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Windowed nearest neighbour method for mining spatio-temporal
clusters in the presence of noise
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Sciences and Natural Resources Research, CAS, Beijing, China

(Received 11 May 2009; final version received 10 August 2009)

In a spatio-temporal data set, identifying spatio-temporal clusters is difficult because of
the coupling of time and space and the interference of noise. Previous methods employ
either the window scanning technique or the spatio-temporal distance technique to
identify spatio-temporal clusters. Although easily implemented, they suffer from the
subjectivity in the choice of parameters for classification. In this article, we use the
windowed kth nearest (WKN) distance (the geographic distance between an event and its
kth geographical nearest neighbour among those events from which to the event the
temporal distances are no larger than the half of a specified time window width [TWW])
to differentiate clusters from noise in spatio-temporal data. The windowed nearest
neighbour (WNN) method is composed of four steps. The first is to construct a sequence
of TWW factors, with which the WKN distances of events can be computed at different
temporal scales. Second, the appropriate values of TWW (i.e. the appropriate temporal
scales, at which the number of false positives may reach the lowest value when classify-
ing the events) are indicated by the local maximum values of densities of identified
clustered events, which are calculated over varying TWW by using the expectation-
maximization algorithm. Third, the thresholds of the WKN distance for classification are
then derived with the determined TWW. In the fourth step, clustered events identified at
the determined TWW are connected into clusters according to their density connectivity
in geographic—temporal space. Results of simulated data and a seismic case study showed
that the WNN method is efficient in identifying spatio-temporal clusters. The novelty of
WNN is that it can not only identify spatio-temporal clusters with arbitrary shapes and
different spatio-temporal densities but also significantly reduce the subjectivity in the
classification process.

Keywords: nearest neighbour; DBSCAN; cluster; spatio-temporal; windowed; expectation-
maximization

1. Introduction

In a temporal-spatial event set, clusters (features) are referred to as subgroups of events in
restrained spatio-temporal volumes whose densities are denser than events outside the volumes
(background events or noise). The identification of spatio-temporal clusters may help with
revealing the evolving patterns of spatial anomalies or locating the varying areas of temporal
anomalies or detecting the time—space-coupled hot spots. Hence, the spatio-temporal cluster-
ing method, known as one of the important branches of spatial data mining and knowledge
discovery, has been extensively examined and widely used in epidemiology, crime behaviour
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prediction, seismicity research, and so on (Sabel et al. 2000, Johnson and Bowers 2004, Bastin
et al. 2007, Lian et al. 2007, Grubesic and Mack 2008). Because of their broad application
area, it is very important to develop highly efficient spatio-temporal clustering methods.

Although very important, two obstacles exist in the identification of spatio-temporal
clusters on account of the noise interference and the complexity caused by time—space
coupling. The first is the determination of the membership of an event in spatio-temporal
data, which means classifying events into feature and noise. The crucial issue in the first is
the choice of the unit for the estimation of spatio-temporal density around an event (either
cell statistics or distance technique was used in recent approaches, which will be reviewed
later), which is used as a standard to classify events. The second is how to group spatial—
temporal ‘close’ events into clusters, which depends on the mechanism for connecting
feature events. Although many methods were developed to identify clusters in spatio-
temporal event sets, subjectivities in the choice of thresholds (either with cell statistics or
distance techniques) still remain, which may cause different classification results in terms of
cluster number, cluster shape and the number of false positives (i.e. the feature events or
noise misclassified as noise or feature events, respectively).

So far, clustering methods that were used to discover dense regions of events on the basis
of the notion of density [namely, density-based method (Han et al. 2001)] are broadly
classified into two groups. The first is the cell-based method and the second is the distance-
based method. The cell-based methods first aggregate events into user-defined grid and then
identify significantly clustering regions, which are made up of connected and dense cells.
The cell-based methods for geographic clustering have been extensively investigated, for
example, STING, CLIQUE and MAFIA (Wang et al. 1997, Agrawal et al. 1998, Nagesh
et al. 2009). However, these methods can only deal with spatial objects. Another important
approach is that of the scanning methods, such as the well-known SaTScan method
(Kulldorff 1997), which is proposed for identifying the spatial clustering patterns that
have changed with time; it has been widely used in disease surveillance (Kulldorff and
Nagarwalla 1995, Kulldorff et al. 2005). In the SaTScan method, the scanning window,
defined as a circle (with a spatial radius) or cylinder (with a circular geographic base and the
height corresponding to time), is moved in space and time to detect significantly clustering
regions (Kulldorff and Nagarwalla 1995, Kulldorff et al. 2005, Gaudart et al. 2008).
Differing from the method we will discuss in this article, the scanning methods intend to
identify truly significant clusters contained in pre-defined regions by excluding ‘false
clusters’ (those are likely to have occurred by chance). As a result, the methods require
simulated statistics, such as the Kulldorff scan statistics (Dwass 1957, Kulldorff 1997,
Mostashari e al. 2003), or prior knowledge of the distribution of the events over the region
of interest with respect to varying baselines (such as the distribution of Bernoulli, Poisson or
exponential) (Gangnon 2006, Yan and Clayton 2006). Nevertheless, they are incapable of
providing precise information of clusters in terms of position and shape. Moreover, the
subjectivity in defining the window and target regions may cause significant different
clustering results. Although the kernel estimation was proposed later as an alternative for
the scanning method (Kelsall and Diggle 1995), it is not in itself a technique for detecting
clustering. Instead, it can only generate distribution maps of density for further analysis.

