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Summary

We present a new digital terrain analysis framework for digital soil mapping, referred to as contextual elevation
mapping (ConMap). In contrast to common regression approaches based on features from digital terrain
analysis, ConMap is not based on standard terrain attributes, but on elevation differences from the centre
pixel to each pixel in circular neighbourhoods only. These differences are used as features in random forest
regressions. We applied and validated the framework by predicting topsoil silt content in a loess region of
1150 km2 in Rhineland-Palatinate and Hesse, Germany. Three hundred and forty-two samples and a 20-m
resolution digital elevation model were used for this illustration and validation. We compared ConMap with
standard and multi-scale terrain analysis approaches as well as with ordinary kriging interpolations. Cross-
validation root mean square error (RMSE) decreased from 16.1 when the standard digital terrain analysis was
used to 11.2 when ConMap was used. This corresponds to an increase in variance explained (R2) from 15
to 61%. Even though ordinary kriging out-performed standard terrain analysis as well, the variance explained
was 6% smaller compared with that using ConMap. The results show that the geomorphic settings in the study
area must have induced the spatial trend, which can be accounted for by ConMap over different scales. We
conclude that ConMap shows great potential for digital soil mapping studies.

Introduction

There are a number of studies on digital soil mapping that
document successful attempts to interpolate and extrapolate soil
properties and soil classes (Zhu et al., 2001; McBratney et al.,
2003; Behrens & Scholten, 2006). Many of these studies rely
on terrain attributes (McBratney et al., 2003), indicating the
importance of topography as a soil-forming factor (Jenny, 1941;
Gerrard, 1981). However, a discussion on integrating topography
at larger spatial scales has been limited in digital soil mapping
research (Lagacherie, 2008).

In pedology, soilscapes are characterized by a typical spatial
pattern and typical taxonomic relationships of soils, as well as
by their relationship to landform or landscape characteristics at
different scales (Hole, 1978; Gerrard, 1981). This relationship is
of great importance for digital soil mapping at the landscape scale,
as geomorphic settings in larger neighbourhoods might influence
local climate conditions, such as precipitation patterns. Hence, soil
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properties might be different even if all other state factors such as

local relief and parent material do not change.

In order to take the geomorphic settings over larger neighbour-

hoods into account, measures of local and regional geomorphic

context are necessary (MacMillan, 2004). For extrapolating soil

mapping units or soil properties using pedometric approaches it

is therefore important to incorporate information about the soil-

forming factors not only from the specific point where a soil class

or a specific soil property value is measured, but also from its

larger spatial arrangement.

There are two major reasons for developing a new terrain-

based approach for digital soil mapping. The first is the variety of

algorithms for deriving terrain attributes such as slope, curvature

or contributing area available. Slope, as the most prominent

example, can be calculated in many different ways on the basis

of grid datasets (e.g. Evans, 1980; Zevenbergen & Thorne, 1987;

Wood, 1996). All approaches show different results. Hence, in

applied digital soil mapping several problems arise and different

soil properties might be sensitive to different algorithms of

the ‘same’ terrain attribute. Thus, multiple versions of one

terrain attribute have to be tested in one regression approach.
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Additionally, various special software packages are needed and
various data formats have to be handled.

The second reason for developing a new terrain-based concept is
that straightforward approaches for handling multi-scale variations
in digital soil mapping are missing (Lagacherie, 2008). In contrast
to local terrain attributes such as slope, calculated on the basis
of local 3 × 3 pixel neighbourhoods, values of regional terrain
attributes, such as contributing area, are determined over larger,
irregular surface areas. Hence, a combination of both types of
terrain attributes is generally recommended. However, these types
of terrain attributes can only be used to describe soil variations
caused by gravitational processes on a hillslope (i.e. only the
site and the catena scale are covered). Therefore, standard terrain
analysis is limited when larger geomorphic arrangements influence
soil properties at a specific point in a landscape.

