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Terrain attributes are the most widely used predictors in digital soil mapping. Nevertheless, discussion of
techniques for addressing scale issues and feature selection has been limited. Therefore, we provide a
framework for incorporating multi-scale concepts into digital soil mapping and for evaluating these scale
effects. Furthermore, soil formation and soil-forming factors vary and respond at different scales. The spatial
data mining approach presented here helps to identify both the scale which is important for mapping soil
classes and the predictive power of different terrain attributes at different scales. The multi-scale digital
terrain analysis approach is based on multiple local average filters with filter sizes ranging from 3×3 up to
31×31 pixels. We used a 20-m DEM and a 1:50 000 soil map for this study. The feature space is extended to
include the terrain conditions measured at different scales, which results in highly correlated features
(terrain attributes). Techniques to condense the feature space are therefore used in order to extract the
relevant soil forming features and scales. The prediction results, which are based on a robust classification
tree (CRUISE) show that the spatial pattern of particular soil classes varies at characteristic scales in response
to particular terrain attributes. It is shown that some soil classes are more prevalent at one scale than at other
scales and more related to some terrain attributes than to others. Furthermore, the most computationally
efficient ANOVA-based feature selection approach is competitive in terms of prediction accuracy and the
interpretation of the condensed datasets. Finally, we conclude that multi-scale as well as feature selection
approaches deserve more research so that digital soil mapping techniques are applied in a proper spatial
context and better prediction accuracy can be achieved.

© 2009 Published by Elsevier B.V.
1. Introduction

Terrain attributes are themost widely used predictors in digital soil
mapping (McBratney et al., 2003). This is because relief is one of the
most important soil-forming factors (Jenny, 1941) and digital eleva-
tion models (DEM) are widely available at different resolutions.
These range from b1 m for LIDAR data up to 1 km for datasets with
global coverage. Scale is an important consideration when maps
of soil classes are produced. The map-user requires information at a
particular scale and available covariates have a particular spatial
resolution.

The impact of scale and resolution on soil property and soil class
mapping is analyzed and described in various publications. The
influence of the resolution (grid size) of digital elevation models on
soil landscape modelling as well as applications has been widely
discussed (e.g. Thompson et al., 1999; Schoorl et al., 2000; Valeo and
Moin, 2000; Vázquez et al., 2002; Claessens et al. 2005; Smith et al.,
2006; Zhu, 2008).
K. Schmidt).
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Concerning the influence of scale on the spatial distribution of
soils, most authors focus on soil properties (Burrough, 1983;
Goovaerts and Webster, 1994; German, 1999; Lark and Webster,
2001; Nemes et al., 2003; Lark, 2005; Zhu et al., 2004; Bartoli et al.,
1991, 2005; Zhao et al., 2006). Methods for incorporating analyses of
different scales of variation into techniques for mapping the
distribution of soil classes have not been widely reported in the
literature (Hupy et al., 2004).

Classical machine learning approaches like classification trees,
artificial neural networks, support vector machines etc. have no
mechanisms to detect spatial relationships (Moran and Bui, 2002).
However, the need to develop straightforward approaches to deal
with multi-scale variations in digital soil mapping is of great
importance (McBratney et al., 2003; Lagacherie, 2008). To analyze
the effect of scales and to incorporate the spatial domain in data
mining or prediction processes Moran and Bui (2002), Behrens
(2003), Behrens et al. (2005), Smith et al. (2006), and Grinand et al.
(2008) use contextual spatial information, whereas Lark (2006) and
Mendonca-Santos et al. (2006) demonstrate the use of wavelets.

This paper demonstrates how contextual information from pre-
dictor variables can be incorporated into statistical digital soil
mapping. It helps to analyze both the scale of soil classes and the
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predictive power of different terrain attributes at different scales. A
larger number of terrain attributes than is commonly used in such
studies are analyzed. A multi-scale digital terrain analysis approach
based on multiple local average filters (Behrens et al., 2005; Grinand
et al., 2008) is proposed, which produces separate hierarchical spatial
components (McBratney et al., 2003). This can be applied to various
kinds of spatial predictor variables. The core of this approach is to
compute terrain variables over a range of filter sizes, which not only
increases the feature space, that is, the number of variables used as
predictors, but also produces a set of highly correlated features (ter-
rain attributes). Dimension reduction and feature selection techniques
(cf. Liu and Motoda, 1998) are then used to reduce the feature space
and select proper features in order to extract the relevant soil-forming
features and scales for each soil class in a map.

The methodological framework introduced in this study offers the
possibility to answer the following questions:

– Is prediction accuracy effected by incorporating predictors with
explicit information on scale dependence?

– Which terrain attributes are most important to predict certain soil
classes?

– Do optimal scales in terms of filter size exist to best predict specific
soil classes?

– Are there differences in prediction accuracies based on different
feature selection approaches?

– How does prediction accuracy change with respect to the number
of features?

– Can the selected features be interpreted in terms of soil formation?
– Which approach for selecting the relevant features would best

answer these questions?

The approach is introduced and applied to datasets typically
available for DSM approaches in Germany: a 20-m DEM and a
1:50 000 soil map.

2. Material and methods

2.1. Study area and datasets

The study area, Palatinate Forest, is located in southern Rhineland-
Palatinate, Germany. It is a low mountain range area within the
southwest German–Lorraine Triassic escarpment. The soils in the
Palatinate Forest were formed from substrates of the Upper Red Bed
Sandstone, Bunter, and Lower Limestone. According to the current
German mapping standard (Ad-hoc-AG Boden, 2005) the soil maps
within the Palatinate Forest were produced at a scale of 1:50 000
relating soil classes to geology and terrain conditions.