The distance-based methods utilize the Ath nearest distance, defined as the distance between
an event and its kth nearest neighbour, to estimate local density instead of using cell-based
statistics. Based on the relationship between the local density and the kth nearest distance, a
variety of clustering models have been constructed for identifying spatial clustering patterns,
such as DBSCAN, DENCLUE OPTICS, CHAMELEON and DECODE (Ester et al. 1996,
Hinneburg and Keim 1998, Ankerst ef al. 1999, Karypis et al. 1999, Pei et al. 2006, 2009). The
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distance-based methods are less subjective in estimating local density because they do not need
to specify the size and shape of the cell. However, the methods mentioned above are limited to
spatial data. To extend the distance-based methods to spatio-temporal data, methods based on
spatio-temporal nearest distance were developed, such as Knox test (Knox 1964, Williams
1984, Kulldorff and Hjalmars 1999) and Jacquez k-nearest neighbour (k-NN) test (Jacquez
1996). In the Knox test, critical distances are defined as subjective threshold values that dictate
the spatial and temporal distance where events are deemed ‘close’ in both space and time. The
counts of the pairs of events (i.e. two ‘close’ events) are then put to statistical test for clustering.
Although the critical distances can be determined according to prior knowledge, the subjectivity
in specifying the critical temporal and the critical spatial distance may result in significantly
different results. Jacquez A-NN test is constructed on a statistic index of spatio-temporal nearest
neighbour (STNN) pairs in which the temporal and the spatial distance between the two events
is less than the kth spatial and the kth temporal nearest distance for both events (Jacquez 1996).
The &-NN utilizes the index J, which is referred to as the count of STNN pairs and varies with &,
to measure the closeness of events in the data set. The A-NN technique has been used in
discovering crime point patterns (Cromwell ez al. 1999, Ratcliffe 2005). It has the ability to
track a sequence of identical events through time in an epidemiological context and connect the
detected events to form a ‘chain’ of cases (Jacquez 1996). The chain begins with an index case
and is spread through a contagious process to other cases. Although the detected ‘chain’ may
reflect the sequence of contagious process, it is not a dense cluster (what we intend to discover).
To identify spatio-temporal clustering patterns, Zaliapin et al. (2008) introduced the time—
space—magnitude distance to extract aftershocks from background earthquakes. In their
research, the time—space—magnitude distance between two events is defined as a function of
spatial distance, time interval and magnitude difference between earthquakes. Although the
time—space—magnitude distance merges the space, time and magnitude factor in one concept,
the time interval should be defined according to prior knowledge and the separation of feature
and noise can only be realized interactively. Wang et al. (2006) and Birant and Kut (2007)
proposed the ST-DBSCAN algorithm to identify clusters from spatio-temporal data in the
presence of noise objects. In ST-DBSCAN, clusters are formed by connecting objects whose
kth temporal and kth spatial nearest distances are less than the temporal and the spatial thresh-
olds, respectively, which are interactively estimated with the whole data. There are two defects
in ST-DBSCAN. The first is that the threshold may be underestimated and consequently lead to
the overestimation of clusters. The second is it cannot avoid interactive trials on the estimation
of the spatial and the temporal thresholds.

In summation, existing methods either need to estimate local density in a subjective way
or need to calculate specific statistics for clustering testing, which requires more prior
knowledge. In this article, we propose a new approach to spatio-temporal clustering: wind-
owed nearest neighbour (WNN) clustering method. The WNN method assumes that clusters
and noise belong to different point processes. The one with a higher intensity can be deemed
as clusters and the one with a lower intensity can be treated as noise. Our method is
composed of the following steps. The first is to construct the sequence of temporal window
width (TWW) factors, which is generated in the sequence: w; = % (i=1,2..N),
where floor() is the function that maps a real number to the next smallest integer. The
TWW can thus be calculated by multiplying the time scope of data by TWW factors. In the
second step, the spatio-temporal densities of feature are calculated at different TWWs; the
appropriate values of TWW for the classification can be located at the local maximum values
of the densities. In the third step, feature and noise are separated at the determined TWW by
using expectation-maximization (EM) algorithm. The final step is to connect events into
clusters according to their density connectivity in geographic—temporal space.
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This article is structured as follows. Section 2 introduces basic concepts used in the
WNN method. In Section 3, the algorithm of WNN is described and the estimation of
parameters is discussed in detail. The algorithm is then evaluated with simulated data in
Section 4. A seismic case study is presented in Section 5. Section 6 provides a summary of
this article as well as directions for future research.

2. Basic concepts
2.1. Windowed kth nearest distance

Recall that the kth nearest distance of event p in the geographic space is defined as the
distance between p and its kth nearest neighbour (Byers and Raftery 1998). In this article, we
extend the concept to the temporal-geographic space and introduce the concept of wind-
owed kth nearest (WKN) distance.

Definition 1 (spatio-temporal neighbourhood of event p;(x;,#;) (Aas.ar(pi)): A spatio-
temporal cylinder centred at p; with a geographic radius of AS and a TWW of AT (Figure 1).

Definition 2 (WKN neighbour of event p;(x;,4;) (Disk(Xitk, tirk))): The kth geographic
nearest neighbour within the spatio-temporal neighbourhood of p;(x;, ;) (4o a7 (P:))-

Note that the geographic radius of Ao, ar(p;) is infinity in Definition 2. We also
can deduce that for k& windowed nearest neighbours of p;(xi, %) (Piv1(Xit1,tiv1)s
Piv2(Xir2, tiva), - s Divk (Xisks tivk ) ’ti+j - ti‘ <AT(j=1,2,...k) and [xi1 — x|
< iz = xif| < -0+ < e — il

Definition 3 (WKN distance of event p;(x;,#)) (di.ar(p:)): The geographic distance
between p; and its WKN neighbour is p; (X4, tik ), that is, di a7(pi) = ||Xix — xi]|-

Definition 4 (spatio-temporal core event): A spatio-temporal core event with respect to
(AS,AT) and MinPts is the event whose neighbourhood Aas ar(p;) contains at least
MinPts events.