Existing approaches used to account for multiple scales can be
divided into three groups: (i) those that derive terrain attributes
from different neighbourhood sizes, (ii) those that apply filters to
digital elevation model (DEM)-derived attributes, and (iii) those
based on wavelet analysis. These approaches are now briefly
described.

Some terrain attributes based on context filters such as
‘elevation percentile’ (Gallant & Hutchinson, 2008) can easily be
calculated on the basis of different neighbourhood sizes and thus
account for larger scales (Behrens, 2003). Gallant & Hutchinson
(2008) recommend setting the neighbourhood radius to the size
of the average hillslope length. Smith et al. (2006), in a similar
method to Wood’s (1996), used variable neighbourhood sizes to
derive local terrain attributes such as slope and aspect based
on quadratic approximations. Zhu (2008) and Zhu et al. (2008)
examined the sensitivity of computed terrain derivatives to the
combined effect of DEM resolution and neighbourhood size.
Moran & Bui (2002) applied an approach to incorporate the
spatial context by using an adaptive filtering scheme based on
the analysis of local variograms. The resulting adaptive filter with
variable window sizes was then applied to the DEM. Behrens et al.
(2005) and Grinand et al. (2008) used averaging filters on terrain
attributes to incorporate contextual spatial information. Behrens
et al. (2009) used this approach for a systematic analysis of scale.
Lark (2007) and Mendonça-Santos et al. (2007) demonstrated the
ease of use of wavelets to integrate different spatial scales in
the mapping process. However, these studies were not directly
focussing on multi-scale terrain variations. All studies show
that incorporating spatial context improves prediction results and
that the accuracy of the digital soil mapping models can vary
significantly depending on scale.

The methods mentioned above cannot be compared with each
other directly. The averaging-filter approaches and the wavelets
approach can be applied on any terrain attribute, whereas the
extension of quadratic approximations is only suitable for local
terrain attributes such as slope, aspect or curvature (Wood, 1996).
A general problem that all three groups of approaches have in
common when integrating larger scales is that the approaches
are either complex or specific. Additionally, only indirect and

non-directional information is generated at different scales, and
thus there are no direct measurements of surface properties and
processes in larger areas. However, directional information may
be important if a factor influencing soil spatial distribution has
a directional component such as wind direction. The interaction
between geomorphology and such factors could result in a trend
in soil properties.

To overcome these constraints, we developed a new digital
terrain analysis framework for digital soil mapping, which is
based on spatial data-mining using contextual elevation data, and
named ConMap. The main objective of ConMap is that a range
of spatial neighbourhoods can be analysed on the basis of very
simple topographic indicators. Therefore, it comprises complex
surface function approximations described using standard terrain
analysis as well as factors in the geomorphic arrangement over
larger neighbourhoods.

Materials and methods

Study area and datasets

To test the ConMap approach we predicted topsoil silt content for
an area of approximately 1150 km2. The study area is located
in Rhineland-Palatinate at the border with Hesse in Germany
(Figure 1). It covers the transition from the Upper Rhine Graben
to the Middle Rhine Valley region. The central region covering
the sample locations comprises the northern part of the wine-
growing and loess-covered region ‘Rhine-Hesse’. The surrounding
area comprises a second wine-growing and loess-covered region,
the ‘Rhinegau’, and parts of the Taunus mountains in Hesse, and
of the Hunsrück mountains in Rhineland-Palatinate. The loess
regions, with an average elevation of 200 m above sea level,
are located on the leeward sides of the surrounding mountains,
which have elevations up to 700 m in the study area. They
are relatively warm and dry, with mean annual precipitations
of 500–550 mm. In contrast, precipitation in the mountainous
regions rises up to 850 mm. The soils found in this area are
therefore diverse, ranging from Luvisols in the loess area to
Cambisols and Podzols in the mountainous regions, which are
dominated by quartzite. The loess, which was deposited in the
last glacial period in the Pleistocene epoch (Würm glaciation),
originates from the surrounding riverbeds (Figure 1), especially
from the Rhine-Main lowlands (Schönhals, 1996). Because of
the strong influence of loess, this region is considered as an
optimal test case for a contextual mapping approach, as topsoil
silt content is a function of regional loess translocation under
periglacial conditions. The loess distribution is mainly driven by
local climate characteristics of the wind and precipitation patterns,
which are influenced by the geomorphic settings in the study area
at a regional scale. Additionally, subsequent Holocene erosion
and accumulation processes are of importance, which are again
functions of geomorphic settings and precipitation patterns, as well
as land use. The latter is not considered in this study.