The entire study area covers about 300 km². All modelling ap-
proaches are based on a DEM with a resolution of 20 m. For training
and validation, two spatial subsets were selected from the soil map,
each consisting of the same six soil classes (Table 1, Fig. 1) and each
covering an area of about 40 km². This dataset is similar to the one
used by Behrens and Scholten (2006a,b), a comparative study of
different data mining approaches. The two soil datasets are located
about 50 km apart.
Table 1
Analyzed soil classes and their distribution in the training and the validation area; Tr: coverage

Soil class Parent material

S1 Cumulic anthrosols, gleyic anthrosols, gleysols and fluvisols Fluvic soil material
S2 Haplic cambisols Loess-containing sa

weathered sandston
S3 Dystric cambisols Loess-containing sa

weathered sandston
S4 Haplic podzols Sandy slope deposit
S5 Dystric cambisols Blocky, sandy slope
S6 Dystric cambisols and Cambi-haplic podzols Blocky, sandy slope
2.2. Digital terrain analysis and terrain attributes

We used 19 terrain attributes in this study. As some of them were
calculated on the basis of different thresholds, a total of 38 terrain
datasets were created (Table 2). The attributes are classified into 9
different groups based on how they are computed and their postu-
lated effects on soil formation.

All attributes are explained briefly below, starting with local terrain
attributes calculated on the basis of moving window techniques over
the same spatial extent for each pixel (e.g. Zevenbergen and Thorne,
1987), followed by regional terrain attributes based on contributing
area concepts (e.g. Quinn et al., 1991), and combined terrain attributes
based on local and regional attributes such as the compound topo-
graphic index (e.g. Beven and Kirkby, 1979).

2.2.1. Local terrain attributes

2.2.1.1. Non-curvature attributes.
Elevation (EL)
Elevation is the original values of the DEM.
Mean slope (SLD)
Mean slope is the average slope over a neighbourhood. Following

the approach of Dietrich and Montgomery (1998), mean slope is
calculated based on the geometricmean of the slopes between the two
cardinal and the two diagonal slopes in a 3×3 pixel neighbourhood.

Steepest slope (SLT)
Steepest slope is the steepest decent within a neighbourhood. It is

the slope gradient between two adjacent cells forming the steepest
line orientated in a down slope direction over a 3×3 pixel neighbour-
hood (Tarboton, 1997).

Aspect (D)
Aspect is the average orientation of the neighbourhood centred

around a given pixel. The calculation is based on the finite differences
approach introduced by Horn (1981). There are two concepts to
transform the circular character of aspect into the linear space: one
is the sine and cosine transformation, which result in parameters
presenting eastness and northness; the other is deviation from bear-
ings. We prefer the deviations from bearings because more directional
derivates can be calculated and thus the influence of aspect on soil can
be easily interpreted. We use the deviations from 0°, 45°, 90° and 135°
in this study.

2.2.1.2. Curvatures. Curvature is a measure of convexity or concavity
of terrain surface. It is often used to indicate areas of material removal
and areas of material accumulation. Curvature can be defined and so
computed in various ways. We used twomajor categories of curvature
measure.

a) Based on finite differences

The curvatures in this group are based on finite difference
equations given by Evans (1980). The curvature attributes used in
this study were selected from a system of curvatures introduced by
Shary et al. (2002): Mean curvature (MEC), Profile curvature (PRC),
Horizontal curvature (HOC), Minimal curvature (MIC), and Maximum
in the training area; VA: coverage in the validation area; (Behrens and Scholten, 2006a).

TR [%] VA [%]

in valleys and adjacent to water courses 5 4
ndy Pleistocene periglacial slope deposits covering
e (Middle Bunter)

32 34

ndy Pleistocene periglacial slope deposits covering elevation
e (Middle Bunter)

5 2

s rich in debris covering weathered sandstone (Middle Bunter) 32 32
deposits covering deep-weathered sandstone (Lower Bunter) 11 20
deposits covering weathered blocky sandstone (Middle Bunter) 12 5



Fig. 1. Investigation area and spatial distribution of soil types in the study area, Palatinate Forest, Germany.
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curvature (MAC). Interested readers are referred to Shary et al. (2002)
for details on these curvature measures.

b) Based on context approaches

Relative profile curvature (RPC)
Relative profile curvature is the ratio of twomean slope values: the

mean slope of all cells higher than the centre cell divided by the mean
slope of all cells lower than the centre cell (Behrens, 2003). Thus, it is a
measure of local mass balance.

Relative horizontal curvature (RHC)
Relative horizontal curvature is based on an analysis of the aspect

of the neighbouring pixels around a centre cell (Kleefisch and Köthe,
1993). If the aspect of a neighbouring grid cell is directly pointing into
the centre cell, a value of 100 is assigned to the corresponding cell,
Table 2
Groups of terrain attributes, based on thresholds and underlying algorithms.

Group Description

Local attributes EL Elevation a.s.l.
D Difference from aspect angle
SL Slope
CP Primary curvatures
CS Secondary curvatures

Regional and combined attributes RHP Relative hillslope position
PD Projected distance to stream
LE Local elevation above stream
RA Attributes based on contributing ar
whereas−100 is assigned if it points to the opposite direction. A value
of 0 is assigned if the aspect of a neighbouring cell is 90° to the
direction to the neighbouring centre cell. For all other angles, the
difference between these two angles is calculated and normalized
within the range of −100 and 100. Finally, the average is calculated
over all differences resulting in recognition of convergent positions if
the average is greater than 0, and divergent positions if the average is
below 0.