Definition 5 (spatio-temporal density-connectivity): An event p is considered to be
spatio-temporal density-connected to event ¢ with respect to (AS,AT) and MinPts if
there is a collection of events pi, ps,..., p, (with p; = ¢ and p, = p) so that
pic1 € Aasar(pi) (=2,3,..., n) and Aasar(p;) (G =2, 3,..., n — 1) must contain at
least MinPts events.

Spatial radius (AS )

“Time window width (AT")

Figure 1. Spatio-temporal neighbourhood of event p;.
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Figure 2. Spatio-temporal density connectivity. Rectangles symbolize Aas a7 (p;) (from a horizontal
perspective) with respect to AS, AT and 3; arrows symbolize the linkages between events and their
core events; circles indicate the events not located in any Axs a7 (p:)-

Figure 2 shows a sequence of spatio-temporal density-connected events. p; is spatio-
temporal density-connected to pg with respect to (AS, AT) and 3 (MinPts).

2.2. Assumption about spatio-temporal Poisson point process

A point process P can be deemed as a homogeneous Poisson point process if the number of
events (k) in any unit of S C X with volume |S] follows the distribution below:

78] s k
fsth) = S0 (M

where £ is the number of events in S(k = P(S)), X is the support domain of P (the region in
which the point process P is constrained) and 4 is the intensity of the process, which is
defined as the ratio between the number of events in P and |X] (Byers and Raftery 1998). This
says that the events of the homogeneous Poisson point process are equally likely to occur
anywhere within X and do not interact with each other. Based on the concept of homo-
geneous Poisson point process, we give the definition of spatio-temporal homogeneous
Poisson point process and AT intensity.

Definition 6 (spatio-temporal homogenous Poisson point process): For a homogeneous
Poisson point process P, if the support domain of P is a subset of the geographic—temporal
space, we then denote P as a spatio-temporal homogeneous Poisson point process (for short,
we use ST Poisson process hereafter). In this article, we use intensity for a point process and
density for a cluster.

Definition 7 (AT intensity for a ST Poisson process): AT intensity (A7) for a ST Poisson
process is defined as

Jar = AT -4 2)

where / is the intensity of the ST Poisson process. Note that / is a constant for an ST Poisson
process. Given an event p; in an ST Poisson process, Aa70of Aas ar(p;) can be computed as
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k/(nAS?), where k is the number of events in Aasar(p;), and 4 of Aasar(pi) can be
computed as k/(m - AS? - AT) or simply as Aar/AT.

Assumption 1 If a spatio-temporal event set (B {p;(x;,#;) i =1,2,...N}) contains clus-
ters and noise, then clusters and noise can be treated as two distinctive ST Poisson point
processes (Pj =1, 2)) with different intensities, where x; is the geographic location of the
event p; and ¢ is the time attribute of the event p;. Clusters are distributed at the higher
intensity and noise is distributed at the lower intensity.

Note that here we exclude the situation where the event set includes several clusters with
different densities. (In fact, our method can also handle data containing multiple processes
[or clusters], which will be discussed in the latter part of this article.) The assumption enables
us to use the intensity (density) to differentiate between clustered events and noise. The
definition of ST Poisson point process shows that events in a homogeneous Poisson point
process are independently and uniformly distributed over X. As a result, for an ST Poisson
process P, {pi(x;, ;) }, the spatial point process ({x;}) and the time point process ({#;}) can be
viewed as two independent homogeneous Poisson point processes, and the geographic
location (x;) is independent of the time attribute (#,).

2.3. Probability density function of WKN distance

For a given event p; in an ST Poisson process, the probability density function (pdf) of its
WKN distance (dar ) can be acquired through seeking the probability function of including
0,1,2,..., k—1 events within its spatio-temporal neighbourhood (4as ar(p:)):

1
k=1 g—tarme? )LATnxz)

dATk > )C =1- FdAT,k (x) (3)

m=0

where Fy,, , (x) is the cumulative distribution function of daz ; and Aar is the AT intensity of
Aasar(pi). If di ar is larger than x, there must be 0 or 1 or 2 . . . k — 1 events within
Ans.ar(p) and its pdf (fy,,, (x)) is the derivative of Fy,,, (x):

dF i, (x) eizﬂnﬁz(iATﬂ)kXZkil

Jaary (x) = d)& = (k — 1)! 4)

where Aa7 and & are the same as those in Equation (3). The pdf can be treated as a mixture
pdf of gamma according to the definition of pdf of gamma, that is, Y ~T'(k, Aa77), where
Y = x? (Byers and Raftery 1998).

3. Theory of windowed nearest neighbour
3.1. WNN method

The WNN cluster method is based on the concept of the WKN distance and is composed of
two stages. The first is to separate clustered events (feature process) from noise; the second is
to form distinctive clusters from the clustered events. In the first stage, the local spatio-
temporal density can be employed to differentiate clustered events from noise based on
Assumption 1. So the determination of the threshold of local spatio-temporal density is the
key to the first stage. In the WNN method, we use the WKN distance instead of spatio-
temporal density. Once the threshold of the WKN distance (D o7 ;) is determined, that thresh-
old and the parameters (i.e. £ and AT) associated with it define a cylinder. The density of the
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cylinder is k/(nDA 7 ,AT). Thus, D, can be treated as a replacement of the threshold of
density. As a result, events are classified as feature if their WKN distances are no larger than
D 1, while events are classified as noise if their WKN distances are larger than Dy ;. D7y
can be estimated by using EM algorithm (readers are referred to Appendix for more details).