We mapped topsoil silt content of the 0–10 cm-depth interval
on the basis of 342 samples. Samples were collected in the 1990s
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ConMap and digital soil mapping 135

Figure 1 Study area (Rhineland-Palatinate/Hesse, Germany) with landscape units. The core rectangle shows the final prediction area; the surrounding area
represents the buffer of 600 pixels (12 000 m) required for ConMap predictions.

as part of soil surveys at a scale of 1:25 000. Information about
sampling schemes, positional accuracies and measurement errors
is not available. The spatial distribution of topsoil silt content
shows the smallest values (<5%) in the Rhine-Main lowlands
and the largest values (>80%) in the eastern part of Rhine-Hesse
(Figure 2).

Even though all samples were located in Rhineland-Palatinate,
the DEM used in this study also covers parts of Hesse. Therefore,
we merged the two DEMs of Rhineland-Palatinate and Hesse. As
the resolutions were different (10 m in Rhineland-Palatinate and
20 m in Hesse), we re-sampled the 10-m DEM to a resolution of
20 m before merging. The vertical accuracy for both DEMs is ±
0.5 m.

Contextual elevation mapping; ConMap

The approach. ConMap is based on the differences in elevation
from each pixel in a circular neighbourhood to the centre pixel.
The data are stored in a table in X, Y, Z1, Z2, . . . Zn format,
where X and Y are the geographical coordinates and Z1 –Zn are

the columns for the elevation differences. The differences are
calculated for every pixel over the study area and are directly used
as features (independent variables; predictors) without any further
mathematical or statistical processing in the learning approach to
discern the relationships between these differences and the soil
property in question through the sample points.

In contrast to common digital soil mapping studies with the
ConMap approach, we did not use standard terrain attributes as
features in the regression approach, but more simple topographical
indicators (the elevation differences computed above). The use
of such simple indicators is the major difference and the major
advantage of the method compared with common terrain attributes
because no complex mathematical functions are used and no
decision has to be made as to which specific algorithm to use
for computing the terrain attribute.

Another advantage is the ability to capture contextual infor-
mation by simply extending the neighbourhood size in which
elevation differences are calculated. The neighbourhood used can
be extended to any size to include regional surface shapes without
increasing mathematical complexity. The size is only restricted to
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Figure 2 Interpolation and prediction results of topsoil
silt content; (a) ordinary kriging; (b) digital terrain
analysis; (c) ConMap.

the extent of the DEM available. As all neighbourhood sizes are
included in one training dataset, ConMap comprises local surface
functions as well as spatial arrangements of broader geomorpho-
logic entities in larger spatial contexts.

To determine the optimal size of the moving window (the
neighbourhood), which is analogous to the optimal integration of
different scales, and to analyse the change in prediction accuracy
in relation to different scales, we used a stepwise approach over
different circular neighbourhood sizes. Because of the size of
the study area, we compared neighbourhood radii of ra = 2,
5, 10, 20, 40, 60, . . ., 600 pixels, which corresponds to a

maximum diameter of 24 km based on a resolution of 20 m. Using
large neighbourhoods has two major limitations: (i) when the
neighbourhood is too large it will run into the boundary of DEM,
and (ii) the number of features constructed, which is equivalent
to the number of pixels in the circular neighbourhood, can be
very large. For example, a radius of 100 pixels would result in 31
416 features. The problem of multicollinearity can occur and the
principle of parsimony has to be considered.