Waxing and waning slopes (WW)
Huber (1994) introduced the concept of waxing andwaning slopes

on the analysis of neighbourhood statistics. The approach is based on a
comparison of the difference in elevation between the centre pixel
and the minimum in a local neighbourhood and that of the centre
pixel and the maximum in the same neighbourhood. If the difference
Thresholds Parameters

EL
0, 45, 90, 135 [°] D0, D45, D90, D135

SLT, SLD
MEC, PRC, HOC MIC, MAC
WW, RPC, RHC, TR

1, 2, 5, 10, 20, 50 [ha] RHP, RHP1, RHP2, RHP5, RHP10, RHP20, RHP50
1, 2, 5, 10, 20, 50 [ha] PD1, PD2, PD5, PD10, PD20, PD50
1, 2, 5, 10, 20, 50 [ha] LE1, LE2, LE5, LE10, LE20, LE50

ea LS, CTI, CA



178 T. Behrens et al. / Geoderma 155 (2010) 175–185
from the maximum is smaller than that from the minimum, it is an
upper or waxing slope; otherwise, it is a toe or awaning slope. Waxing
and waning slopes (WW) are generally calculated on neighbourhoods
larger than 3×3 pixels (Huber, 1994). In this study, WW was calcu-
lated on the basis of a 7×7 pixel neighbourhood.

Topographic roughness (TR)
The approach to calculate topographic roughness is based on the

variation of slope and aspect within a local neighbourhood (Behrens,
2003). As generally all neighbouring pixel values are slightly different
from the values of the slope and the aspect grid are rounded to the
nearest integer. The variety (number of different values) is calculated
within a 7×7 pixel neighbourhood for both slope and aspect. Topo-
graphic roughness value for a given pixel is the product of the number
of different slope gradient values and the number of different aspect
values within the window.

2.2.2. Regional terrain attributes

2.2.2.1. Contributing area (CA). In this study, CA is computed based
on the multi-flow algorithm introduced by Quinn et al. (1991). This
variable is used both as a stand-alone attribute and as the basis to
calculate relative hillslope position, compound topographic index and
USLE LS-factor (see below). The algorithm uses the neighbouring
slopes in a 3×3 pixel neighbourhood to weigh the outflow of each cell
to its neighbours (Dietrich and Montgomery, 1998).

2.2.2.2. Projected distance to stream (PD). Projected distance to
stream is the Euclidian distance between the local pixel and the
closest pixel on the streamline network. The streamline network is
derived from the DEM using a so-called single-flow algorithm (Jenson
and Domingue, 1988). The level of detail of the stream network
depends on the threshold of flow accumulation used to define the
stream network (Behrens, 2003). We used 6 different thresholds,
namely 1, 2, 5, 10, 20, and 50 ha, to derive the streamlines for com-
parison and for scale analysis, based on the assumption that different
catchment sizes and hydrological processes have different impacts on
soil formation.

2.2.2.3. Local elevation (LE). Local elevation is the elevation dif-
ference between the elevation of a local pixel and the elevation of its
closest stream pixel. After delineating the streamline from the DEM,
the pixel values of the stream are replaced by the original elevation
values of the DEM. Afterwards, a nearest neighbour approach is used
to assign the elevation on the streamline to other non-stream pixels.
This elevation data layer is referred to as streamline elevation data
layer (sEL). Finally, the streamline DEM is subtracted from the original
DEM, resulting in a grid containing local elevation (e.g., MacMillan
et al., 2000; Behrens, 2003).

2.2.2.4. Relative hillslope position (RHP). Relative hillslope position
is a measure of relative distance between valley bottoms and ridges.
Two approaches for determining RHPwere used in this study. The first
approach, as introduced by Hatfield (1999), is related to local eleva-
tion. The calculation is based on the original elevation data layer (EL),
the streamline elevation data layer (sEL) and the crest elevation data
layer (cEL), which is created similarly to sEL, but using the elevation of
ridge lines (crest). The final equation is:

RHP = fðEL−sELÞ= ðcEL−sELÞg × 100 ð1Þ

The other approach (RHPCA), is to subtract the CA of the original DEM
and the CA calculated over an inverted DEM (Behrens, 2003). Thus, in
mid slope positions the values are close to zero. In upper slopes the
values are negative, whereas in toe slopes the resulting values are
positive.
2.2.3. Combined terrain attributes

2.2.3.1. Compound topographic index (CTI). The compound topographic
index, as originally introduced by Beven and Kirkby (1979), is defined
as:

CTI = lnðCA= tanðSLTÞÞ ð2Þ

Where SLT (Tarboton,1997) is the steepest (maximum) slope gradient
over a neighbourhood centred around a local pixel and CA is the
contributing area (Dietrich and Montgomery, 1998) of that pixel. This
index measures the balance of water accumulation and drainage over
a local neighbourhood around a given pixel.

2.2.3.2. USLE LS-factor (LS). The USLE LS-factor (Wischmeier and
Smith, 1978) is a well-known and important parameter. In this study
we use an approach modified for German mid-latitude landscapes
(Feldwisch, 1995).