In the second stage of WNN, the cylinder defined by D, ,, AT and k is then used for
connecting events into clusters by linking the spatio-temporal density-connected events
(which was defined in Section 2). Interested readers may refer to Ester et al. (1996), Wang
et al. (2006) and Birant and Kut (2007) for details. Here, we name the cylinder as the spatio-
temporal density-connectivity unit. Below we first describe the WNN algorithm, and then
discuss the parameter choice problem.

Algorithm: WNNCluster (Input: Data, k, DeltaT)

WKNDistance = Calculate WKNDistance(Data, DeltaT, k);
[DeltaS, Flamda, M| = MixtureDecomByEM(WKNDistance, k);
FeatureSet = Data(M>=0.5); // Events are classified as feature if M > 0.5.
Noise = Data(M<0.5); // Events are classified as noise if M < 0.5.
Clusterld .= 1;
for i = 1 to FeatureSet.size() do
Event = FeatureSet.get(i); // Get each event from FeatureSet
if Event.ld == UNCLASSIFIED THEN
if ExpandCluster(FeatureSet, Event, Clusterld, DeltaT, DeltasS, k)
Clusterld .= Clusterld + 1;
end if
end if
end for
end algorithm;
function CalculateWKNDistance(Data, DeltaT, k): Array
for i=1 to Data.size()
Pi= Data.get(i);
for j=1 to Data.size()
if j<>i
Pj= Data.get(j),
if Pj.t<Pi.t + DeltaT /2 & Pj.t>Pi.t —DeltaT /2
DataT Add(Pj);
end if
end if
WKNDistance(i) = CalculateDis(Pi, DataT, k),
end for
end for
DataT.clear(),
return WKNDistance;

In function WNNCluster(), function CalculateWKNDistance() returns the WKN dis-
tances of all events calculated at the specific DeltaT(AT). Function MixtureDecomByEM()
estimates the threshold of the WKN distance (SThreshold) by EM algorithm and returns the
AT intensity (Flamda) of the feature and the fuzzy membership values (M(i)) of events
belonging to feature at the specific DeltaT (for computational details, please refer to the
Appendix). Function ExpandCluster() is to form clusters by linking spatio-temporal density-
connected events (with respect to DeltaT, DaltaS and k) into clusters.
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Nevertheless, two parameters (i.e. A7 and k) need to be tuned before determining the
threshold of the WKN distance. To analyse the sensitivity of WNN to the parameters, in
Section 3.2 we first use simulated data to illustrate the effect of ATand then give the solution
regarding how to determine A7, The effect and choice of k are discussed in Section 3.3.

3.2. Determination of AT

Figure 3 displays a simulated spatio-temporal data that contains a ‘cubic’ feature and noise.
We then use different values of AT, acquired by multiplying the time scope of data by
varying TWW factors sampled at the sequence w; = %} (i=1,2,...,N)in (0 2] (i.e. 2,
3/2,1,3/4,1/2,3/8, 1/4, .. .), to classify the data. The results are found to be varying with the
TWW factor; see Table 1. In other words, AT has a significant influence on the classification
in terms of the number of false positives and cluster number. In the following text, we first try
to explain the results based on the analysis of the relationship between the density of
identified feature, the number of false positives and A7, and then provide the algorithm
for estimating AT.

3.2.1. Relationship between density of identified feature and AT

The curve of the density of identified feature versus TWW factor (k = 10) is shown in
Figure 4 and that of the number of false positives versus TWW factor is shown in Figure 5.
Note that the edge correction was made by simulating data with the same density as noise in
the buffered space, whose buffered distances are halves of the scopes of the data in X-, Y- and
T-directions, respectively. Even though, as TWW factor decreases to an extremely small
value, events in the data may fail to find its WKN neighbour. If events in a data set, which
cannot find their WKN neighbours, are more than 30% of the total count, the value of TWW
factor will be highlighted (namely, symbols are indicated by circles in Figure 4 and there-
after). From Table 1 and Figures 4 and 5, we find that (1) there exists one peak (which is
located in the interval of TWW factor between 3/64 and 3/16) on the curve of density of

Time

Figure 3. Simulated spatio-temporal data.
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TWW factor = 3/32; symbols enclosed with circles indicate results in which more than 30% events
cannot find their WKN neighbours hereafter).
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identified feature and (2) the local maximum value of the density of identified feature and the
minimum number of false positives are both generated as TWW factor = 1/16.

From the analysis, we conclude that the highest density of identified feature might
indicate a small number of false positives, essentially, the value of A7, which produces
the highest density, can be adopted for the classification.

To explain the dependence of the number of false positives on A7, we chose classifica-
tions generated as TWW factor=2, 1/16 and 3/128 (i.e. AT=20, 5/8 and 15/64) and k= 10.
Figure 6 sketches the rectangle feature of Figure 3 and different spatio-temporal density-
connectivity units with the heights of A7s mentioned above. Figure 7 shows the histograms
of dar  of events in Figure 3 and the classifications generated at different A75. When AT'is
longer than the time scope of feature (e.g. Unit A in Figure 6, AT= 20), k windowed nearest
neighbours of a given feature event p; inevitably contain noise events. Furthermore, noise
events over and below a feature cannot be separated from the feature, thereby leading to
more false positives (Figure 7b). This can also be validated by the fitted curve of the
histogram of the WKN distance (Figure 7a), in which the proportion of feature is larger
than the theoretical (the left component) and that of noise is smaller than the theoretical (the
right component). Because of the existence of many noise events in the neighbourhoods of
feature events, AT intensity (Aar) of identified feature events is underestimated.
Consequently, the spatio-temporal density of identified feature, which equals /ar/AT
(recall Definition 7), is lowered (1.41x107%) and the feature is then overestimated in
terms of event number and cluster number (92 false positives and 3 clusters are produced).