Reduction of the contextual spatial feature space. Spatial
density functions can be applied to reduce the large feature space,
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Figure 3 Spatial contextual moving window kernels for different spatial
density sampling functions of G45◦ , G22.5◦ and G11.25◦ for a radius of
30 pixels.

which would emerge if all pixels in large neighbourhoods were
taken into account. This can be achieved if pixels more remote
from the centre pixel are only accounted for sparsely. Many
spatial sampling approaches to solve this task seem reasonable.
In this study we tested three geometrical approaches (G) where
only those pixels were sampled that form rays at certain angles,
originating from the window centre in a star-shaped manner.
We chose 45◦, 22.5◦ and 11.25◦ intervals (Figure 3). Hence, the
amount of features (d) per kernel is a function of the radius (ra)
expressed as the number of pixels (Equations 1–3):

G45◦ : d45 ≈ 4ra + 4
ra√

2
, (1)

G22.5◦ : d22.5 ≈ 4ra + 4
ra√

2
+ 8

ra

1.0824
, (2)

G11.25◦ : d11.25 ≈ 4ra + 4
ra√

2
+ 8

ra

1.2027

+ 8
ra

1.0824
+ 8

ra

1.0196
. (3)

Because of the fixed pixel size and partial overlaps of
neighbouring rays near the centre pixel, these formulae must
be regarded as approximations. Compared with a neighbourhood
where all pixels are included this leads to a reduction (red ) of the
feature space (%) according to:

G45◦ : red45 ≈
(

1 − d45

π∗ra2

)
∗100, (4)

G22.5◦ : red22.5 ≈
(

1 − d22.5

π∗ra2

)
∗100, (5)

G11.25◦ : red11.25 ≈
(

1 − d11.25

π∗ra2

)
∗100. (6)

For a radius of 100 pixels, the G45◦ neighbourhood consists of
683 features, which is a reduction of 97.8% compared with the
31 416 features of the full neighbourhood.

Spatial prediction and analysis using the random forests
approach. In recent years, techniques for combining multiple
predictions, known as ensemble approaches, have become very
popular, as ensemble predictions are generally more accurate than
individual predictions (Maclin & Opitz, 1997). Ensembles are
aggregations of multiple predictions often based on changes in the

training dataset resulting from re-sampling. Two intuitive, simple-
to-implement, yet powerful approaches are bagging (Breiman,
1996) and the random subspace method (Ho, 1998). Bagging
is an instance (or sample)-based approach where multiple
predictions on individual bootstrap replicates (random sampling
with replacement; Efron & Tibshirani, 1993) of the original dataset
are averaged. The random subspace method is a feature-based
approach where averaging is performed over multiple randomized
feature subsets.

The random forests approach (Breiman, 2001) is a combination
of both techniques where multiple classification or regression
trees (Breiman et al., 1984) are generated. For regression the
final prediction is the average of the suite of individual tree
outputs (Breiman, 2001). The random forests model has been
applied in digital soil mapping by Grimm et al. (2008) and various
other environmental mapping applications (e.g. Cutler et al., 2007;
Peters et al., 2007). We used the ‘Random Forest’ package (Liaw
& Wiener, 2009) for the R statistical language (R Development
Core Team, 2009).

The random forests approach provides options to analyse feature
importance (Breiman, 2001). Therefore, each feature is randomly
permuted at each split and the rate of change of the out-of-bag
(OOB) data left out in each bootstrap sample when generating a
single tree in the forest) error compared with the original feature
is used as an indicator for its importance (Breiman, 2001; Grimm
et al., 2008). As this measure is tested against the independent
OOB datasets it does not over-fit (Prasad et al., 2006) and it
is unbiased towards different state spaces of the predictors if
continuous variables are used solely (Strobl et al., 2007), as in
the present study.

Optimization. To optimize the random forests model, we sys-
tematically tested different parameter settings in a grid- or hyper-
learning approach (Schmidt et al., 2008). The parameter that we
optimized was ‘mtry’, which specifies the number of variables
selected randomly at each split in a tree. If all variables are tested
for each split, random forests is similar to an ensemble of bagged
trees, as no random feature subsets are used.