For slopes b9% the S-factor is:

S = 0:063 + 10:461 × sinðSLDÞ ð3Þ

whereas for slopes N=9 % the RUSLE equation (McCool et al., 1987) is
used:

S = 16:8 × sinðSLDÞ−0:5 ð4Þ

The L-factor is then based on:

b = 11:16 × sinðSLDÞ= ð0:765 + 2:625 × sinðSLDÞÞ ð5Þ

m = b= ðb + 1Þ ð6Þ

L = ðCA= 22:13Þm ð7Þ

Finally the LS-factor is calculated bymultiplying the L- and the S-factor
grids.

2.3. The multi-scale approach

In terms of specific geomorphometry (Evans, 1972) and the nu-
merical description of continuous surface forms (Pike, 1993), most
techniques to derive terrain attributes are constrained by the reso-
lution of the DEM (Wood, 1996). Wood (1996) argues that the scale
implied by the resolution of DEM is not always appropriate in the
context of landscape characterization. We assume that this holds true
for digital soil mapping, as has been shown in other works (Behrens,
2003; Behrens et al., 2005, 2008; Smith et al., 2006; Zhu, 2008).

We applied square local neighbourhood averaging filters with sizes
of n×n pixels, where n is an odd number ranging from 3 to 31, to all
terrain attributes to investigate the influence of scale in digital soil
mapping systematically. This local averaging extends the feature space
by a factor of 14. Filtering is also applied to terrain attributes based on
different thresholds of contributing area (Section 2.2.2). Examples of
filtered terrain attributes are given in Fig. 2.

Other options to analyze and incorporate scale exist but were not
used in this study. One alternative method is to calculate terrain
attributes based on DEMs with different resolutions. This approach
can result in errors of the surface models (Wood, 1996) as well as
resampling problems within the prediction approach. Another alter-
native approach is to fit multi-scale quadratic approximations to
elevation values withinwindows of varying dimensions (e.g. Haralick,
1983; Wood, 1996; Smith et al. 2006). Compared to these two alter-
natives, the main technical advantage of the approach of local average
filtering used in the present study is that it can easily be applied to any
terrain attribute, regardless of the underlying algorithm.



Fig. 2. Examples to show the effect of filtering terrain attributes from a subset of the study area. Original terrain attributes (elevation, distance to stream (1 ha), relative position, and
slope) as well as filtered versions based on a 15×15 pixel window are shown.
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2.4. Feature selection

Feature selection aims to reduce the dimensionality of datasets by
eliminating redundant and/or noisy features (Liu and Motoda, 1998)
and is conducted for two main reasons: First, it gives a deeper insight
into the driving forces of a prediction – i.e. the soil-forming processes
of each soil class – and second, regarding data mining techniques, a
reasonable selection of features mitigates the “curse of dimension-
ality”. The curse of dimensionality, a term coined by Bellmann (1961),
points to the problem of highly dimensional data, yielding weaker
prediction results compared to datasets with a reduced feature space
(Pechenizkiy et al., 2003). Thus, these methods optimally fit our
problem of analyzing a high dimensional and highly correlated set of
terrain attributes that are produced using our multi-scale approach.

The importance of a feature, or the predictive power of a feature,
can be calculated in two ways – based on so-called filter or wrapper
approaches (John et al., 1994). A filter approach is carried out as a pre-
processing step of a prediction. It identifies the relevant features that
have a significant impact on the corresponding spatial distribution
of soil classes (Lai et al., 2006). In contrast to filter approaches, the
importance of features in wrapper approaches is calculated as the
result of multiple runs of a prediction algorithm based on changes
in the features training dataset. The most effective subset is then
generally used in the final predictions (Breiman, 1996).

Feature selection can be achieved in either supervised or unsuper-
vised manners. In the unsupervised case, classification for feature set
reduction is based on statistical similarity of the features. In the case of
supervised feature selection the influence of each feature is tested
against an existing sample set based on prediction results. Hence,
supervised feature selection is based on the feature importance,
whereas the unsupervised case is better described with statistical di-
mension reduction.

In this study we compare a selection of supervised and unsuper-
vised filter approaches of varying complexity as well as one wrapper
approach.

2.4.1. Tested feature selection approaches
A simple filter method to reduce dimensionality in an unsuper-

vised fashion is the Karhunen–Loeve-expansion or principal compo-
nents analysis (PCA). It is one of the most common feature extraction
approaches (Pechenizkiy et al., 2003). In addition to the classical PCA
we applied a semi-supervised PCA approach. In this approach we
calculated a separate PCA for each soil class in such a way that only
instances containing the corresponding soil class were used. We call
this approach class-PCA (cPCA).

To describe the ability of a numerical attribute to separate nominal
features like soil classes, ananalysis of variance approach (ANOVA) canbe
used as a linear, univariate, and supervised filter technique. Classification
tree algorithms based on this concept were developed by Loh and Shih
(1997) andKim and Loh (2001) (c.f. Section 2.5). In order to analyze each
terrain attribute independently, we implemented a decision stump (Iba
and Langley,1992) based on an ANOVA F-ratio. For feature selection each
terrain attribute is tested against each soil class. The final ranking of the
features for each soil class is based on the resulting F-values.