As AT decreases (Unit B in Figure 6, AT = 5/8), fewer noise events are included in k&
windowed nearest neighbours of feature events. Those near the centre of feature may even
exclude noise events from their £ windowed nearest neighbours. The ‘purified” k£ windowed
nearest neighbours may reduce the probability of events being misclassified, which is also
supported by the more distinctive mixture histogram in Figure 7c (compared with that in

Figure 6. Spatio-temporal density-connectivity unit with varying AT (dots indicate the feature events
and circles indicate noise; A, B and C are spatio-temporal density-connectivity units; their TWW
factors are 2, 1/16 and 3/128 respectively).
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Figure 7. Results of simulated data using WNN: (a) mixture histogram of the WKN distance when
TWW factor = 2; (b) classification when TWW factor = 2 (AT = 20); (c) mixture histogram of the
WKN distance when TWW factor = 1/16; (d) classification when TWW factor = 1/16 (AT = 5/8); (e)
mixture histogram of the WKN distance when TWW factor = 3/128; (f) classification when TWW
factor = 3/128 (AT = 15/64).

Figure 7a). Because events in neighbourhoods (4g4,,, ar(p;)) of a given feature event
become purer as AT decreases, the density of identified feature will reach a higher value
(6.3x107%). At the same time, false positives are reduced and no false cluster is generated
(21 false positives; see Table 1 and Figure 7d).

As AT decreases to a small value (e.g. Unit C in Figure 6, AT = 15/64), the WKN
distance of a feature event is forced to be larger than the theoretical event because of the
difficulty in finding enough nearest neighbours of same process within such a small AT. The
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histogram of feature (the left component) shows significant right-bias (Figure 7¢) compared
with that in Figure 7c. This will lead to more false positives (31 false positives; Figure 7f).
Because of the existence of noise events in the neighbourhood of a given feature event
(Ady,,.a7(pi)), the density of feature is underestimated (5.34x107%; Table 1) and the
number of false positives increases accordingly (31 false positives).

To sum up, densities calculated at differing A75 may indicate different numbers of false
positives. As AT decreases to a value at which most feature events could find their
k windowed nearest feature neighbours, the density of identified feature may reach its
(local) maximum value(s), and at the same time the number of false positives may reach a
low value (in this case, Unit B in Figure 7). Note that local maximum values can also indicate
appropriate values of A7when clusters with different densities and predominant dimensions
coexist, which will be discussed in the results of other simulated data sets (see Section 4).

3.2.2.  Algorithm for estimating AT

Based on the analysis of the relationship between the density of identified features and A7,
we give the algorithm for estimating AT

Function: [DeltaT] = DetermineDaltaT(Data, k)

let TimeWindowWidthFactor = [1/512, 3/1024, 1/256, 3/512, 1/128, 3/256, 1/64, 3/128,

1/32, 3/64, 1/16, 3/32, 1/8, 3/16, 1/4, 3/8, 1/2, 3/4, 1, 3/2, 2];

for i = 1 to Length(TimeWindowWidthFactor)
TimeWindowWidth = TimeWindowWidthFactor(i)* Data.GetTScope(); //(1)
WKNDistance = CalculateWKNDistance(Data, TimeWindowWidth, k),
[DeltaS, Flamda, M) = MixtureDecomByEM(WKNDistance, k);
Intensity(i) = Flamda | TimeWindowWidth; //(2)

end for
[DeltaT] = LocalMaxIntensity(Intensity); //(3)

end algorithm //(4)

Regarding the algorithm, some points should be noted:

(1) TimeWindowWidth is the width of time window; function Data. GetTScope() returns
the time scope of the spatio-temporal data.

(2) The spatio-temporal intensity (density) of feature is estimated by dividing Flamda
(AT intensity) by TimeWindowWidth.

(3) Function LocalMaxIntensity() returns the appropriate value(s) of A7, at which the
local maximum values of density of feature are generated. In LocalMaxIntensity(),
the local maximum values of density are determined in the sequence of densities
acquired over varying TWW factors.

(4) Because parameters (i.e. M, Flamda and DeltaS) associated with the estimated AT
have been determined in Function DetermineDaltaT(), the same steps in
WNNCluster() can be omitted.

3.3. Choice of k

We then examine the influence of £ on the classification. Besides & = 10, Figure 4 shows the
plot of the density of identified features versus TWW factor when k£ = 3 and k£ = 20. The
numbers of false positives and clusters can be found in Table 1 while the curves of the
number of false positives are displayed in Figure 5. According to the comparison of the
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numbers of false positives between k=3 and k= 10 (Figure 5 and Table 1), results for k=3
show more false positives than those for £ = 10 when TWW factor exceeds 1/64. More
importantly, the smallest number of false positives for k£ =3 is larger than that for k= 10, both
of which were generated as TWW factor = 1/16. In addition, the number of clusters is
overestimated at all values of TWW factor as k= 3. Differing from those for k= 3, results for
k =20 show more false positives than those for £ = 10 almost at all values of TWW factor
except when it is larger than 1/2 (Table 1 and Figure 5). The smallest number of false
positives for £ =20 is larger than that for k= 10. Nevertheless, results for £ =20 show wrong
cluster number only when TWW factor is less than 1/64. The comparison of results between
k=3, k=10 and k= 20 shows that the most appropriate value for & is 10.