Validation

Accuracy measures. Begleiter & El-Yaniv (2008) argue that
in order to obtain an honest assessment of the total system’s
performance, both the estimation of mtry and the accuracy
estimation of the supervised training should be embedded within
a cross-validation procedure (Kohavi, 1995). Therefore, we used
a 10-fold cross-validation in this study to avoid over-fitting and
to handle the lack of parsimony (McBratney et al., 2003) arising
from the large number of features generated using ConMap. The
root mean square error (RMSE) was used to determine the optimal
model parameters for ConMap:

RMSE =
√√√√ 1

N

N∑
i=1

(Xi − Yi)
2, (7)
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where Xi are the observed values and Yi are the predicted values.
We also report the corresponding coefficient of determination
(R2):

R2 =

(
N∑

i=1
(Xi − X)(Yi − Y)

)2

N∑
i=1

(Xi − X)2
N∑

i=1
(Yi − Y)2

. (8)

As Random Forest relies on multiple random components in
model building and cross-validation is also based on randomized
data partitioning, we report average prediction accuracies of
three independent model runs and the corresponding standard
deviations.

Comparison with standard and multi-scale terrain analysis.
We compared the ConMap approach with standard, as well
as with the multi-scale terrain analysis approaches introduced
by Behrens et al. (2009), and using the following terrain
attributes, which are described in detail in Behrens et al. (2009):
elevation, steepest slope, deviation from bearing (0◦, 45◦, 90◦

and 135◦), mean curvature, minimum curvature, maximum
curvature, relative profile curvature, relative horizontal curvature,
topographic roughness, contributing area, compound topographic
index, relative hillslope position, local elevation and distance to
channels. The same prediction and validation approaches as used
for ConMap were applied. In contrast to ConMap, we carefully
pre-processed the DEM in terms of filtering noise and filling sinks
and pits.

In the comparison with the multi-scale approach introduced
by Behrens et al. (2009), calculation times limit the maximum
neighbourhood size that can be tested. For example, calculating the
average for a circular neighbourhood with a diameter of 24 km for
one single terrain attribute in the study area takes approximately
70 hours on a 3 GHz PC using ArcView GIS. Compared with
this, generating both the training and the prediction datasets for all
neighbourhood sizes for ConMap takes approximately 40 hours.

Even though this is based on a multi-threaded version of
ConMap using four CPU cores instead of the single core filtering
approach, filtering is computationally much more demanding. As
different radii need to be calculated for all terrain attributes,
the filter approach is not reasonably applicable for such large
neighbourhoods. Because of these computational limitations we
used only the following filter sizes for the multi-scale approach:
140 × 140, 300 × 300, 460 × 460 and 620 × 620 m. This size
is also comparable to the average hillslope length in the area,
as recommended by Gallant & Hutchinson (2008) for contextual
terrain attributes, as well as to the filter sizes tested in the study
by Behrens et al. (2009). However, the maximum extent is not
comparable to the ConMap approach.

Comparison with spatial interpolation using kriging

Because of the visible spatial trend in the topsoil silt-distribution
in the sample dataset (Figure 2a) we compared ConMap with

ordinary kriging (Goovaerts, 1997) as an additional candidate
prediction method. Ordinary kriging is one of the most frequently
used geostatistical estimators (Siska et al., 2005) that yields
accurate results (Moyeed & Papritz, 2002). We used the gstat
library (Pebesma, 2004) for the R statistical language (R
Development Core Team, 2009). As we did for ConMap, we
used 10-fold cross-validation to estimate kriging interpolation
performance.

Results and discussion

ConMap

Because of the large number of features for high-density
neighbourhoods (as with G22.5◦ and G11.25◦ , see Figure 3) and
computational limitations of the software used, predictions were
only possible for all densities with neighbourhood diameters
below 7.2 km. This corresponds to a maximum of 5743 features
for the G11.25◦ feature density and a radius of 180 pixels. The
differences in prediction accuracy regarding the densities of the
different neighbourhoods were marginal. The averaged RMSE
values over all neighbourhoods from ra = 2 up to ra = 180 pixels
were 14.3 (G45◦ ), 14.5 (G22.5◦ ) and 14.5 (G11.25◦ ). As there were
no significant differences in the RMSE values, we used the G45◦
neighbourhood for further analysis. This follows the principle of
parsimony as the G45◦ neighbourhood comprised the smallest
number of features. Furthermore, it also allows for the largest
neighbourhoods.