A more complex supervised feature selection method for both filter
and wrapper approaches applied in this study is based on multiple
predictions with varying feature subsets. Thus, the prediction accuracy
varies in each iteration based on the different combinations of features
used. A full-featured search over the entire feature space (N) using
heuristic search algorithms (Blum and Langley, 1997) would require 2N

iterations.We applied a stochastic optimization approach using random
subsets of the total number of features because a full-featured search
was not possible given the 608 features we had to work with. This
method is part of various ensemble prediction approaches (Ho, 1998;
Bay, 1999; Breiman, 2001; Skurichina and Duin, 2002; Lai et al., 2006).

Different approaches are possible to select an optimal performing
subset as thefinal set of predictors. Themost straightforward approach is
to select thebestperforming subset (Kohavi and John,1997),which is the
classical wrapper approach. Another approach is to average prediction
accuracies over the features and to select thebest performing features for
the final prediction. Additionally, for reasons of completeness, we also
compare a ranking based on the lowest prediction performances (filter
approach), where we also picked the best performing features.

In contrast to the supervised ANOVA filter approach described
above, which is applied on single features only, the random subspace
models can reveal non-linear relationships and possible interactions
between features (Zhao and Liu, 2007) when decision trees, artificial
neural networks or similar methods are used. A major disadvantage of
this method is the high computational costs (Forman, 2003; Blum and
Langley, 1997).

In this study, the parameter settings for the random subspace
approaches are:

– 500 iterations which seems to be enough as it shows that very high
accuracies can be obtained before all possible weak classifiers are
computed (Ho, 2002),



Table 3
Confusion matrix to compare mapped and predicted pixels as a basis for prediction
accuracy, precision, and recall (t=true; f=false).

Mapped
True False

Predicted True tt tf
False ft ff
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– a minimum of 100 instances in each terminal-node, an average
derived from Schmidt et al. (2008),

– unpruned trees as suggested for random forests by Breiman (2001)
and Breiman and Cutler (2004), and

– the square root of the number of features as suggested for feature
subset for random forests by Breiman (2001) and Breiman and
Cutler (2004).

All feature selection approaches used in this study return ordered
lists of features. Hence, criteria need to be applied to select a reduced
subset. In the case of PCA we used the Kaiser criterion or Eigenvalue-
rule (Kaiser, 1960). As we want to analyze terrain attributes and their
behaviour at different scales, we selected original terrain attributes
instead of the derived PCA components. Therefore, we picked all
terrain attributes with the highest Eigenvalue for each component as
final features for the prediction. Hence, the evaluation of PCA cannot
directly be compared with other studies using PCA as a feature ex-
traction technique.

For the ANOVA approach we analyzed all soil classes with the aim
of finding a threshold, where each soil class could be described by at
least two terrain features. The resulting F-value thresholdwas selected
to be 4000. This ensures that not too many features are selected for
soil classes, which reduces the problem of correlated features.

In the random subset approach, the number of features chosen in
the random subset method determines the size of the subset. In this
case it is the square root of 608, resulting in 25 predictors for each soil
class. Consequently, we compared the three possible random subset
approaches of feature ordering based on the first 25 top ranked
features. Thus, for the approach based on the lowest prediction
results, the “best of theworst” set is chosen, whichmight then contain
important features. To analyze possible further reductions we tested
the best features of each group of terrain attributes as described in
Section 2.2 to further reduce multicollinearity for the best performing
random subset approach.

2.4.2. Generated feature sets
Based on the approaches introduced above, the datasets used to

compare the different feature selection approaches and to analyze
scale dependency are:

Original datasets:
– All 38 unfiltered terrain attributes (oTA)
– All 608 terrain multi-scale attributes (msTA)

Datasets based on feature selection approaches:
– Principal components analysis based on msTA:

– Entire dataset (PCA)
– Separately for each soil class area only (cPCA)

– ANOVA approach based on msTA:
– All attributes for each soil class [F-valueN4000] (ANOVA1)
– The best attribute of each terrain attribute group for each

soil class [F-valueN4000] (ANOVA2)
– Random subset approach based on msTA:

– Best subset in the training area [maximum] (RSS1)
– Selection based on averaged prediction results [mean]

(RSS2)
– Selection based on worst prediction results [minimum]

(RSS3)
– The best attribute of each terrain attribute group for each

soil class based on the best performing approach out of
RSS1, RSS2, and RSS3 approach (RSS4)

2.5. Prediction and validation

For predictions we used a 10-fold cross-validated 1D CRUISE clas-
sification tree approach (Kim and Loh, 2001), which, among artificial
neural networks, was shown to be one of the best data mining based
prediction approaches in mapping soil classes (Behrens and Scholten,
2006a,b). CRUISE is based on an ANOVA approach for selecting the
best feature to split a branch of a tree and on a linear discriminant
analysis for split point selection. It was found to be superior to the
well-known CART (Breiman et al., 1984) algorithm (Kim and Loh,
2001). We decided to use the CRUISE classification tree in this study to
have a consistent methodological framework for the linear and non-
linear supervised feature selection as well as for the prediction ap-
proach, as both methods are based on an analysis of variance.

To validate the results in the spatial domainwe used the F1-measure
(van Rijsbergen,1979) to compare the predictions for training aswell as
for independent validation.

The F1-measure is calculated as the harmonic mean of precision
and recall based on the confusion matrix (Table 3):

Precision:

P = tt = ðtt + ftÞ ð8Þ

Recall:

R = tt = ðtt + tf Þ ð9Þ

F1-measure:

F = 2 × ðP × RÞ= ðP + RÞ ð10Þ

To provide a single measure for the ability to generalize, i.e. a small
difference between the F1-measures in the training (F1T) and the
validation area (F1V), as well as for the validation accuracy, we pro-
pose the prediction quality measure Q, calculated as follows:

Q = F1V × ð1−ðF1T−F1VÞÞ ð11Þ

Thus, Q weighs the validation accuracy against the generalization
ability. If both the training and validation F1-measure are high, the
prediction approach can be recommended. All measures range be-
tween 0 and 1. High values indicate good model performance.