The determination of & for the NN method has been discussed in Pei ez al. (2007). Here
we only recapitulate the result that is also applicable to the scenario of WNN. As £ is small,
the histogram of the WKN distance is not clearly bimodal (Figure 8a), which leads to many
false positives being produced. As k is too large, because the WKN distances of events
(either noise or feature) near the border between feature and noise may significantly become
smaller (for noise) or larger (for feature) than those far away from the border, the mixture
histogram of the WKN distance deviates from the theoretical one (Figure 8b). The feature
will be overestimated while the noise will be underestimated. Therefore, the algorithm may
not produce a good result in this case. In conclusion, if one cares about the total number of
false positives we suggest k = 6—12; if one cares only about the number of false positives of
feature (i.e. the number of feature events that have been classified as noise), for example, in
the case of predicting the susceptible area of natural disasters, a larger value of & will be
appropriate. In this article, we are concerned more about the number of false positives and set
k to a medium large value in the examples of simulated data and the case study.

4. Results of other simulated data
4.1. Classification results of simulated data

To evaluate the WNN method, we simulated five data sets (Figure 9). The first data set
consists of five clusters and noise; the second consists of two ‘L-shaped’ clusters and noise;
the third contains two clusters — one is contained in a cuboid and the other is limited in a thin
plane extended in XY dimension; the fourth contains two clusters (with the same number of
events) — one is in a high density, and the other is in a low density and prolongs along the
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Figure 8. Histograms generated at different values of k£ (TWW factor = 1/16): (a) histogram of the
WKN distance as k = 3; (b) histogram of the WKN distance as £ = 20.
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Figure 9. Results of simulated data: (a) densities and numbers of false positives of the first data set;
(b) classification (TWW factor = 3/64, false positive number = 10); (c) densities and numbers of false
positives of the second data set; (d) classification (TWW factor = 1/8, false positive number = 30); (e)
densities and numbers of false positives of the third data set; (f) classification (TWW factor = 3/8, false
positive number = 160); (g) classification (TWW factor = 3/64, false positive number = 20); (h)
classification (TWW factor = 3/512, false positive number = 170); (i) densities and numbers of false
positives of the fourth data set; (j) classification (TWW factor = 3/16, false positive number = 55); (k)
classification (TWW factor = 3/128, false positive number = 150); (1) densities and numbers of false
positives of the fifth data set; (m) classification (TWW factor = 1/16, false positive number = 17); (n)
densities and numbers of false positives of the fifth data set (identifying clusters in the rest of data in
which the denser cluster has been taken out); (o) classification (TWW factor = 3/8, false positive
number = 39); (p) final classification of the fifth data set. In (a), (c), (e), (), (1) and (n), squares indicate
spatio-temporal densities of identified features, dots indicate numbers of false positives; in the rest of
the panels, noise is indicated by dots and false positives are highlighted by circles.
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T-axis; the fifth contains two cubic clusters — the small and dense one is located inside the big
and sparse one. Note that the fourth and the fifth data sets contain clusters of different
densities.

Figure 9 displays classification results generated by WNN. Regarding the first two data
sets, we found the densities reach their maximum values when TWW factor = 3/64 and 1/8,
respectively (Figure 9a and c). The curves of the number of false positives also show that
when TWW factors mentioned above were adopted, the smallest numbers of false positives
(12, 33) were produced for the first and the second data set. The classifications, displayed in
Figure 9b and d, show that the clusters are clearly revealed.

The density plot of the third data set is shown in Figure 9¢; local maximum values can be
located as TWW factor = 3/8, 3/64 and 3/512. Classifications acquired at these values are
displayed in Figure 9f, g and h, in which the cubic cluster, both clusters and the plane cluster
were extracted in turns. Although the two clusters are in the same density, they show
different predominant dimensions. As a result, the one in the cuboid was identified if
TWW factor was large (the reason is that events in the cuboid have shorter WKN distances
than those in the plane under such a TWW, and they were classified as feature while the rest
of events were classified as noise); the one in the plane was identified if TWW factor was
small (the reason is that events in the plane have shorter WKN distances than those in the
cuboid under such a small TWW, and the events in the plane were classified as ‘feature’
while the rest of events were classified as ‘noise”); both were identified when TWW factor
was set to a moderate value.

Two local maximum values (generated when TWW factor = 3/16 and 3/128) can be
recognized from the curve of the density of the fourth data set (Figure 91). When TWW factor
= 3/16, two clusters were identified (Figure 9j); as TWW factor decreased to 3/128, only the
denser cluster was extracted (Figure 9k). The reason why clusters with different densities can
be identified as TWW factor = 3/16 is that events in the cluster of lower density may have the
same length of the WKN distances on average as those in the clusters of higher density under
such TWW. Hence, when TWW is large enough, noise can be separated from clusters, and
clusters with different densities can be identified simultaneously; when TWW is small, only
the cluster with the higher density can be extracted.

For the fifth data set, the curve of density shows one maximum value (Figure 91). The initial
classification only identified the denser cluster (with 17 false positives generated) and the other
cluster was still hidden in noise (Figure 9m). In the next step, we treat noise and the hidden
cluster as a new data set and run our algorithm again. The curve of density is displayed in
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Figure 9n. The other cluster was identified as TWW = 3/8 (at which the maximum value of
density was generated); the number of false positives was 39 (Figure 90). The final result,
which is the combination of these two classifications, is shown in Figure 9p.