Figure 4 shows the prediction results (RMSE ) for the G45◦
approach for all neighbourhood sizes tested in this study. It can
be seen that with larger neighbourhoods much better prediction
results were achieved than with small neighbourhoods. Prediction
accuracies obtained with ConMap start with an RMSE of 15.9
(R2 = 0.16) for a radius of 40 m. The best prediction results
with an RMSE of 11.2 (R2 = 0.61) were achieved for diameters
greater than 20 km. The increase in prediction accuracy is non-
linear and not uniformly continuous, as shown by an additional
increase in prediction accuracy between neighbourhood diameters
of 15 and 20 km. This additional increase can be interpreted
as another important scale or surface property emerging in this
spatial neighbourhood range. Hence, important geomorphic units
driving loess distribution can be accounted for. Figure 2(c) shows
the spatial predictions using a neighbourhood diameter of 20 km.
Figure 5 shows the corresponding scatterplot of observed against
predicted values.

The standard deviation of the variance explained across the
three independent model runs and all neighbourhood sizes tested
was 2% on average. This comprises the random effects of the
random forests modelling approach (bagging and the random
subspace method) as well as of the 10-fold cross-validation
procedure. Therefore, the influence of the random effects can be
regarded as being marginal.

The feature importance for the final ConMap model (Figure 2c)
using the G45◦ neighbourhood is shown in Figure 6 and Figure 7.
On average, across all rays of the G45◦ neighbourhood, four zones
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Figure 4 Neighbourhood size plotted against random forests prediction
results for topsoil silt content (RMSE ). The line shows averaged results
using a lowess smoother.

can be identified as important drivers or scales for topsoil silt
content distribution with radii ranges of approximately 200–750,
2500–4200, 6250–7000 and 8750–10 000 m (Figure 7). The
first zone is related to the site and the catena scale, whereas
the others are measures of regional spatial context as demanded
by MacMillan (2004). The spatial anisotropy in the feature
importance reflects the importance of accounting for directional
components in terrain-based digital soil mapping. The latter is
most important, as all other approaches discussed in the present
study rely only on non-directional information. Further studies are
needed to further investigate the relationship between anisotropy
and pedogenesis.

Figure 6 Feature importance of the final ConMap prediction model
(Figure 2c) using a radius of 500 pixels and the G45◦ neighbourhood
kernel. The larger the dots the greater the importance of each feature
compared with randomly permutated version of the features.

Comparison with standard and multi-scale terrain analysis

Standard terrain analysis returned an RMSE of 16.1 (R2 = 0.15),
the largest value for RMSE of all approaches tested in this study.
The difference in prediction results can be analysed when the
statistical distributions of the prediction results are compared
across all approaches. Figure 5 shows that the range of the
predicted topsoil silt contents was much smaller compared with
the sample set as well as with the ConMap and kriging predictions.
The multi-scale approach comprising neighbourhood diameters
up to 620 m increased prediction accuracy to an RMSE of 15.5

Figure 5 Observed plotted against predicted scatterplots overlaid with boxplots and kernel density plots of topsoil silt content for standard terrain analysis,
ordinary kriging and ConMap predictions.
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Figure 7 Averaged feature importance over all rays of the G45◦
neighbourhood kernel with a radius of 10 000 pixels used for the final
ConMap prediction model (Figure 2c). The dots show the averaged values,
the smoothed line the corresponding lowess curve.

(R2 = 0.21). ConMap provided similar results at the same
neighbourhood diameter.