3. Results and discussion

The discussion of results is primarily based on the following three
tables (Tables 4–6). Table 4 contains the selected features and their
corresponding scales based on the different feature selection
approaches. Tables 5 and 6 show the prediction results for each
selected feature subset as well as the number of selected features.

All approaches were evaluated on the basis of prediction accuracy,
which will be discussed first (Section 3.1). The results of the feature
selection approacheswill thenbediscussed in termsof selected features,
algorithms, scale dependency, and soil classes (Sections 3.2–3.4).

3.1. Overall prediction accuracy

Based on the F1-measures in the validation area, the RSS4 approach
is judged to offer the best predictive performance (Table 5). ANOVA2
and RSS4 are the best feature subset selection approaches based on
the prediction quality measure Q (Table 6). Consequently, most
interpretations are based on these two datasets. The prediction results
of the RSS4 dataset range from 0.44 to 0.75 in the validation area



Table 4
Best performing features and corresponding spatial filter sizes resulting from the applied feature selection approaches.

PCA: Entire dataset (max. 20 attributes); cPCA: class-PCA for each soil class (max. 20 attributes); ANOVA1: All significant attributes (F-valueN4000); ANOVA2 (bold, italic): best
attributes for each group of terrain attributes based on ANOVA1; RSS4: best attribute of each terrain attribute group based on best performing RSS 1–3 approaches.; S1–S6: soil classes.
The shading separates the terrain attribute groups and feature selection approaches for better readability.

Table 5
Prediction results (F1-measure) for the different datasets for all soil classes (S1–S6).

S1 S2 S3 S4 S5 S6 Mean

TR VA TR VA TR VA TR VA TR VA TR VA TR VA

msTA 0.6 0.51 0.78 0.74 0.83 0.35 0.78 0.6 0.76 0.49 0.82 0.50 0.76 0.53
oTA 0.56 0.31 0.77 0.73 0.84 0.50 0.79 0.61 0.75 0.41 0.81 0.45 0.75 0.50
PCA 0.03 0.00 0.77 0.67 0.77 0.22 0.67 0.48 0.55 0.26 0.65 0.10 0.57 0.29
cPCA 0.55 0.40 0.76 0.66 0.81 0.28 0.78 0.58 0.76 0.43 0.80 0.45 0.74 0.47
ANOVA1 0.45 0.46 0.73 0.69 0.80 0.45 0.77 0.58 0.75 0.42 0.81 0.45 0.72 0.51
ANOVA2 0.46 0.47 0.72 0.67 0.80 0.48 0.77 0.58 0.72 0.47 0.80 0.48 0.71 0.53
RSS1 0.64 0.51 0.80 0.72 0.87 0.31 0.81 0.57 0.76 0.43 0.84 0.35 0.79 0.48
RSS2 0.59 0.47 0.76 0.73 0.84 0.48 0.75 0.53 0.77 0.46 0.81 0.47 0.75 0.52
RSS3 0.57 0.51 0.75 0.7 0.82 0.47 0.73 0.54 0.77 0.49 0.81 0.46 0.74 0.53
RSS4 0.56 0.50 0.81 0.75 0.83 0.44 0.77 0.56 0.75 0.49 0.80 0.48 0.75 0.54
Mean 0.50 0.41 0.77 0.71 0.82 0.40 0.76 0.56 0.73 0.44 0.80 0.42 0.73 0.49

msTA: all 608 terrain attributes frommulti-scale digital terrain analysis; oTA: all 38 original unfiltered terrain attributes; PCA: entire Dataset (max. 20 attributes); cPCA: class-PCA for
each soil class (max. 20 attributes); ANOVA1: all significant attributes; ANOVA2: best attributes for each group of terrain attributes (if significant); RSS1: 25most predictive attributes
based on prediction maximum; RSS2: 25 most predictive attributes based on prediction mean; RSS3: 25 most predictive attributes based on prediction minimum; RSS4: best
attribute of each terrain attribute group based on best performing RSS 1–3 approaches.; TR: training dataset; VA: validation dataset.
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Table 6
Ranked mean prediction quality (Q) and number of selected features for all datasets tested.

ANOVA2 RSS4 msTA RSS3 ANOVA1 RSS2 oTA RSS1 cPCA PCA

Q 0.43 0.43 0.42 0.42 0.41 0.41 0.39 0.35 0.35 0.22
Features 2–8 6–9 608 25 3–29 25 38 25 16–20 19
% of msTA 0.3–1.3 1–1.5 100 4.1 0.5–5.8 4.1 6.3 4.1 2.6–3.3 3.1

msTA: all 608 terrain attributes frommulti-scale digital terrain analysis; oTA: all 38 original unfiltered terrain attributes; PCA: entire Dataset (max. 20 attributes); cPCA: class-PCA for
each soil class (max. 20 attributes); ANOVA1: all significant attributes; ANOVA2: best attributes for each group of terrain attributes (if significant); RSS1: 25most predictive attributes
based on prediction maximum; RSS2: 25 most predictive attributes based on prediction mean; RSS3: 25 most predictive attributes based on prediction minimum; RSS4: best
attribute of each terrain attribute group based on best performing RSS 1–3 approaches.