All results show that local maximum values of density of identified features may indicate
appropriate values of AT for classification. In particular, those of the third and the fourth data
sets show that a large TWW may enhance the capability for discerning clusters extended
along T-axis (even with a low density) but may neglect those condensed in a narrow time
interval (even with a high density), whereas a small TWW may have the opposite impact.
Results of the fifth data set show that the clusters with different densities can be identified
stepwise by applying our algorithm several times. To sum up, for clusters with different
densities and various predominant dimensions, we can try our algorithm with different
TWWs (which is associated with the local maximal values of the density of identified
feature) first; if it does not work, we can apply the stepwise WNN strategy.

4.2. Comparison between WNN and ST-DBSCAN

We used the second data set as an example to compare the efficiency on cluster identification
between WNN and ST-DBSCAN. Figure 10a shows the spatial k-distance plot of the second
data set while Figure 10b shows the temporal k-distance plot (k-distance plot displays the kth
spatial/temporal nearest distance of each event lined up in an ascending order). In Figure 10a
and b, asterisks indicate the threshold of the kth spatial nearest distance and that of the kth
temporal nearest distance (AS and AT), respectively, which are located at the first valleys of
the plots, as described in Birant and Kut (2007). The ST-DBSCAN was then conducted with
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Figure 10. Classification with ST-DBSCAN: (a) spatial thresholds determined by visual trials; (b)
temporal thresholds determined by visual trials; (c) classification with thresholds determined by visual
trials (the number of false positive is 547).
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AS and AT. However, no clusters can be found. Because the k-distance plots are calculated at
the globe scale, the identified AS and AT are too small to discern any clusters. We then
increase AS and AT, which are indicated by crosses located at valleys in Figure 10a and b,
and the classification result is displayed in Figure 10c. Seven clusters were identified and 547
events were misclassified. Furthermore, similar results were also found with other data sets of
Figure 9. (As we are limited by article length, we omit the details of the comparison.) As a
result, we have to admit that the interactive trial may fail to produce reasonable classifications.

4.3. Complexity of WNN method

The complexity of the WNN method is decided by three factors. The first is the computation
of the WKN distance of each event, whose computational complexity is O(N* + N*k). The
second is the decomposition of the mixture pdf of the WKN distance, whose computational
complexity is O(N*Ntime* Nwindow). The third is the forming of clusters, whose computa-
tional complexity is O(N*log(N)) (Ester ef al. 1996). Here, N is the number of events in the
data set, Ntime is the iteration times that the EM algorithm needs to run and Nwindow is the
number of TWW factors that should be tried in WNN. Please note that Nwindow could be
influenced by the data size (N). In detail, a large N may increase Nwindow (which means an
event can find its WKN neighbour even at a very small TWW factor if the N events are not
constrained in a limited spatial scope) while a small N may reduce Nwindow (which means
an event may not find its WKN neighbour even at a relatively large TWW factor).
Nevertheless, the explicit relation between Nwindow and N cannot be easily determined.
Totally, the complexity of WNN is O(M(N + k + Ntime* Nwindow + log(N))). As a result, N is
the key factor that decides the run time of WNN.

5. A case study: determining spatio-temporal clusters of earthquakes
5.1.  Clusters of earthquakes

Clustered earthquakes are usually perceived as foreshocks (if strong earthquakes occur after
them) or aftershocks (if strong earthquakes occur before them) of strong earthquakes. As a
result, the detection of clustered earthquakes may help to predict strong earthquakes or
understand the trend and the mechanism of strong earthquakes (Wu ef al. 1990, Chen ef al.
1999, Ripepe et al. 2000).

As we know, clustered earthquakes are difficult to discover because of the interference of
background earthquakes. Nevertheless, clustered earthquakes differ from background earth-
quakes because clustered earthquakes are not only spatially clustered but also temporally
clustered while background earthquakes are referred to as small earthquakes that release in a
low stable rate (time) and intensity (space), which simultaneously occur and overlap with the
clustered earthquakes (Wyss and Toya 2000, Pei et al. 2003). In this regard, background
carthquakes and clustered earthquakes can be deemed as two ST Poisson processes with
different intensities. The separation of these two types of earthquakes can be used for the
evaluation of the WNN method.

5.2. Study area and seismic data

The study area is located between 101° and 106° E and 29° and 34° N (southwestern China)
and is one of those areas with the most intensive seismicity in China (Figure 11). Twenty-five
devastating earthquakes (M > 6.0) occurred in this area between 1970 and 2008, including



03:28 19 April 2010

[I nst of Geographical Sciences & Natural Resources Research] At:

Downl oaded By:

944 T. Pei et al.

e
Urumchi

@ Lanzhou

Shanghai

Figure 11. Location of study area.

the Wenchuan earthquake that occurred at 103.0° E, 31.3° N on 12 May 2008, with the
magnitude measured as 8.0 (China Seismograph Network Data Management Center 2009).
The catalogue data used for the case study are from Feng and Huang (1980, 1989). The
selected earthquakes are from 15 January 1975 to 15 August 1976 and larger than 1.5 (M).
Thus, 484 epicentres are obtained altogether.

