;
is the independent variable representing the kth nearest distance of
a given point g; (i= 1,2, ... n). If we define the component with 4; as
the feature, then 35”” is the membership value belonging to the
feature after t + 1 iterations. That is, q; can be classified as feature
if 5" is not less than 0.5 while g; can be classified as noise if
6V is less than 0.5. A detailed discussion about the EM algorithm
can be found in (Celeux & Govaert, 1992; Moon, 1996; Byers & Raf-
tery, 1998).
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