Fig. 3.Mean relevant filter sizes for each soil class based on the ANOVA approaches and
RSS4. Additionally the area / perimeter ratio (APR, divided by 5) for each soil class is
shown.
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(Table 6). With an average of 0.54 for validation, the results are almost
20% better than those reported by Behrens and Scholten (2006a,b),
whichwere based on a different and unscaled terrain attribute set. Yet,
both accuracies (training and validation) are within the range of
accuracy achieved by similar prediction approaches and better than
those based on conventional field soil surveys (Zhu et al., 2001).

3.2. Feature selection algorithms and feature count

Technically, the most interesting result of the feature selection
evaluation is the number of selected features in relation to the
prediction results (Table 6). The most condensed datasets (ANOVA2
and RSS4) return the highest Q-measures. Furthermore, RSS4 contains
about 2/3 of the features chosen by ANOVA1 (Table 4) revealing a
relatively high degree of similarity. However, the prediction results for
the entire dataset are similar to the ones obtained using RSS3, RSS4,
and ANOVA2 (Table 4), which return the smallest amount of features
(Table 6).

As the complete extended feature set performs competitively, the
CRUISE prediction approach must be regarded as very stable with
respect to highly correlated and irrelevant features – at least for
datasets with many instances. Thus, it can be stated that concerning
prediction accuracy, feature selection is not important when stable
prediction approaches like CRUISE are used. On the other hand, the
ANOVA1 approach, containing the same attributes as ANOVA2, plus
some additional (correlated) ones, returns (slightly) weaker results.
The same pattern can be seen with the RSS approaches. First, the
condensed datasets selected based on the RSS4 approach, perform
best. Second, the maximum (wrapper) approach (RSS1) appears to
achieve a good fit to the training data but poor prediction of the
validation data, as indicated by the respective F1 measure. This can be
interpreted as overfitting.

With respect to PCA, the Eigenvalue-rule (Kaiser, 1960) returned
about 30 features for each soil class. Because the relevance describing
the dataset based on the Eigenvalues is relatively low after 15 to 20
features, we generally used the first 20 features only. Additionally, as
some terrain attributes appeared more than once, the final number of
features can be less than 20 (Table 6).

As found in other studies (Pechenizkiy et al., 2003), the
unsupervised PCA approach turned out to be the worst technique in
terms of selecting optimal features for all six soil classes. The semi-
supervised class-PCA approach performed slightly better (Tables 5
and 6). As shown in Table 4, both PCA approaches select more local
terrain attributes than regional ones (cf. Section 2.2) compared to the
supervised approaches. This is evident especially for the aspect
attributes (D0, D45, D90, and D135) and indicates that PCA has a
serious drawback, as it gives high weights to features with a high
variability, irrespective of whether they are useful for classification or
not. As a result, the chosen features might have poor discriminating
power (Pechenizkiy et al., 2003). The ANOVA approaches are
recommended for evaluating feature importance as they require the
least processing time and also respect Occam's razor by identifying the
fewest number of predictor variables. The selection of attributes and
the prediction achieved using ANOVA are faster than a prediction
approach using all attributes and much faster than using RSS.
In summary, it can be stated that only about 1% of the 608 terrain
datasets was needed to achieve the most effective predictions.
Furthermore, all supervised approaches worked much better than
the alternative unsupervised and semi-supervised PCA approaches.
All linear approaches were competitive with the non-linear feature
selection approaches. Thus, non-linearity and feature interaction
appear to not be pronounced in this dataset. Interestingly, the RSS3
approach – based on the “best of the worst” features of the ensemble
approach, is comparable to the best approaches, whereas the best
feature subset, based on the wrapper approach, is overfitted.

3.3. Scale

The most important result of this study is that scale has an
influence on prediction accuracy, as illustrated in Table 4, where the
selected features and the corresponding relevant scales are listed. It is
remarkable that only 7% of the parameters chosen are unfiltered
(ANOVA1, RSS4).

As both PCA approaches are not fully supervised and perform
significantly worse (Section 3.2), it is not appropriate to discuss the
relevant scales for soil prediction using these two approaches. Thus,
the discussion of scale focuses on the best performing approaches,
ANOVA and the RSS.

Although filter sizes are different in most cases for single attributes
between the ANOVA approaches and RSS4 (Table 4), the mean spatial
ranges for the soil classes (except for S6) are similar for both
approaches (Fig. 3). To some degree the mean spatial ranges correlate
with the spatial shapes of the soil classes. This is shown by the
corresponding area / perimeter ratios in Fig. 3. For example, soil
classes with an elongated shape, such as S1, correspond to small filter
sizes, whereas larger units with a more “areal” character, such as S6,
respond to larger filter sizes.

However, even if the mean spatial ranges can be interpreted, it is
important to filter each terrain attribute with different filter sizes as
each attribute has its highest predictive power at different filter sizes
(Table 4) for different soil classes and for different predictionmethods.
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This is one of themost important results. It shows that evenwithin one
soil class different filter sizes are needed for different terrain attributes
to achieve optimized predictions. Thus, it is important to test all
filtered attributes on all soil classes of a map separately.

The ANOVA approach is considered most suited to visualizing
the changes in predictive power over different filter sizes as the ANOVA
F-value is reported for each attribute individually. Fig. 4 shows the
ANOVA F-values plotted against the filter sizes in separate diagrams for
each soil class. This clearly demonstrates the importance of multi-scale
digital terrain analysis in predicting soil classes. For each soil class
different scales anddifferent attributes are identified asmost important.