Comparison with spatial interpolation using kriging

The experimental and the theoretical semi-variogram of the topsoil
silt content (Figure 8) had a pronounced spatial trend. Figure 2(a)
shows the corresponding kriging interpolation results using gstat
(Pebesma, 2004) and using a spherical semi-variogram model
with a range of 15 556 m, a nugget variance of 87 and a sill
value of 397. The cross-validation error was 11.7 (RMSE ) with
a corresponding R2 value of 0.55. The standard deviation across
the three independent model runs was 1% in terms of variance
explained. The statistical distribution of topsoil silt-content was
comparable to the ConMap predictions. However, the range of
the predicted values was smaller (Figure 5). Up to neighbourhood
sizes of 15 000 m in diameter there was a relationship between
spatial correlation as shown by the variogram (Figure 8) and the
prediction results for the G45◦ approach across all neighbourhood
sizes (Figure 4). However, there was an additional increase in
prediction accuracy in larger neighbourhoods up to a maximum
neighbourhood diameter of 20 000 m, which is not discerned from
the variogram.

The lack of auto-correlation of silt content between pixels
>15 000 m apart, but a presence of correlation with terrain,
may result from the random forests method, which is non-linear
and non-parametric and can cope with complex multivariate
interactions of predictors (Strobl et al., 2007, 2008). Further
studies are needed to examine the general relation between the
variogram and prediction results across all neighbourhood sizes
as well as the effect of performance increase above the range of
the variogram.

Figure 8 Experimental and theoretical variogram for topsoil silt content.

Integration of scales

One major advantage of ConMap for digital soil mapping
applications is the fact that ConMap accounts for multi-scale
variation over large neighbourhoods. With regard to the concept
of spatial hierarchy of land units for soil and land resource
surveys as introduced by Gallant et al. (2008), ConMap allows
the integration of impacts across multiple scales from the site to
broad physiography in one approach, and increases the accuracy
of prediction. Generally, (digital) soil mapping requires that the
process scales match the observation scales. This ‘concept of
emergent properties’ (Gallant et al., 2008) is implicit in ConMap,
as multiple terrain is featured at different scales and is adaptively
chosen in a single regression approach. Thus, ConMap integrates
across scales, but does not down- or up-scale terrain features. The
relevant process scales are expressed and can be analysed using
feature selection approaches, even though further research on this
topic is still needed.

Technical aspects

Because it is based on elevation differences to the centre pixel
only, ConMap is a rather simplistic approach in terms of ter-
rain model complexity as compared with some common terrain
analysis approaches (Shary et al., 2002). However, it generates
many more features. As Occam’s razor only applies for mod-
els with similar prediction accuracy, ConMap should be preferred
over common-terrain analysis approaches. Nevertheless, regres-
sion approaches resistant to over-fitting and multicollinearity, such
as random forests, partial least squares regression or Support Vec-
tor Machines, have to be used.

The two major limitations of the ConMap approach are that
the optimum neighbourhood size cannot be determined a priori
and that, with regard to common pedogenetic concepts, ConMap
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cannot be used to identify relevant features such as slope even
though ConMap allows us to analyse the influence of scale, which
might give an insight into the pedogenetic processes beyond the
catena scale.

Performance

The most important result of this study is that prediction
accuracy for the topsoil silt content increased remarkably with
larger neighbourhood sizes. ConMap out-performs standard digital
terrain analysis by a factor of four in terms of the variance
explained. With multi-scale digital terrain analysis as tested in
the present study, ConMap has similar prediction accuracies at
the same, yet relatively small, neighbourhood range. However,
because of computational costs, the multi-scale approach cannot
be reasonably extended to the same neighbourhood sizes as used
with ConMap. In this respect other approaches that take account
of scale, such as wavelet transforms, should be tested in further
comparative studies.

Because of the clear spatial trend in topsoil silt-content
(Figure 2a and Figure 8), which is a reflection of the local
loess translocation in the study area, ordinary kriging also had
much better prediction results than standard or multi-scale terrain
analysis. The statistical distributions obtained from kriging and
ConMap were comparable. However, the variance explained by
ConMap was 6% better than that by kriging.