5.3.  Result of detection of clustered earthquakes

The WNN method was then applied to the seismic data by setting £ = 8. The curve of density
of clustered earthquakes (Figure 12) displays two platforms (i.e. TWW factor = 1/128-3/
256, 1/16-2). Two local maximum values were obtained as TWW factor = 3/32 and 1/128.
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Figure 12. Densities of identified clustered earthquakes versus TWW factor.
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Figure 13. Classification of seismic data using the WNN method: (a) classification generated when
TWW factor = 3/32 (strong earthquakes are symbolized by circles; background earthquakes are
symbolized by dots; Cluster 1 is symbolized by crosses; Cluster 2 is symbolized by triangles;
Cluster 3 is symbolized by squares); (b) classification generated when TWW factor = 1/128 (strong
earthquakes are symbolized by circles; background earthquakes are symbolized by dots; Cluster 1 is
symbolized by crosses).

Three clusters were identified for the first value (Figure 13a). Are the clustered earthquakes
aftershocks or foreshocks? The records of strong earthquakes can help to explain the result.
According to Zhang (1990), Cluster 1 (with a higher density) occurred around and after the
Daguan earthquake (M = 7.1, occurred at 28°06’ N, 104°00" E on 11 May 1974) and can be
treated as the aftershocks of the Daguan earthquake. In addition to the Daguan earthquake,
four strong earthquakes (i.e. the Songpan earthquakes; M = 7.2, occurred around 32°40’ N,
104°00" E on 16 August 1976) occurred in and after Cluster 2 and Cluster 3 (these two with a
lower density) (Zhang 1986). In this regard, Cluster 2 and Cluster 3 can be treated as the
foreshocks and indicative of the Songpan earthquakes. Interestingly, the foreshocks are
shown as two distinctive clusters, which we cannot observe if applying spatial clustering
methods.

The classification generated when TWW factor = 1/128 is displayed in Figure 13b. From
the figure, only aftershocks of the Daguan earthquake (Cluster 1 in Figure 13b) were
identified, which is similar to the result of the fourth simulated data set. Both classifications
validate that when clusters of varied densities are different in predominant dimensions, a
large TWW may help to reveal clusters of different densities whereas a small TWW may
only help to reveal clustered earthquakes of a higher density

6. Conclusions and future work

The WNN algorithm was applied to the simulated data and the seismic data in this article and
testified as an efficient algorithm for discovering clustering patterns in spatio-temporal data.
The novelty of the algorithm lies in three aspects. First, it can not only identify spatio-
temporal clusters with arbitrary shapes but also provide fuzzy membership values of events
belonging to features. Second, only one parameter, that is, &, needs to be adjusted in the
WNN algorithm, because TWW can be determined by locating the local maximum values of
density of identified feature events. As a result, WNN is a more objective process compared
with other spatio-temporal clustering methods. Third, clusters with different densities and
various predominant dimensions can be identified at different scales of TWW. The third
point also shows that the WNN algorithm bears analogy to the Fourier transform, in which
the components of different frequencies can be extracted through filtering under different
thresholds. Although the algorithm was only applied to the seismic catalogue in this article,
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we believe it may extend to other areas with respect to spatio-temporal data, such as
infectious disease cases and crime venues.

In this article, the algorithm assumes that only two ST Poisson processes exist in a data
set, that is, clusters and noise, which means that the algorithm can only deal with two
processes simultaneously when TWW is fixed, although the variant of WNN may adapt to
data containing more than two Poisson processes. When the number of processes signifi-
cantly increases, the complexity and the stability of the algorithm will be severely chal-
lenged. In addition, only homogeneous point processes are allowed in WNN;
inhomogeneous clusters, such as Gaussian process, could lead WNN to generate more
false positives or even false clusters. As a result, more sophisticated models, which are
capable of dealing with more complex spatio-temporal data, deserve further research.
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Appendix

The estimation of the threshold (D, ;) for discriminating between features and noise can be divided
into two stages. The first is to construct the mixture pdf of d ;- , of two ST Poisson point processes; the
second is to estimate the parameters of the mixture of d, ., using the EM algorithm.

1. Mixture pdf of WKN distance

According to Assumption 1, noise and features can be represented by two overlapped ST Poisson
processes with different intensities, say 4, and 4,; the bimodal pdf of d; A7 can be expressed as follows:

dars~pT" 2k, iaram) + (1 — p)DY2(k, Aaram) (A1)

where p is the proportion coefficient, and Aar,1 and a7 > are the AT intensities of the two processes. p,
Aar, and Zar, are the three parameters of the mixture pdf.

2. Estimation of parameters using EM algorithm

The EM algorithm for estimating the parameters of the mixture pdf can be divided into two major steps,
namely, the expectation step (E-step) and the maximization step (M-step). The E-step aims at estimat-
ing the expectation of the fuzzy membership value of each event subjecting to feature (Byers and
Raftery 1998).

The E-step is

P fases (diarins A')

E@™Y) = - - (A2)

p ﬁiArk( AT,k),i; /AL(AI)T71> + (1 - /A)(t))fdk;ar (d(ATJ()J'; /IX)TQ)

while the M-step is
(r+1) 1
E(AIJ;WII) th 1 I[+ and ;I(Af;lz) _ th 1 ( t+ ))

7 myi ATk (M) A myi d(AT,k),i( - 5§t+1))

(A3)
n S(H—l)

with p+D) = Zi
i=1

n

where n is the number of events, 7 is the iteration times and d(a7 ), is the WKN distance of event p;. If

we define the process with /a7 representing the feature, then events with (5 (1) > 0.5 belong to

feature and events with 65 b belong to noise. Here, 6,( )

of event p; belonging to feature.
With all parameters of the mixture pdf of the WKN distance estimated, the threshold (Dary) for
discriminating between feature and noise can be computed with the equation below:

can be treated as the fuzzy membership value

+k Infar2

/AT,

In(+%)

n(Aar2 — Aar1)

Dary = (A4)