Table 4 reveals that the neighbourhood range in the ANOVA dataset
is, in most cases, negatively correlated to the contributing area thresh-
olds in hectares used to calculate RHP, PD, and LE. For smaller con-
Fig. 4. ANOVA F-values plotted against filter sizes (n n pixel) for all terrain a
tributing areas larger filter sizes are required. Hence, it can be stated that
a larger threshold for the contributingareahas the sameeffect as a larger
filter size. This emphasizes the existence of the influence of scale.
Furthermore, this also indicates that the influence of scale does not exist
in a random fashion. Instead, it is related to soil-forming processes and
the general geomorphometry at the landscape scale.

3.4. Soil

From a soil science perspective, the interpretation of the selected
features, their corresponding scales and the general prediction
performance is most interesting. As shown in Fig. 4 and Table 4, fluvial
soils (S1) can be predicted best using only two attributes: the
compound topographic index and the relative profile curvature.
ttributes selected by the ANOVA2 approach and all soil classes (S1–S6).
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Interestingly, the accuracy in the validation area only increases slightly
when all 608 predictor data sets are used. This demonstrates the high
predictive power of these two attributes alone. The importance of
these two variables can easily be interpreted in terms of their role in
soil formation, as both were developed to describe soil–water and
mass-movement relationships (Beven and Kirkby, 1979; Behrens,
2003). Most of the other soil classes can be described by a mixture of
regional, local, and combined terrain attributes (Fig. 4). As the study
area is a cuesta landscape, terrain position attributes (LE, RHP, and PD)
become most important as they discern the vertical structure of the
landscape. The vertical structure of the area is highly influenced by
geology, whichwas not used as a predictor in this study (Schmidt et al.,
2008). Slope plays an important role for 3 soil classesmainly occurring
on steeper slopes.

The PCA approaches for feature selection returned comparatively
weak prediction accuracies for four soil classes. Only for soil classes S2
and S4 PCA shows reasonable results. Two reasons might explain this
fact: First, both soil classes are generally easy to predict as they show
the highest F1-measures in the validation area for all feature selection
approaches. S2 are Haplic Cambisols occurring on steep slopes, while
S4 are Haplic Podzols, which are located on the flat hilltops and thus
contain a higher Loess component due to lower erosion rates. Second,
both soil classes comprise about 30% of the training and the validation
area each (Table 1). Thus, due to this large spatial extent, the selection
of features, which describe the structure of the dataset (as derived by
PCA) seems to be relevant for prediction, or at least does not seem to
have a negative influence.

Concerning soil classes S3, S4, S5, and S6, all of which occur on
steeper slopes, terrain attribute EL returns the highest ANOVA F-values
(Table 4, Fig. 4) indicating their relation to geological settings in this
area.

Another interesting aspect concerning filter sizes is, that for some
soil classes (i.e. S2 and S4), nearly all relevant attributes vary
substantially in optimal scale in terms of the ANOVA F-value, whereas,
for some other soil classes (i.e. S1 and S3), this effect is comparatively
moderate. This again seems to be related to the shape of areas occupied
by these soil classes. S1 andS5have the lowest area/perimeter ratio of all
soil classes (Fig. 3); the smallest soil classes S1 and S3 (Table 1) return
theweakest prediction results (Table 5). Hence, thefilter effect increases
in cases where the area of the soil class is large compared to the
resolution of the DEM. In cases where the shape of the soil class is
elongated and/or the soil class is comparatively small, the beneficial
effect of the multi-scale approach is limited.

Based on the highest prediction accuracies obtained for soil classes
2 and 4, it can be hypothesized that these soil classes can be predicted
well on the basis of terrain attributes only, whereas soil classes S1 and
S3 might need other additional predictors to achieve best prediction
results.
4. Conclusions

Several conclusions can be drawn based on the spatial data mining
framework introduced in this study:

• multi-scale digital terrain analysis is an important tool for data
mining based digital soil mapping approaches as it helps increase
prediction accuracy compared to standard digital terrain analysis,

• each soil class is best predicted by different combinations of features
filtered at different scales,

• only a small number of features are typically required to achieve
good predictions,

• the selection of features in this way appears to aid the interpretation
of the data with respect to soil formation,

• supervised feature selection approaches are superior to unsuper-
vised ones,
• simple linear feature selection approaches are superior to much
more complex approaches, and

• for straightforward predictions, multi co-linearity does not decrease
prediction results substantially if robust algorithms, such as CRUISE,
are used.

With respect to future digital soil mapping studies, it is important
to validate these results in different soil landscapes. In the context of
scale, wavelet analysis (Lark and Webster, 2001; Lark, 2006) should
also be considered as an analytical tool. Furthermore, the proposed
framework needs to be tested on soil attributes where similar results
are expected (Behrens, 2003). Additional data mining and feature
selection approaches need to be tested and compared. The interesting
point in this respect is that the feature selection approaches applied
can be combined with “black box” approaches like artificial neural
networks. Feature selection, in combination with instance selection
approaches (Schmidt et al., 2008), might help to further reduce
model complexity while decreasing computation time and improving
prediction accuracy.

Finally, we conclude that multi-scale and feature selection
approaches have not yet received the attention they deserve in soil
science literature. Both offer the possibility to learn more about soil
formation in a spatial context and to increase the accuracy of digital
soil mapping.
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