ConMap and the scorpan model

The previous discussion leads to two major findings of this
study: (i) as ConMap is based on elevation differences only, the
trend observed in the data must be induced by the geomorphic
settings in the study area driving local climate pattern, and (ii)
ConMap can account indirectly for spatial trends. Hence, for
further methodological and conceptual analysis, interpretation and
evaluation of the ConMap approach, the inclusion of the spatial
domain in prediction approaches has to be discussed.

In this context, the ConMap approach is a typical example
for the scorpan paradigm introduced for quantitative empirical
digital soil-mapping (McBratney et al., 2003). Under the terms
of this modelling approach, a soil property or a soil class (Sa

or Sc) is modelled as a function of other soil properties (s),
climate (c), organisms (o), relief (r), parent material (p), age
(a) and space or spatial position (n). Because it is an important
factor for quantitative empirical modelling, McBratney et al.
(2003) added the factor (n) to their scorpan extension of Jenny’s
(1941) famous state factor concept. There are two main concepts
directly designed to operate in the spatial domain, those of
kriging (Matheron, 1960) and geographically weighted regression
(Brunsdon et al., 1996). To integrate the factor n into regression or
supervised classification predictions, two approaches, direct (nd )
and indirect (ni), seem reasonable. The most straightforward nd

approach is to add the X and Y coordinates as additional features
and is therefore based on absolute positional information. Hence,

it describes the entire dataset and can be used to map spatial trends
directly as in trend surface analysis. With the multi-scale terrain
analysis approaches introduced by Moran & Bui (2002), Wood
(1996), Behrens et al. (2009), and Zhu et al. (2008), a spatial
component is included by means of the size of the neighbourhood
window. Therefore, these approaches integrate space, but do this
indirectly (ni ). In this respect, ConMap can immediately account
for space in varying neighbourhoods. Additionally, it comprises
information on the relative position within this window space,
which can be analysed using measures of feature importance.

The present study gives an example where the range of
spatial auto-correlation is of comparable importance to an increase
in prediction accuracy based on contextual terrain information
(Figures 5 and 8). Thus, the spatial trend found in the topsoil silt
dataset can be assumed to have resulted from differences in relief.
Compared with ordinary kriging, which is based solely on spatial
statistical assumptions (Odeh et al., 1994), ConMap is based on
the common pedogenetic model of state factors (Jenny, 1941) and
integrates space indirectly (ni) in relief (r). Thus, r and n are not
independent factors in the ConMap approach.

The relationship between the range of the variogram and the
neighbourhood size needs to be further investigated on other
datasets to see if it is possible to generalize rules. The study
shows that even though there were some similarities in the spatial
range, prediction accuracy can still increase in neighbourhoods
above the range of the variogram using ConMap. Comparisons
with other approaches that directly (nd ) or indirectly (ni ) integrate
the spatial domain, such as regression kriging (Odeh et al., 1994),
geographically weighted regression (Brunsdon et al., 1996) and
those based on wavelet analysis, are needed.

Conclusions

This study introduces a new approach for terrain-based digital soil
mapping named ConMap using contextual elevation differences
across multiple neighbourhoods instead of common terrain
attributes such as slope. It out-performs standard as well as another
multi-scale digital terrain analysis approach and can model spatial
trends indirectly. ConMap also returns slightly better results
than ordinary kriging in this case study, even though there is a
pronounced spatial trend in topsoil silt distribution.

The scorpan concept allows quantitative empirical modelling,
and the present study shows an example where multiple scales
should be considered as part of space. The discussion on the
approach used to incorporate the spatial domain in machine
learning-based digital soil mapping approaches is therefore most
interesting. In this respect, further studies are required to reveal
whether there is some general relationship between the range of
the variogram and the neighbourhood size. Additional work is
also necessary for interpreting the directional component in the
importance of the elevation differences across different scales.

We conclude that the approach introduced here shows a great
potential for future digital soil mapping studies, where spatial
contextual information is important, as well as for analysing

© 2009 The Authors
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spatial soil variation in general. Further studies within other
landscapes and on other mapping problems are needed.
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